1
|
Xu Z, Wang C, He S, Wu J, Zhao Y. Enhancing Molecular-Level Biological Monitoring with a Smart Self-Assembling 19F-Labeled Probe. Angew Chem Int Ed Engl 2025; 64:e202417112. [PMID: 39400552 DOI: 10.1002/anie.202417112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/15/2024]
Abstract
Real-time monitoring of molecular transformations is crucial for advancements in biotechnology. In this study, we introduce a novel self-assembling 19F-labeled nuclear magnetic resonance (NMR) probe that disassembles upon interaction with various nucleotides. This interaction not only activates the 19F signals but also produces distinct signatures for each specific component, thereby enabling precise identification and quantification of molecules in evolving samples. We demonstrate the capability of this probe for real-time monitoring of adenosine triphosphate (ATP) hydrolysis and screening potential enzyme inhibitors. These applications highlight the probe's significant potential in enzyme analysis, drug development, and disease diagnostics.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chenyang Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Shengyuan He
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
2
|
Hellemann E, Durrant JD. Worth the Weight: Sub-Pocket EXplorer (SubPEx), a Weighted Ensemble Method to Enhance Binding-Pocket Conformational Sampling. J Chem Theory Comput 2023; 19:5677-5689. [PMID: 37585617 PMCID: PMC10500992 DOI: 10.1021/acs.jctc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/18/2023]
Abstract
Structure-based virtual screening (VS) is an effective method for identifying potential small-molecule ligands, but traditional VS approaches consider only a single binding-pocket conformation. Consequently, they struggle to identify ligands that bind to alternate conformations. Ensemble docking helps address this issue by incorporating multiple conformations into the docking process, but it depends on methods that can thoroughly explore pocket flexibility. We here introduce Sub-Pocket EXplorer (SubPEx), an approach that uses weighted ensemble (WE) path sampling to accelerate binding-pocket sampling. As proof of principle, we apply SubPEx to three proteins relevant to drug discovery: heat shock protein 90, influenza neuraminidase, and yeast hexokinase 2. SubPEx is available free of charge without registration under the terms of the open-source MIT license: http://durrantlab.com/subpex/.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacob D. Durrant
- Department of Biological
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Dillenberger M, Werner AD, Velten AS, Rahlfs S, Becker K, Fritz-Wolf K. Structural Analysis of Plasmodium falciparum Hexokinase Provides Novel Information about Catalysis Due to a Plasmodium-Specific Insertion. Int J Mol Sci 2023; 24:12739. [PMID: 37628920 PMCID: PMC10454665 DOI: 10.3390/ijms241612739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The protozoan parasite Plasmodium falciparum is the causative pathogen of the most severe form of malaria, for which novel strategies for treatment are urgently required. The primary energy supply for intraerythrocytic stages of Plasmodium is the production of ATP via glycolysis. Due to the parasite's strong dependence on this pathway and the significant structural differences of its glycolytic enzymes compared to its human counterpart, glycolysis is considered a potential drug target. In this study, we provide the first three-dimensional protein structure of P. falciparum hexokinase (PfHK) containing novel information about the mechanisms of PfHK. We identified for the first time a Plasmodium-specific insertion that lines the active site. Moreover, we propose that this insertion plays a role in ATP binding. Residues of the insertion further seem to affect the tetrameric interface and therefore suggest a special way of communication among the different monomers. In addition, we confirmed that PfHK is targeted and affected by oxidative posttranslational modifications (oxPTMs). Both S-glutathionylation and S-nitrosation revealed an inhibitory effect on the enzymatic activity of PfHK.
Collapse
Affiliation(s)
- Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany; (M.D.)
| | - Anke-Dorothee Werner
- Institute of Virology, University of Marburg, Hans-Meerwein-Str. 2, D-35043 Marburg, Germany
| | - Ann-Sophie Velten
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany; (M.D.)
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany; (M.D.)
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany; (M.D.)
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany; (M.D.)
- Max-Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Hellemann E, Durrant JD. Worth the weight: Sub-Pocket EXplorer (SubPEx), a weighted-ensemble method to enhance binding-pocket conformational sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539330. [PMID: 37251500 PMCID: PMC10214482 DOI: 10.1101/2023.05.03.539330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Structure-based virtual screening (VS) is an effective method for identifying potential small-molecule ligands, but traditional VS approaches consider only a single binding-pocket conformation. Consequently, they struggle to identify ligands that bind to alternate conformations. Ensemble docking helps address this issue by incorporating multiple conformations into the docking process, but it depends on methods that can thoroughly explore pocket flexibility. We here introduce Sub-Pocket EXplorer (SubPEx), an approach that uses weighted ensemble (WE) path sampling to accelerate binding-pocket sampling. As proof of principle, we apply SubPEx to three proteins relevant to drug discovery: heat shock protein 90, influenza neuraminidase, and yeast hexokinase 2. SubPEx is available free of charge without registration under the terms of the open-source MIT license: http://durrantlab.com/subpex/.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
5
|
Lesko MA, Chandrashekarappa DG, Jordahl EM, Oppenheimer KG, Bowman RW, Shang C, Durrant JD, Schmidt MC, O’Donnell AF. Changing course: Glucose starvation drives nuclear accumulation of Hexokinase 2 in S. cerevisiae. PLoS Genet 2023; 19:e1010745. [PMID: 37196001 PMCID: PMC10228819 DOI: 10.1371/journal.pgen.1010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Glucose is the preferred carbon source for most eukaryotes, and the first step in its metabolism is phosphorylation to glucose-6-phosphate. This reaction is catalyzed by hexokinases or glucokinases. The yeast Saccharomyces cerevisiae encodes three such enzymes, Hxk1, Hxk2, and Glk1. In yeast and mammals, some isoforms of this enzyme are found in the nucleus, suggesting a possible moonlighting function beyond glucose phosphorylation. In contrast to mammalian hexokinases, yeast Hxk2 has been proposed to shuttle into the nucleus in glucose-replete conditions, where it reportedly moonlights as part of a glucose-repressive transcriptional complex. To achieve its role in glucose repression, Hxk2 reportedly binds the Mig1 transcriptional repressor, is dephosphorylated at serine 15 and requires an N-terminal nuclear localization sequence (NLS). We used high-resolution, quantitative, fluorescent microscopy of live cells to determine the conditions, residues, and regulatory proteins required for Hxk2 nuclear localization. Countering previous yeast studies, we find that Hxk2 is largely excluded from the nucleus under glucose-replete conditions but is retained in the nucleus under glucose-limiting conditions. We find that the Hxk2 N-terminus does not contain an NLS but instead is necessary for nuclear exclusion and regulating multimerization. Amino acid substitutions of the phosphorylated residue, serine 15, disrupt Hxk2 dimerization but have no effect on its glucose-regulated nuclear localization. Alanine substation at nearby lysine 13 affects dimerization and maintenance of nuclear exclusion in glucose-replete conditions. Modeling and simulation provide insight into the molecular mechanisms of this regulation. In contrast to earlier studies, we find that the transcriptional repressor Mig1 and the protein kinase Snf1 have little effect on Hxk2 localization. Instead, the protein kinase Tda1 regulates Hxk2 localization. RNAseq analyses of the yeast transcriptome dispels the idea that Hxk2 moonlights as a transcriptional regulator of glucose repression, demonstrating that Hxk2 has a negligible role in transcriptional regulation in both glucose-replete and limiting conditions. Our studies define a new model of cis- and trans-acting regulators of Hxk2 dimerization and nuclear localization. Based on our data, the nuclear translocation of Hxk2 in yeast occurs in glucose starvation conditions, which aligns well with the nuclear regulation of mammalian orthologs. Our results lay the foundation for future studies of Hxk2 nuclear activity.
Collapse
Affiliation(s)
- Mitchell A. Lesko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dakshayini G. Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Eric M. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine G. Oppenheimer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ray W. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Martin C. Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
6
|
Hellemann E, Walker JL, Lesko MA, Chandrashekarappa DG, Schmidt MC, O’Donnell AF, Durrant JD. Novel mutation in hexokinase 2 confers resistance to 2-deoxyglucose by altering protein dynamics. PLoS Comput Biol 2022; 18:e1009929. [PMID: 35235554 PMCID: PMC8920189 DOI: 10.1371/journal.pcbi.1009929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/14/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023] Open
Abstract
Glucose is central to many biological processes, serving as an energy source and a building block for biosynthesis. After glucose enters the cell, hexokinases convert it to glucose-6-phosphate (Glc-6P) for use in anaerobic fermentation, aerobic oxidative phosphorylation, and the pentose-phosphate pathway. We here describe a genetic screen in Saccharomyces cerevisiae that generated a novel spontaneous mutation in hexokinase-2, hxk2G238V, that confers resistance to the toxic glucose analog 2-deoxyglucose (2DG). Wild-type hexokinases convert 2DG to 2-deoxyglucose-6-phosphate (2DG-6P), but 2DG-6P cannot support downstream glycolysis, resulting in a cellular starvation-like response. Curiously, though the hxk2G238V mutation encodes a loss-of-function allele, the affected amino acid does not interact directly with bound glucose, 2DG, or ATP. Molecular dynamics simulations suggest that Hxk2G238V impedes sugar binding by altering the protein dynamics of the glucose-binding cleft, as well as the large-scale domain-closure motions required for catalysis. These findings shed new light on Hxk2 dynamics and highlight how allosteric changes can influence catalysis, providing new structural insights into this critical regulator of carbohydrate metabolism. Given that hexokinases are upregulated in some cancers and that 2DG and its derivatives have been studied in anti-cancer trials, the present work also provides insights that may apply to cancer biology and drug resistance. Glucose fuels many of the energy-production processes required for normal cell growth. Before glucose can participate in these processes, it must first be chemically modified by proteins called hexokinases. To better understand how hexokinases modify glucose—and how mutations in hexokinase genes might confer drug resistance—we evolved resistance in yeast to a toxic hexokinase-binding molecule called 2DG. We discovered a mutation in the hexokinase gene that confers 2DG resistance and reduces the protein’s ability to modify glucose. Biochemical analyses and computer simulations of the hexokinase protein suggest that the mutation diminishes glucose binding by altering enzyme flexibility. This work shows how cells can evolve resistance to toxins via only modest changes to protein structures. Furthermore, because cancer-cell hexokinases are particularly active, 2DG has been studied as cancer chemotherapy. Thus, the insights this work provides might also apply to cancer biology.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer L. Walker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mitchell A. Lesko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dakshayini G. Chandrashekarappa
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Martin C. Schmidt
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AFO); (JDD)
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AFO); (JDD)
| |
Collapse
|
7
|
Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis. Int J Mol Sci 2022; 23:ijms23020772. [PMID: 35054955 PMCID: PMC8776025 DOI: 10.3390/ijms23020772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The milk yeast Kluyveromyces lactis degrades glucose through glycolysis and the pentose phosphate pathway and follows a mainly respiratory metabolism. Here, we investigated the role of two reactions which are required for the final steps of glucose degradation from both pathways, as well as for gluconeogenesis, namely fructose-1,6-bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In silico analyses identified one gene encoding the former (KlFBA1), and three genes encoding isoforms of the latter (KlTDH1, KlTDH2, KlGDP1). Phenotypic analyses were performed by deleting the genes from the haploid K. lactis genome. While Klfba1 deletions lacked detectable FBA activity, they still grew poorly on glucose. To investigate the in vivo importance of the GAPDH isoforms, different mutant combinations were analyzed for their growth behavior and enzymatic activity. KlTdh2 represented the major glycolytic GAPDH isoform, as its lack caused a slower growth on glucose. Cells lacking both KlTdh1 and KlTdh2 failed to grow on glucose but were still able to use ethanol as sole carbon sources, indicating that KlGdp1 is sufficient to promote gluconeogenesis. Life-cell fluorescence microscopy revealed that KlTdh2 accumulated in the nucleus upon exposure to oxidative stress, suggesting a moonlighting function of this isoform in the regulation of gene expression. Heterologous complementation of the Klfba1 deletion by the human ALDOA gene renders K. lactis a promising host for heterologous expression of human disease alleles and/or a screening system for specific drugs.
Collapse
|
8
|
Rodríguez-Saavedra C, Morgado-Martínez LE, Burgos-Palacios A, King-Díaz B, López-Coria M, Sánchez-Nieto S. Moonlighting Proteins: The Case of the Hexokinases. Front Mol Biosci 2021; 8:701975. [PMID: 34235183 PMCID: PMC8256278 DOI: 10.3389/fmolb.2021.701975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins are defined as proteins with two or more functions that are unrelated and independent to each other, so that inactivation of one of them should not affect the second one and vice versa. Intriguingly, all the glycolytic enzymes are described as moonlighting proteins in some organisms. Hexokinase (HXK) is a critical enzyme in the glycolytic pathway and displays a wide range of functions in different organisms such as fungi, parasites, mammals, and plants. This review discusses HXKs moonlighting functions in depth since they have a profound impact on the responses to nutritional, environmental, and disease challenges. HXKs’ activities can be as diverse as performing metabolic activities, as a gene repressor complexing with other proteins, as protein kinase, as immune receptor and regulating processes like autophagy, programmed cell death or immune system responses. However, most of those functions are particular for some organisms while the most common moonlighting HXK function in several kingdoms is being a glucose sensor. In this review, we also analyze how different regulation mechanisms cause HXK to change its subcellular localization, oligomeric or conformational state, the response to substrate and product concentration, and its interactions with membrane, proteins, or RNA, all of which might impact the HXK moonlighting functions.
Collapse
Affiliation(s)
- Carolina Rodríguez-Saavedra
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Enrique Morgado-Martínez
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés Burgos-Palacios
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Beatriz King-Díaz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Montserrat López-Coria
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sobeida Sánchez-Nieto
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Hapeta P, Szczepańska P, Neuvéglise C, Lazar Z. A 37-amino acid loop in the Yarrowia lipolytica hexokinase impacts its activity and affinity and modulates gene expression. Sci Rep 2021; 11:6412. [PMID: 33742083 PMCID: PMC7979807 DOI: 10.1038/s41598-021-85837-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
The oleaginous yeast Yarrowia lipolytica is a potent cell factory as it is able to use a wide variety of carbon sources to convert waste materials into value-added products. Nonetheless, there are still gaps in our understanding of its central carbon metabolism. Here we present an in-depth study of Y. lipolytica hexokinase (YlHxk1), a structurally unique protein. The greatest peculiarity of YlHxk1 is a 37-amino acid loop region, a structure not found in any other known hexokinases. By combining bioinformatic and experimental methods we showed that the loop in YlHxk1 is essential for activity of this protein and through that on growth of Y. lipolytica on glucose and fructose. We further proved that the loop in YlHxk1 hinders binding with trehalose 6-phosphate (T6P), a glycolysis inhibitor, as hexokinase with partial deletion of this region is 4.7-fold less sensitive to this molecule. We also found that YlHxk1 devoid of the loop causes strong repressive effect on lipase-encoding genes LIP2 and LIP8 and that the hexokinase overexpression in Y. lipolytica changes glycerol over glucose preference when cultivated in media containing both substrates.
Collapse
Affiliation(s)
- Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Cécile Neuvéglise
- SPO, INRAE, Montpellier SupAgro, Univ Montpellier, 34060, Montpellier, France
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| |
Collapse
|
10
|
Ferreira JC, Khrbtli AR, Shetler CL, Mansoor S, Ali L, Sensoy O, Rabeh WM. Linker residues regulate the activity and stability of hexokinase 2, a promising anticancer target. J Biol Chem 2020; 296:100071. [PMID: 33187984 PMCID: PMC7949118 DOI: 10.1074/jbc.ra120.015293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Hexokinase (HK) catalyzes the first step in glucose metabolism, making it an exciting target for the inhibition of tumor initiation and progression due to their elevated glucose metabolism. The upregulation of hexokinase-2 (HK2) in many cancers and its limited expression in normal tissues make it a particularly attractive target for the selective inhibition of cancer growth and the eradication of tumors with limited side effects. The design of such safe and effective anticancer therapeutics requires the development of HK2-specific inhibitors that will not interfere with other HK isozymes. As HK2 is unique among HKs in having a catalytically active N-terminal domain (NTD), we have focused our attention on this region. We previously found that NTD activity is affected by the size of the linker helix-α13 that connects the N- and C-terminal domains of HK2. Three nonactive site residues (D447, S449, and K451) at the beginning of the linker helix-α13 have been found to regulate the NTD activity of HK2. Mutation of these residues led to increased dynamics, as shown via hydrogen deuterium exchange analysis and molecular dynamic simulations. D447A contributed the most to the enhanced dynamics of the NTD, with reduced calorimetric enthalpy of HK2. Similar residues exist in the C-terminal domain (CTD) but are unnecessary for HK1 and HK2 activity. Thus, we postulate these residues serve as a regulatory site for HK2 and may provide new directions for the design of anticancer therapeutics that reduce the rate of glycolysis in cancer through specific inhibition of HK2.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Abdul-Rahman Khrbtli
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cameron L Shetler
- Department of Chemistry, New York University Shanghai, Shanghai, China
| | - Samman Mansoor
- The School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Campus, Abu Dhabi, United Arab Emirates
| | - Ozge Sensoy
- The School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey; Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Turkey
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
11
|
Kaushik A, Rahisuddin R, Saini N, Singh RP, Kaur R, Koul S, Kumaran S. Molecular mechanism of selective substrate engagement and inhibitor disengagement of cysteine synthase. J Biol Chem 2020; 296:100041. [PMID: 33162395 PMCID: PMC7948407 DOI: 10.1074/jbc.ra120.014490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022] Open
Abstract
O-acetyl serine sulfhydrylase (OASS), referred to as cysteine synthase (CS), synthesizes cysteine from O-acetyl serine (OAS) and sulfur in bacteria and plants. The inherent challenge for CS is to overcome 4 to 6 log-folds stronger affinity for its natural inhibitor, serine acetyltransferase (SAT), as compared with its affinity for substrate, OAS. Our recent study showed that CS employs a novel competitive-allosteric mechanism to selectively recruit its substrate in the presence of natural inhibitor. In this study, we trace the molecular features that control selective substrate recruitment. To generalize our findings, we used CS from three different bacteria (Haemophilus, Salmonella, and Mycobacterium) as our model systems and analyzed structural and substrate-binding features of wild-type CS and its ∼13 mutants. Results show that CS uses a noncatalytic residue, M120, located 20 Å away from the reaction center, to discriminate in favor of substrate. M120A and background mutants display significantly reduced substrate binding, catalytic efficiency, and inhibitor binding. Results shows that M120 favors the substrate binding by selectively enhancing the affinity for the substrate and disengaging the inhibitor by 20 to 286 and 5- to 3-folds, respectively. Together, M120 confers a net discriminative force in favor of substrate by 100- to 858-folds.
Collapse
Affiliation(s)
- Abhishek Kaushik
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - R Rahisuddin
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Neha Saini
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Ravi P Singh
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Rajveer Kaur
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Sukirte Koul
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - S Kumaran
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.
| |
Collapse
|
12
|
Stoddard PR, Lynch EM, Farrell DP, Dosey AM, DiMaio F, Williams TA, Kollman JM, Murray AW, Garner EC. Polymerization in the actin ATPase clan regulates hexokinase activity in yeast. Science 2020; 367:1039-1042. [PMID: 32108112 DOI: 10.1126/science.aay5359] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023]
Abstract
The actin fold is found in cytoskeletal polymers, chaperones, and various metabolic enzymes. Many actin-fold proteins, such as the carbohydrate kinases, do not polymerize. We found that Glk1, a Saccharomyces cerevisiae glucokinase, forms two-stranded filaments with ultrastructure that is distinct from that of cytoskeletal polymers. In cells, Glk1 polymerized upon sugar addition and depolymerized upon sugar withdrawal. Polymerization inhibits enzymatic activity; the Glk1 monomer-polymer equilibrium sets a maximum rate of glucose phosphorylation regardless of Glk1 concentration. A mutation that eliminated Glk1 polymerization alleviated concentration-dependent enzyme inhibition. Yeast containing nonpolymerizing Glk1 were less fit when growing on sugars and more likely to die when refed glucose. Glk1 polymerization arose independently from other actin-related filaments and may allow yeast to rapidly modulate glucokinase activity as nutrient availability changes.
Collapse
Affiliation(s)
- Patrick R Stoddard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Annie M Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA. .,Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA. .,Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Srivastava SS, Darling JE, Suryadi J, Morris JC, Drew ME, Subramaniam S. Plasmodium vivax and human hexokinases share similar active sites but display distinct quaternary architectures. IUCRJ 2020; 7:453-461. [PMID: 32431829 PMCID: PMC7201273 DOI: 10.1107/s2052252520002456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/20/2020] [Indexed: 06/09/2023]
Abstract
Malaria is a devastating disease caused by a protozoan parasite. It affects over 300 million individuals and results in over 400 000 deaths annually, most of whom are young children under the age of five. Hexokinase, the first enzyme in glucose metabolism, plays an important role in the infection process and represents a promising target for therapeutic intervention. Here, cryo-EM structures of two conformational states of Plasmodium vivax hexokinase (PvHK) are reported at resolutions of ∼3 Å. It is shown that unlike other known hexokinase structures, PvHK displays a unique tetrameric organization (∼220 kDa) that can exist in either open or closed quaternary conformational states. Despite the resemblance of the active site of PvHK to its mammalian counterparts, this tetrameric organization is distinct from that of human hexokinases, providing a foundation for the structure-guided design of parasite-selective antimalarial drugs.
Collapse
Affiliation(s)
| | - Joseph E. Darling
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jimmy Suryadi
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - James C. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Mark E. Drew
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
14
|
Zak KM, Kalińska M, Wątor E, Kuśka K, Krutyhołowa R, Dubin G, Popowicz GM, Grudnik P. Crystal Structure of Kluyveromyces lactis Glucokinase ( KlGlk1). Int J Mol Sci 2019; 20:ijms20194821. [PMID: 31569356 PMCID: PMC6801647 DOI: 10.3390/ijms20194821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/30/2022] Open
Abstract
Glucose phosphorylating enzymes are crucial in the regulation of basic cellular processes, including metabolism and gene expression. Glucokinases and hexokinases provide a pool of phosphorylated glucose in an adenosine diphosphate (ADP)- and ATP-dependent manner to shape the cell metabolism. The glucose processing enzymes from Kluyveromyces lactis are poorly characterized despite the emerging contribution of this yeast strain to industrial and laboratory scale biotechnology. The first reports on K. lactis glucokinase (KlGlk1) positioned the enzyme as an essential component required for glucose signaling. Nevertheless, no biochemical and structural information was available until now. Here, we present the first crystal structure of KlGlk1 together with biochemical characterization, including substrate specificity and enzyme kinetics. Additionally, comparative analysis of the presented structure and the prior structures of lactis hexokinase (KlHxk1) demonstrates the potential transitions between open and closed enzyme conformations upon ligand binding.
Collapse
Affiliation(s)
- Krzysztof M Zak
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Magdalena Kalińska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Elżbieta Wątor
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Katarzyna Kuśka
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.
| | - Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Przemysław Grudnik
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
15
|
Wang H, Pu J, Chen D, Tian G, Mao X, Yu J, Zheng P, He J, Huang Z, Yu B. Effects of dietary amylose and amylopectin ratio on growth performance, meat quality, postmortem glycolysis and muscle fibre type transformation of finishing pigs. Arch Anim Nutr 2019; 73:194-207. [PMID: 30864858 DOI: 10.1080/1745039x.2019.1583518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study was conducted to investigate the effects of dietary amylose and amylopectin ratio on growth performance, meat quality, postmortem glycolysis and muscle fibre type transformation of finishing pigs. Twenty-four barrows (Duroc × Landrace × Yorkshire) with an average initial body weight of 61.7 ± 2.01 kg were randomly assigned to four dietary treatments with amylose: amylopectin ratios of 1:1 (HD), 1:2 (MD), 1:3 (CD) and 1:4 (LD). The results showed that the average daily weight gain of finishing pigs tended to reduce with the ratio of amylose and amylopectin decreased (p = 0.09). Diet LD increased the pH24h value and decreased the shear force in longissimus dorsi (LM) compared with diet HD (p < 0.05). Diet LD decreased the lactate content and the HK-2 mRNA abundance and increased the mRNA abundance of ATP5B in LM compared with diet HD (p < 0.05). Higher mRNA abundance of MyHC I and lesser abundance of MyHC IIb in LM were found in pigs fed diet CD and LD than those fed diet HD (p < 0.05). Furthermore, pigs fed diet LD had higher mRNA abundances of PGC-1α and PPAR δ in LM than other groups (p < 0.05). These results suggested that diet with low amylose and amylopectin ratio could improve meat quality of finishing pigs via delaying muscle glycolysis capacity and shifting muscle fibre types.
Collapse
Affiliation(s)
- Huajie Wang
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Junning Pu
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Daiwen Chen
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Gang Tian
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Xiangbing Mao
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Jie Yu
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Ping Zheng
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Jun He
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Zhiqing Huang
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| | - Bing Yu
- a Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute , Sichuan Agricultural University , Yaan , China
| |
Collapse
|
16
|
Kriegel TM, Kettner K, Rödel G, Sträter N. Regulatory Function of Hexokinase 2 in Glucose Signaling in Saccharomyces cerevisiae. J Biol Chem 2018; 291:16477. [PMID: 27496957 DOI: 10.1074/jbc.l116.735514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thomas M Kriegel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany,
| | - Karina Kettner
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
17
|
The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation. Biosci Rep 2018; 38:BSR20171666. [PMID: 29298880 PMCID: PMC5803496 DOI: 10.1042/bsr20171666] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 01/06/2023] Open
Abstract
The high proliferation rate of tumor cells demands high energy and metabolites that are sustained by a high glycolytic flux known as the 'Warburg effect'. The activation and further metabolism of glucose is initiated by hexokinase, a focal point of metabolic regulation. The human hexokinase 2 (HK2) is overexpressed in all aggressive tumors and predominantly found on the outer mitochondrial membrane, where interactions through its N-terminus initiates and maintains tumorigenesis. Here, we report the structure of HK2 in complex with glucose and glucose-6-phosphate (G6P). Structural and biochemical characterization of the mitochondrial conformation reveals higher conformational stability and slow protein unfolding rate (ku) compared with the cytosolic conformation. Despite the active site similarity of all human hexokinases, the N-domain of HK2 is catalytically active but not in hexokinase 1 and 3. Helix-α13 that protrudes out of the N-domain to link it to the C-domain of HK2 is found to be important in maintaining the catalytic activity of the N-half. In addition, the N-domain of HK2 regulates the stability of the whole enzyme in contrast with the C-domain. Glucose binding enhanced the stability of the wild-type (WT) enzyme and the single mutant D657A of the C-domain, but it did not increase the stability of the D209A mutant of the N-domain. The interaction of HK2 with the mitochondria through its N-half is proposed to facilitate higher stability on the mitochondria. The identification of structural and biochemical differences between HK2 and other human hexokinase isozymes could potentially be used in the development of new anticancer therapies.
Collapse
|
18
|
Bruggeman Q, Prunier F, Mazubert C, de Bont L, Garmier M, Lugan R, Benhamed M, Bergounioux C, Raynaud C, Delarue M. Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo-Inositol Accumulation. THE PLANT CELL 2015; 27:1801-14. [PMID: 26048869 PMCID: PMC4498202 DOI: 10.1105/tpc.15.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Florence Prunier
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Christelle Mazubert
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Linda de Bont
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Marie Garmier
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Raphaël Lugan
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Moussa Benhamed
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Catherine Bergounioux
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Cécile Raynaud
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Marianne Delarue
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| |
Collapse
|
19
|
Feng J, Zhao S, Chen X, Wang W, Dong W, Chen J, Shen JR, Liu L, Kuang T. Biochemical and structural study of Arabidopsis hexokinase 1. ACTA ACUST UNITED AC 2015; 71:367-75. [PMID: 25664748 DOI: 10.1107/s1399004714026091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/27/2014] [Indexed: 01/11/2023]
Abstract
Hexokinase 1 from Arabidopsis thaliana (AtHXK1) plays a dual role in glycolysis and sugar sensing for vital metabolic and physiological processes. The uncoupling of glucose signalling from glucose metabolism was demonstrated by the analysis of two mutants (AtHXK1(G104D) and AtHXK1(S177A)) that are catalytically inactive but still functional in signalling. In this study, substrate-binding experiments indicate that the two catalytically inactive mutants have a high affinity for glucose, and an ordered substrate-binding mechanism has been observed for wild-type AtHXK1. The structure of AtHXK1 was determined both in its inactive unliganded form and in its active glucose-bound form at resolutions of 1.8 and 2.0 Å, respectively. These structures reveal a domain rearrangement of AtHXK1 upon glucose binding. The 2.1 Å resolution structure of AtHXK1(S177A) in the glucose-bound form shows similar glucose-binding interactions as the wild type. A glucose-sensing network has been proposed based on these structures. Taken together, the results provide a structural explanation for the dual functions of AtHXK1.
Collapse
Affiliation(s)
- Juan Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Shun Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Xuemin Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Wei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Jinghua Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Lin Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| |
Collapse
|
20
|
Kaps S, Kettner K, Migotti R, Kanashova T, Krause U, Rödel G, Dittmar G, Kriegel TM. Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*. J Biol Chem 2015; 290:6243-55. [PMID: 25593311 DOI: 10.1074/jbc.m114.595074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.
Collapse
Affiliation(s)
- Sonja Kaps
- From the Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden
| | - Karina Kettner
- From the Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden,
| | - Rebekka Migotti
- the Mass Spectrometry Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, and
| | - Tamara Kanashova
- the Mass Spectrometry Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, and
| | - Udo Krause
- the Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Gerhard Rödel
- the Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Gunnar Dittmar
- the Mass Spectrometry Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, and
| | - Thomas M Kriegel
- From the Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden
| |
Collapse
|
21
|
Mates N, Kettner K, Heidenreich F, Pursche T, Migotti R, Kahlert G, Kuhlisch E, Breunig KD, Schellenberger W, Dittmar G, Hoflack B, Kriegel TM. Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis. Mol Cell Proteomics 2014; 13:860-75. [PMID: 24434903 DOI: 10.1074/mcp.m113.032714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of dual-role hexokinases even in organisms that are less specialized than S. cerevisiae in terms of glucose utilization.
Collapse
Affiliation(s)
- Nadia Mates
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institute of Physiological Chemistry, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Richter T, Berger S. A NMR method to determine the anomeric specificity of glucose phosphorylation. Bioorg Med Chem 2013; 21:2710-4. [DOI: 10.1016/j.bmc.2013.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/17/2022]
|
23
|
Kettner K, Kuettner EB, Otto A, Lilie H, Golbik RP, Sträter N, Kriegel TM. In vivo phosphorylation and in vitro autophosphorylation-inactivation of Kluyveromyces lactis hexokinase KlHxk1. Biochem Biophys Res Commun 2013; 435:313-8. [PMID: 23583397 DOI: 10.1016/j.bbrc.2013.03.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
The bifunctional hexokinase KlHxk1 is a key component of glucose-dependent signal transduction in Kluyveromyces lactis. KlHxk1 is phosphorylated in vivo and undergoes ATP-dependent autophosphorylation-inactivation in vitro. This study identifies serine-15 as the site of in vivo phosphorylation and serine-157 as the autophosphorylation-inactivation site. X-ray crystallography of the in vivo phosphorylated enzyme indicates the existence of a ring-shaped symmetrical homodimer carrying two phosphoserine-15 residues. In contrast, small-angle X-ray scattering and equilibrium sedimentation analyses reveal the existence of monomeric phosphoserine-15 KlHxk1 in solution. While phosphorylation at serine-15 and concomitant homodimer dissociation are likely to be involved in glucose signalling, mechanism and putative physiological significance of KlHxk1 inactivation by autophosphorylation at serine-157 remain to be established.
Collapse
Affiliation(s)
- Karina Kettner
- Institute of Physiological Chemistry, Carl Gustav Carus Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Krug U, Zebisch M, Krauss M, Sträter N. Structural insight into activation mechanism of Toxoplasma gondii nucleoside triphosphate diphosphohydrolases by disulfide reduction. J Biol Chem 2011; 287:3051-66. [PMID: 22130673 DOI: 10.1074/jbc.m111.294348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258-268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys(258)-Cys(268) show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg(2+) to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg(492) and Glu(493) in NTPDase1 by glycines in NTPDase3.
Collapse
Affiliation(s)
- Ulrike Krug
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|
25
|
Kim H, Smith JE, Ridenour JB, Woloshuk CP, Bluhm BH. HXK1 regulates carbon catabolism, sporulation, fumonisin B₁ production and pathogenesis in Fusarium verticillioides. MICROBIOLOGY-SGM 2011; 157:2658-2669. [PMID: 21719539 DOI: 10.1099/mic.0.052506-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Fusarium verticillioides, a ubiquitous pathogen of maize, virulence and mycotoxigenesis are regulated in response to the types and amounts of carbohydrates present in maize kernels. In this study, we investigated the role of a putative hexokinase-encoding gene (HXK1) in growth, development and pathogenesis. A deletion mutant (Δhxk1) of HXK1 was not able to grow when supplied with fructose as the sole carbon source, and growth was impaired when glucose, sucrose or maltotriose was provided. Additionally, the Δhxk1 mutant produced unusual swollen hyphae when provided with fructose, but not glucose, as the sole carbon source. Moreover, the Δhxk1 mutant was impaired in fructose uptake, although glucose uptake was unaffected. On maize kernels, the Δhxk1 mutant was substantially less virulent than the wild-type, but virulence on maize stalks was not impaired, possibly indicating a metabolic response to tissue-specific differences in plant carbohydrate content. Finally, disruption of HXK1 had a pronounced effect on fungal metabolites produced during colonization of maize kernels; the Δhxk1 mutant produced approximately 50 % less trehalose and 80 % less fumonisin B₁ (FB₁) than the wild-type. The reduction in trehalose biosynthesis likely explains observations of increased sensitivity to osmotic stress in the Δhxk1 mutant. In summary, this study links early events in carbohydrate sensing and glycolysis to virulence and secondary metabolism in F. verticillioides, and thus provides a new foothold from which the genetic regulatory networks that underlie pathogenesis and mycotoxigenesis can be unravelled and defined.
Collapse
Affiliation(s)
- Hun Kim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.,Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jonathon E Smith
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - John B Ridenour
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Burton H Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|