1
|
Choi H, Cho SH, Park JH, Seok YJ. Fructose-responsive regulation by FruR in Faecalibacterium prausnitzii for its intestinal colonization. Commun Biol 2025; 8:426. [PMID: 40082586 PMCID: PMC11906611 DOI: 10.1038/s42003-025-07878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Faecalibacterium prausnitzii, a dominant member of healthy human gut microbiota, exhibits a strong positive correlation with fecal fructose levels, suggesting fructose as a key energy source for its colonization and persistence. This study explores the regulatory mechanisms governing the fru operon in F. prausnitzii, responsible for fructose uptake and metabolism. Here, we demonstrate that FruR, a DeoR family transcriptional regulator, orchestrates fru operon expression through interactions with fructose-1-phosphate (F1P) and HPr2, the histidine-containing phosphocarrier protein. The F1P-HPr2(Ser-P)-FruR complex enhances RNA polymerase binding to the fru promoter, with stronger affinity for specific operator motifs compared to apo-FruR. F1P induces structural modifications in FruR that strengthen its interaction with HPr2 and alter its DNA recognition pattern, facilitating RNA polymerase access to the promoter. In vivo experiments in mice demonstrate increased F. prausnitzii abundance alongside upregulated fru operon expression in fructose-rich environments. This study provides new insights into how fructose availability modulates fru operon regulation and promotes F. prausnitzii colonization in the host intestine.
Collapse
Affiliation(s)
- HyeLim Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hyun Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Huang Y, Jia KZ, Zhao W, Zhu LW. Insights into the regulatory mechanisms and application prospects of the transcription factor Cra. Appl Environ Microbiol 2024; 90:e0122824. [PMID: 39494897 PMCID: PMC11577769 DOI: 10.1128/aem.01228-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Cra (catabolite repressor/activator) is a global transcription factor (TF) that plays a pleiotropic role in controlling the transcription of several genes involved in carbon utilization and energy metabolism. Multiple studies have investigated the regulatory mechanism of Cra and its rational use for metabolic regulation, but due to the complexity of its regulation, there remain challenges in the efficient use of Cra. Here, the structure, mechanism of action, and regulatory function of Cra in carbon and nitrogen flow are reviewed. In addition, this paper highlights the application of Cra in metabolic engineering, including the promotion of metabolite biosynthesis, the regulation of stress tolerance and virulence, the use of a Cra-based biosensor, and its coupling with other transcription factors. Finally, the prospects of Cra-related regulatory strategies are discussed. This review provides guidance for the rational design and construction of Cra-based metabolic regulation systems.
Collapse
Affiliation(s)
- Ying Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Kai-Zhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Wei Zhao
- State Key Laboratory of MicrobialTechnology, University, Qingdao, China
| | - Li-Wen Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
3
|
Weeramange C, Menjivar C, O'Neil PT, El Qaidi S, Harrison KS, Meinhardt S, Bird CL, Sreenivasan S, Hardwidge PR, Fenton AW, Hefty PS, Bose JL, Swint-Kruse L. Fructose-1-kinase has pleiotropic roles in Escherichia coli. J Biol Chem 2024; 300:107352. [PMID: 38723750 PMCID: PMC11157272 DOI: 10.1016/j.jbc.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024] Open
Abstract
In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.
Collapse
Affiliation(s)
- Chamitha Weeramange
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cindy Menjivar
- The Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pierce T O'Neil
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Kelly S Harrison
- The Department of Molecular Biosciences, The University of Kansas - Lawrence, Lawrence, Kansas, USA
| | - Sarah Meinhardt
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cole L Bird
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shwetha Sreenivasan
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Aron W Fenton
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - P Scott Hefty
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jeffrey L Bose
- The Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
4
|
Weeramange C, Menjivar C, O’Neil PT, El Qaidi S, Harrison KS, Meinhardt S, Bird CL, Sreenivasan S, Hardwidge PR, Fenton AW, Hefty PS, Bose JL, Swint-Kruse L. Fructose-1-kinase has pleiotropic roles in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571569. [PMID: 38168282 PMCID: PMC10760178 DOI: 10.1101/2023.12.14.571569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. The ΔfruK strain also alters biofilm formation. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.
Collapse
Affiliation(s)
- Chamitha Weeramange
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Cindy Menjivar
- The Department of Microbiology, Molecular Genetics and Immunology, 3901 Rainbow Blvd, MSN 3029, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Pierce T. O’Neil
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Samir El Qaidi
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Kelly S. Harrison
- The Department of Molecular Biosciences, 2034 Haworth Hall, 1200 Sunnyside Avenue, The University of Kansas – Lawrence, Lawrence, Kansas, USA 66045
| | - Sarah Meinhardt
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Cole L. Bird
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Shwetha Sreenivasan
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Philip R. Hardwidge
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Aron W. Fenton
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - P. Scott Hefty
- College of Veterinary Medicine, 1800 Denison Ave, Kansas State University, Manhattan, KS, USA 66506
| | - Jeffrey L. Bose
- The Department of Microbiology, Molecular Genetics and Immunology, 3901 Rainbow Blvd, MSN 3029, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, 3901 Rainbow Blvd, MSN 3030, The University of Kansas Medical Center, Kansas City, Kansas, USA 66160
| |
Collapse
|
5
|
Neetu N, Mahto JK, Sharma M, Katiki M, Dhaka P, Roy P, Tomar S, Narayan A, Yernool D, Kumar P. Sulisobenzone is a potent inhibitor of the global transcription factor Cra. J Struct Biol 2023; 215:108034. [PMID: 37805153 DOI: 10.1016/j.jsb.2023.108034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Transcription is carried out by the RNA polymerase and is regulated through a series of interactions with transcription factors. Catabolite activator repressor (Cra), a LacI family transcription factor regulates the virulence gene expression in Enterohaemorrhagic Escherichia coli (EHEC) and thus is a promising drug target for the discovery of antivirulence molecules. Here, we report the crystal structure of the effector molecule binding domain of Cra from E. coli (EcCra) in complex with HEPES molecule. Based on the EcCra-HEPES complex structure, ligand screening was performed that identified sulisobenzone as an potential inhibitor of EcCra. The electrophoretic mobility shift assay (EMSA) and in vitro transcription assay validated the sulisobenzone binding to EcCra. Moreover, the isothermal titration calorimetry (ITC) experiments demonstrated a 40-fold higher binding affinity of sulisobenzone (KD 360 nM) compared to the HEPES molecule. Finally, the sulisobenzone bound EcCra complex crystal structure was determined to elucidate the binding mechanism of sulisobenzone to the effector binding pocket of EcCra. Together, this study suggests that sulisobenzone may be a promising candidate that can be studied and developed as an effective antivirulence agent against EHEC.
Collapse
Affiliation(s)
- Neetu Neetu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Madhusudhanarao Katiki
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Anoop Narayan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dinesh Yernool
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
6
|
Yoon CK, Lee SH, Zhang J, Lee HY, Kim MK, Seok YJ. HPr prevents FruR-mediated facilitation of RNA polymerase binding to the fru promoter in Vibrio cholerae. Nucleic Acids Res 2023; 51:5432-5448. [PMID: 36987873 PMCID: PMC10287919 DOI: 10.1093/nar/gkad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| | - Jing Zhang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Hye-Young Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyu Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
7
|
Baek J, Yoon H. Cyclic di-GMP Modulates a Metabolic Flux for Carbon Utilization in Salmonella enterica Serovar Typhimurium. Microbiol Spectr 2023; 11:e0368522. [PMID: 36744926 PMCID: PMC10100716 DOI: 10.1128/spectrum.03685-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen spreading via the fecal-oral route. Transmission across humans, animals, and environmental reservoirs has forced this pathogen to rapidly respond to changing environments and adapt to new environmental conditions. Cyclic di-GMP (c-di-GMP) is a second messenger that controls the transition between planktonic and sessile lifestyles, in response to environmental cues. Our study reveals the potential of c-di-GMP to alter the carbon metabolic pathways in S. Typhimurium. Cyclic di-GMP overproduction decreased the transcription of genes that encode components of three phosphoenolpyruvate (PEP):carbohydrate phosphotransferase systems (PTSs) allocated for the uptake of glucose (PTSGlc), mannose (PTSMan), and fructose (PTSFru). PTS gene downregulation by c-di-GMP was alleviated in the absence of the three regulators, SgrS, Mlc, and Cra, suggesting their intermediary roles between c-di-GMP and PTS regulation. Moreover, Cra was found to bind to the promoters of ptsG, manX, and fruB. In contrast, c-di-GMP increased the transcription of genes important for gluconeogenesis. However, this effect of c-di-GMP in gluconeogenesis disappeared in the absence of Cra, indicating that Cra is a pivotal regulator that coordinates the carbon flux between PTS-mediated sugar uptake and gluconeogenesis, in response to cellular c-di-GMP concentrations. Since gluconeogenesis supplies precursor sugars required for extracellular polysaccharide production, Salmonella may exploit c-di-GMP as a dual-purpose signal that rewires carbon flux from glycolysis to gluconeogenesis and promotes biofilm formation using the end products of gluconeogenesis. This study sheds light on a new role for c-di-GMP in modulating carbon flux, to coordinate bacterial behavior in response to hostile environments. IMPORTANCE Cyclic di-GMP is a central signaling molecule that determines the transition between motile and nonmotile lifestyles in many bacteria. It stimulates biofilm formation at high concentrations but leads to biofilm dispersal and planktonic status at low concentrations. This study provides new insights into the role of c-di-GMP in programming carbon metabolic pathways. An increase in c-di-GMP downregulated the expression of PTS genes important for sugar uptake, while simultaneously upregulating the transcription of genes important for bacterial gluconeogenesis. The directly opposing effects of c-di-GMP on sugar metabolism were mediated by Cra (catabolite repressor/activator), a dual transcriptional regulator that modulates the direction of carbon flow. Salmonella may potentially harness c-di-GMP to promote its survival and fitness in hostile environments via the coordination of carbon metabolic pathways and the induction of biofilm formation.
Collapse
Affiliation(s)
- Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Neetu N, Katiki M, Mahto JK, Sharma M, Narayanan A, Maity S, Tomar S, Ambatipudi K, Sharma AK, Yernool D, Kumar P. Deciphering the enigma of missing DNA binding domain of LacI family transcription factors. Arch Biochem Biophys 2021; 713:109060. [PMID: 34666048 DOI: 10.1016/j.abb.2021.109060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022]
Abstract
Catabolite repressor activator (Cra) is a member of the LacI family transcriptional regulator distributed across a wide range of bacteria and regulates the carbon metabolism and virulence gene expression. In numerous studies to crystallize the apo form of the LacI family transcription factor, the N-terminal domain (NTD), which functions as a DNA-binding domain, has been enigmatically missing from the final resolved structures. It was speculated that the NTD is disordered or unstable and gets cleaved during crystallization. Here, we have determined the crystal structure of Cra from Escherichia coli (EcCra). The structure revealed a well-defined electron density for the C-terminal domain (CTD). However, electron density was missing for the first 56 amino acids (NTD). Our data reveal for the first time that EcCra undergoes a spontaneous cleavage at the conserved Asn 50 (N50) site, which separates the N-terminal DNA binding domain from the C-terminal effector molecule binding domain. With the site-directed mutagenesis, we confirm the involvement of residue N50 in the spontaneous cleavage phenomenon. Furthermore, the Isothermal titration calorimetry (ITC) assay of the EcCra-NTD with DNA showed EcCra-NTD is in a functional conformation state and retains its DNA binding activity.
Collapse
Affiliation(s)
- Neetu Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Jai Krishna Mahto
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Monica Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Dinesh Yernool
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
9
|
Yoon CK, Kang D, Kim MK, Seok YJ. Vibrio cholerae FruR facilitates binding of RNA polymerase to the fru promoter in the presence of fructose 1-phosphate. Nucleic Acids Res 2021; 49:1397-1410. [PMID: 33476373 PMCID: PMC7897506 DOI: 10.1093/nar/gkab013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
In most bacteria, efficient use of carbohydrates is primarily mediated by the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), which concomitantly phosphorylates the substrates during import. Therefore, transcription of the PTS-encoding genes is precisely regulated by transcriptional regulators, depending on the availability of the substrate. Fructose is transported mainly through the fructose-specific PTS (PTSFru) and simultaneously converted into fructose 1-phosphate (F1P). In Gammaproteobacteria such as Escherichia coli and Pseudomonas putida, transcription of the fru operon encoding two PTSFru components, FruA and FruB, and the 1-phosphofructokinase FruK is repressed by FruR in the absence of the inducer F1P. Here, we show that, contrary to the case in other Gammaproteobacteria, FruR acts as a transcriptional activator of the fru operon and is indispensable for the growth of Vibrio cholerae on fructose. Several lines of evidence suggest that binding of the FruR-F1P complex to an operator which is located between the –35 and –10 promoter elements changes the DNA structure to facilitate RNA polymerase binding to the promoter. We discuss the mechanism by which the highly conserved FruR regulates the expression of its target operon encoding the highly conserved PTSFru and FruK in a completely opposite direction among closely related families of bacteria.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Deborah Kang
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Min-Kyu Kim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Bley Folly B, Ortega AD, Hubmann G, Bonsing-Vedelaar S, Wijma HJ, van der Meulen P, Milias-Argeitis A, Heinemann M. Assessment of the interaction between the flux-signaling metabolite fructose-1,6-bisphosphate and the bacterial transcription factors CggR and Cra. Mol Microbiol 2018; 109:278-290. [DOI: 10.1111/mmi.14008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Brenda Bley Folly
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Alvaro D. Ortega
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Cell Biology, Faculty of Biology; Complutense University of Madrid; José Antonio Nováis 12 28040 Madrid Spain
| | - Georg Hubmann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Silke Bonsing-Vedelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Hein J. Wijma
- Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Pieter van der Meulen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
11
|
Chavarría M, de Lorenzo V. The imbroglio of the physiological Cra effector clarified at last. Mol Microbiol 2018; 109:273-277. [PMID: 30019355 DOI: 10.1111/mmi.14080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 11/29/2022]
Abstract
Owing to its role in controlling carbon and energy metabolism, the catabolite repressor/activator protein Cra has been one of the most studied prokaryotic regulators of the last 30 years. Yet, a key mechanistic detail of its biological function - i.e. the nature of the metabolic effector that rules its DNA-binding ability - has remained controversial. Despite the high affinity of Cra for fructose-1-phosphate (F1P), the prevailing view claimed that fructose-1,6-biphosphate (FBP) was the key physiological effector. Building on such responsiveness to FBP, Cra was proposed to act as a glycolytic flux sensor and central regulator of critical metabolic transactions. At the same time, data raised on the Cra protein of Pseudomonas putida ruled out that FBP could be an effector - but instead suggested that it was the unintentional carrier of a small contamination by F1P, the actual signal molecule. While these data on the P. putida Cra were received with skepticism - if not dismissal - by the community of the time, the paper by (Bley-Folly et al, 2018) now demonstrates beyond any reasonable doubt that the one and only effector of E. coli Cra is F1P and that every action of FBP on this regulator can be traced to its systematic mix with the authentic binder.
Collapse
Affiliation(s)
- Max Chavarría
- Escuela de Química & CIPRONA, Universidad de Costa Rica, San José, 11501-2060, Costa Rica.,Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
12
|
Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli. Curr Genet 2016; 63:709-722. [PMID: 28013396 DOI: 10.1007/s00294-016-0673-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 μg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value <0.05 and fold change >2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.
Collapse
|
13
|
Wei LN, Zhu LW, Tang YJ. Succinate production positively correlates with the affinity of the global transcription factor Cra for its effector FBP in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:264. [PMID: 27980674 PMCID: PMC5146860 DOI: 10.1186/s13068-016-0679-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Effector binding is important for transcription factors, affecting both the pattern and function of transcriptional regulation to alter cell phenotype. Our previous work suggested that the affinity of the global transcription factor catabolite repressor/activator (Cra) for its effector fructose-1,6-bisphosphate (FBP) may contribute to succinate biosynthesis. To support this hypothesis, single-point and three-point mutations were proposed through the semi-rational design of Cra to improve its affinity for FBP. RESULTS For the first time, a positive correlation between succinate production and the affinity of Cra for FBP was revealed in Escherichia coli. Using the best-fit regression function, a cubic equation was used to examine and describe the relationship between succinate production and the affinity of Cra for FBP, demonstrating a significant positive correlation between the two factors (coefficient of determination R2 = 0.894, P = 0.000 < 0.01). The optimal mutant strain was Tang1683, which provided the lowest mutation energy of -4.78 kcal/mol and the highest succinate concentration of 92.7 g/L, which was 34% higher than that obtained using an empty vector control. The parameters for the interaction between Cra and DNA showed that Cra bound to the promoter regions of pck and aceB to activate the corresponding genes. Normally, Cra-regulated operons under positive control are deactivated in the presence of FBP. Therefore, theoretically, the enhanced affinity of Cra for FBP will inhibit the activation of pck and aceB. However, the activation of genes involved in CO2 fixation and the glyoxylate pathway was further improved by the Cra mutant, ultimately contributing to succinate biosynthesis. CONCLUSIONS Enhanced binding of Cra to FBP or active site mutations may eliminate the repressive effect caused by FBP, thus leading to increased activation of genes associated with succinate biosynthesis in the Cra mutant. This work demonstrates an important transcriptional regulation strategy in the metabolic engineering of succinate production and provides useful information for better understanding of the regulatory mechanisms of transcription factors.
Collapse
Affiliation(s)
- Li-Na Wei
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Li-Wen Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| |
Collapse
|
14
|
A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent Fructose Influx in Pseudomonas putida. mSystems 2016; 1:mSystems00154-16. [PMID: 27933319 PMCID: PMC5141268 DOI: 10.1128/msystems.00154-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Fructose uptake in the soil bacterium Pseudomonas putida occurs through a canonical phosphoenolpyruvate (PEP)-dependent sugar transport system (PTSFru). The logic of the genetic circuit that rules its functioning is puzzling: the transcription of the fruBKA operon, encoding all the components of PTSFru, can escape the repression exerted by the catabolite repressor/activator protein Cra solely in the presence of intracellular fructose-1-P, an agonist formed only when fructose has been already transported. To study this apparently incongruous regulatory architecture, the changes in the transcriptome brought about by a seamless Δcra deletion in P. putida strain KT2440 were inspected under different culture conditions. The few genes found to be upregulated in the cra mutant unexpectedly included PP_3443, encoding a bona fide glyceraldehyde-3-P dehydrogenase. An in silico model was developed to explore emergent properties that could result from such connections between sugar uptake with Cra and PEP. Simulation of fructose transport revealed that sugar uptake called for an extra supply of PEP (obtained through the activity of PP_3443) that was kept (i.e., memorized) even when the carbohydrate disappeared from the medium. This feature was traced to the action of two sequential inverters that connect the availability of exogenous fructose to intracellular PEP levels via Cra/PP_3443. The loss of such memory caused a much longer lag phase in cells shifted from one growth condition to another. The term "metabolic widget" is proposed to describe a merged biochemical and regulatory patch that tailors a given node of the cell molecular network to suit species-specific physiological needs. IMPORTANCE The regulatory nodes that govern metabolic traffic in bacteria often show connectivities that could be deemed unnecessarily complex at a first glance. Being a soil dweller and plant colonizer, Pseudomonas putida frequently encounters fructose in the niches that it inhabits. As is the case with many other sugars, fructose is internalized by a dedicated phosphoenolpyruvate (PEP)-dependent transport system (PTSFru), the expression of which is repressed by the fructose-1-P-responding Cra regulatory protein. However, Cra also controls a glyceraldehyde-3-P dehydrogenase that fosters accumulation of PEP (i.e., the metabolic fuel for PTSFru). A simple model representing this metabolic and regulatory device revealed that such an unexpected connectivity allows cells to shift smoothly between fructose-rich and fructose-poor conditions. Therefore, although the metabolic networks that handle sugar (i.e., fructose) consumption look very similar in most eubacteria, the way in which their components are intertwined endows given microorganisms with emergent properties for meeting species-specific and niche-specific needs.
Collapse
|
15
|
Zhu LW, Xia ST, Wei LN, Li HM, Yuan ZP, Tang YJ. Enhancing succinic acid biosynthesis in Escherichia coli by engineering its global transcription factor, catabolite repressor/activator (Cra). Sci Rep 2016; 6:36526. [PMID: 27811970 PMCID: PMC5109907 DOI: 10.1038/srep36526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 10/17/2016] [Indexed: 11/09/2022] Open
Abstract
This study was initiated to improve E. coli succinate production by engineering the E. coli global transcription factor, Cra (catabolite repressor/activator). Random mutagenesis libraries were generated through error-prone PCR of cra. After re-screening and mutation site integration, the best mutant strain was Tang1541, which provided a final succinate concentration of 79.8 ± 3.1 g/L: i.e., 22.8% greater than that obtained using an empty vector control. The genes and enzymes involved in phosphoenolpyruvate (PEP) carboxylation and the glyoxylate pathway were activated, either directly or indirectly, through the mutation of Cra. The parameters for interaction of Cra and DNA indicated that the Cra mutant was bound to aceBAK, thereby activating the genes involved in glyoxylate pathway and further improving succinate production even in the presence of its effector fructose-1,6-bisphosphate (FBP). It suggested that some of the negative effect of FBP on Cra might have been counteracted through the enhanced binding affinity of the Cra mutant for FBP or the change of Cra structure. This work provides useful information about understanding the transcriptional regulation of succinate biosynthesis.
Collapse
Affiliation(s)
- Li-Wen Zhu
- School of Public Health, Wuhan University, Wuhan 430071 China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Shi-Tao Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Li-Na Wei
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Hong-Mei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Zhan-Peng Yuan
- School of Public Health, Wuhan University, Wuhan 430071 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| |
Collapse
|
16
|
Sousa FL, Parente DJ, Hessman JA, Chazelle A, Teichmann SA, Swint-Kruse L. Data on publications, structural analyses, and queries used to build and utilize the AlloRep database. Data Brief 2016; 8:948-57. [PMID: 27508249 PMCID: PMC4961497 DOI: 10.1016/j.dib.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
The AlloRep database (www.AlloRep.org) (Sousa et al., 2016) [1] compiles extensive sequence, mutagenesis, and structural information for the LacI/GalR family of transcription regulators. Sequence alignments are presented for >3000 proteins in 45 paralog subfamilies and as a subsampled alignment of the whole family. Phenotypic and biochemical data on almost 6000 mutants have been compiled from an exhaustive search of the literature; citations for these data are included herein. These data include information about oligomerization state, stability, DNA binding and allosteric regulation. Protein structural data for 65 proteins are presented as easily-accessible, residue-contact networks. Finally, this article includes example queries to enable the use of the AlloRep database. See the related article, “AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators” (Sousa et al., 2016) [1].
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| | - Daniel J Parente
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob A Hessman
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Allen Chazelle
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood. Infect Immun 2016; 84:1016-1031. [PMID: 26787724 DOI: 10.1128/iai.01296-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment.
Collapse
|
18
|
Lien SK, Niedenführ S, Sletta H, Nöh K, Bruheim P. Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through central metabolic pathways in response to inactivation of the anti-sigma factor MucA. BMC SYSTEMS BIOLOGY 2015; 9:6. [PMID: 25889900 PMCID: PMC4351692 DOI: 10.1186/s12918-015-0148-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
Background The bacterium Pseudomonas fluorescens switches to an alginate-producing phenotype when the pleiotropic anti-sigma factor MucA is inactivated. The inactivation is accompanied by an increased biomass yield on carbon sources when grown under nitrogen-limited chemostat conditions. A previous metabolome study showed significant changes in the intracellular metabolite concentrations, especially of the nucleotides, in mucA deletion mutants compared to the wild-type. In this study, the P. fluorescens SBW25 wild-type and an alginate non-producing mucA- ΔalgC double-knockout mutant are investigated through model-based 13C-metabolic flux analysis (13C-MFA) to explore the physiological consequences of MucA inactivation at the metabolic flux level. Intracellular metabolite extracts from three carbon labelling experiments using fructose as the sole carbon source are analysed for 13C-label incorporation in primary metabolites by gas and liquid chromatography tandem mass spectrometry. Results From mass isotopomer distribution datasets, absolute intracellular metabolic reaction rates for the wild type and the mutant are determined, revealing extensive reorganisation of carbon flux through central metabolic pathways in response to MucA inactivation. The carbon flux through the Entner-Doudoroff pathway was reduced in the mucA- ΔalgC mutant, while flux through the pentose phosphate pathway was increased. Our findings also indicated flexibility of the anaplerotic reactions through down-regulation of the pyruvate shunt in the mucA- ΔalgC mutant and up-regulation of the glyoxylate shunt. Conclusions Absolute metabolic fluxes and metabolite levels give detailed, integrated insight into the physiology of this industrially, medically and agriculturally important bacterial species and suggest that the most efficient way of using a mucA- mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0148-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stina K Lien
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491, Trondheim, Norway.
| | - Sebastian Niedenführ
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Håvard Sletta
- Department of Bioprocess technology, SINTEF Materials and Chemistry, Sem Sælands vei 2a, N-7465, Trondheim, Norway.
| | - Katharina Nöh
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Per Bruheim
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491, Trondheim, Norway.
| |
Collapse
|
19
|
Pflüger-Grau K, de Lorenzo V. From the phosphoenolpyruvate phosphotransferase system to selfish metabolism: a story retraced in Pseudomonas putida. FEMS Microbiol Lett 2014; 356:144-53. [PMID: 24801646 DOI: 10.1111/1574-6968.12459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022] Open
Abstract
Although DNA is the ultimate repository of biological information, deployment of its instructions is constrained by the metabolic and physiological status of the cell. To this end, bacteria have evolved intricate devices that connect exogenous signals (e.g. nutrients, physicochemical conditions) with endogenous conditions (metabolic fluxes, biochemical networks) that coordinately influence expression or performance of a large number of cellular functions. The phosphoenolpyruvate:carbohydrate-phosphotransferase system (PTS) is a bacterial multi-protein phosphorylation chain which computes extracellular (e.g. sugars) and intracellular (e.g. phosphoenolpyruvate, nitrogen) signals and translates them into post-translational regulation of target activities through protein-protein interactions. The PTS of Pseudomonas putida KT2440 encompasses one complete sugar (fructose)-related system and the three enzymes that form the so-called nitrogen-related PTS (PTS(N) (tr) ), which lacks connection to transport of substrates. These two PTS branches cross-talk to each other, as the product of the fruB gene (a polyprotein EI-HPr-EIIA) can phosphorylate PtsN (EIIA(N) (tr) ) in vivo. This gives rise to a complex actuator device where diverse physiological inputs are ultimately translated into phosphorylation or not of PtsN (EIIA(N) (tr) ) which, in turn, checks the activity of key metabolic and regulatory proteins. Such a control of bacterial physiology highlights the prominence of biochemical homeostasis over genetic ruling -and not vice versa.
Collapse
|
20
|
Chavarría M, Durante-Rodríguez G, Krell T, Santiago C, Brezovsky J, Damborsky J, de Lorenzo V. Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida. FEBS Open Bio 2014; 4:377-86. [PMID: 24918052 PMCID: PMC4050194 DOI: 10.1016/j.fob.2014.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 11/11/2022] Open
Abstract
The role of FBP as effector of the Cra protein of soil bacterium Pseudomonas putida is unclear. Biochemical, biophysical and genetic data show that Cra binds only F1P as metabolic agonist. F1P is the only physiological effector of the Cra protein of P. putida in vivo. This regulatory exaptation of Cra exemplifies how transcriptional factors can diversify in bacteria.
Fructose-1-phosphate (F1P) is the preferred effector of the catabolite repressor/activator (Cra) protein of the soil bacterium Pseudomonas putida but its ability to bind other metabolic intermediates in vivo is unclear. The Cra protein of this microorganism (CraPP) was submitted to mobility shift assays with target DNA sequences (the PfruB promoter) and candidate effectors fructose-1,6-bisphosphate (FBP), glucose 6-phosphate (G6P), and fructose-6-phosphate (F6P). 1 mM F1P was sufficient to release most of the Cra protein from its operators but more than 10 mM of FBP or G6P was required to free the same complex. However, isothermal titration microcalorimetry failed to expose any specific interaction between CraPP and FBP or G6P. To solve this paradox, transcriptional activity of a PfruB-lacZ fusion was measured in wild-type and ΔfruB cells growing on substrates that change the intracellular concentrations of F1P and FBP. The data indicated that PfruB activity was stimulated by fructose but not by glucose or succinate. This suggested that CraPP represses expression in vivo of the cognate fruBKA operon in a fashion dependent just on F1P, ruling out any other physiological effector. Molecular docking and dynamic simulations of the Cra-agonist interaction indicated that both metabolites can bind the repressor, but the breach in the relative affinity of CraPP for F1P vs FBP is three orders of magnitude larger than the equivalent distance in the Escherichia coli protein. This assigns the Cra protein of P. putida the sole role of transducing the presence of fructose in the medium into a variety of direct and indirect physiological responses.
Collapse
Affiliation(s)
- Max Chavarría
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid 28049, Spain ; Escuela de Química, Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Gonzalo Durante-Rodríguez
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid 28049, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, Granada, Spain
| | - César Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid 28049, Spain
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
21
|
Krell T, Lacal J, García-Fontana C, Silva-Jiménez H, Rico-Jiménez M, Lugo AC, Darias JAR, Ramos JL. Characterization of molecular interactions using isothermal titration calorimetry. Methods Mol Biol 2014; 1149:193-203. [PMID: 24818906 DOI: 10.1007/978-1-4939-0473-0_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isothermal titration calorimetry (ITC) is based on a simple titration of one ligand with another and the small heat changes caused by the molecular interaction are detected. From one ITC experiment the complete set of thermodynamic parameters of binding including association and dissociation constants as well as changes in enthalpy, entropy, and free energy can be derived. Using this technique almost any type of molecular interaction can be analyzed. Both ligands are in solution, and there is no need for their chemical derivatization. There are no limits as to the choice of the analysis buffer, and the analysis temperature can be set between 4 and 80 °C. This technique has been primarily applied to study the interaction between various proteins of Pseudomonas with small molecule ligands. In addition, ITC has been used to study the binding of Pseudomonas proteins to target DNA fragments.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 2013; 15:1772-85. [PMID: 23301697 DOI: 10.1111/1462-2920.12069] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 11/27/2022]
Abstract
Glucose catabolism of Pseudomonas putida is carried out exclusively through the Entner-Doudoroff (ED) pathway due to the absence of 6-phosphofructokinase. In order to activate the Embden-Meyerhof-Parnas (EMP) route we transferred the pfkA gene from Escherichia coli to a P. putida wild-type strain as well as to an eda mutant, i.e. lacking 2-keto-3-deoxy-6-phosphogluconate aldolase. PfkA(E. coli) failed to redirect the carbon flow from the ED route towards the EMP pathway, suggesting that ED was essential for sugar catabolism. The presence of PfkA(E. coli) was detrimental for growth, which could be traced to the reduction of ATP and NAD(P)H pools along with alteration of the NAD(P)H/NADP(+) ratio. Pseudomonas putida cells carrying PfkA(E. coli) became highly sensitive to diamide and hydrogen peroxide, the response to which is very demanding of NADPH. The inhibitory effect of PfkA(E. coli) could in part be relieved by methionine, the synthesis of which relies much on NADPH. These results expose the role of the ED pathway for generating the redox currency (NADPH) that is required for counteracting oxidative stress. It is thus likely that environmental bacteria that favour the ED pathway over the EMP pathway do so in order to gear their aerobic metabolism to endure oxidative-related insults.
Collapse
Affiliation(s)
- Max Chavarría
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Chavarría M, Fuhrer T, Sauer U, Pflüger-Grau K, de Lorenzo V. Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate : phosphotransferase system of Pseudomonas putida. Environ Microbiol 2012; 15:121-32. [PMID: 22708906 DOI: 10.1111/j.1462-2920.2012.02808.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene that encodes the catabolite repressor/activator, Cra (FruR), of Pseudomonas putida is divergent from the fruBKA operon for the uptake of fructose via the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS(Fru)). The expression of the fru cluster has been studied in cells growing on substrates that change the intracellular concentrations of fructose-1-P (F1P), the principal metabolic intermediate that counteracts the DNA-binding ability of Cra on an upstream operator. While the levels of the regulator were not affected by any of the growth conditions tested, the transcription of fruB was stimulated by fructose but not by the gluconeogenic substrate, succinate. The analysis of the P(fruB) promoter activity in a strain lacking the Cra protein and the determination of key metabolites revealed that this regulator represses the expression of PTS(Fru) in a fashion that is dependent on the endogenous concentrations of F1P. Because FruB (i.e. the EI-HPr-EIIA(Fru) polyprotein) can deliver a high-energy phosphate to the EIIA(Ntr) (PtsN) enzyme of the PTS(Ntr) branch, the cross-talk between the two phosphotransferase systems was examined under metabolic regimes that allowed for the high or low transcription of the fruBKA operon. While fructose caused cross-talk, succinate prevented it almost completely. Furthermore, PtsN phosphorylation by FruB occurred in a Δcra mutant regardless of growth conditions. These results traced the occurrence of the cross-talk to intracellular pools of Cra effectors, in particular F1P. The Cra/F1P duo seems to not only control the expression of the PTS(Fru) but also checks the activity of the PTS(Ntr) in vivo.
Collapse
Affiliation(s)
- Max Chavarría
- Systems Biology Program, Centro Nacional de Biotecnología, 28049 Cantoblanco-Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio 2012; 3:mBio.00028-12. [PMID: 22434849 PMCID: PMC3312210 DOI: 10.1128/mbio.00028-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacterium Pseudomonas putida KT2440. One branch encompasses a complete set of enzymes for fructose intake (PTSFru), while the other (N-related PTS, or PTSNtr) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTSFru or PTSNtr genes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIANtr) displayed significantly higher fluxes in the reactions of the pyruvate shunt, which bypasses malate dehydrogenase in the TCA cycle. This was consistent with the increased activity of the malic enzyme and the pyruvate carboxylase found in the corresponding PTS mutants. Genetic evidence suggested that such a metabolic effect of PtsN required the transfer of high-energy phosphate through the system. The EIIANtr protein of the PTSNtr thus helps adjust central metabolic fluxes to satisfy the anabolic and energetic demands of the overall cell physiology. This study demonstrates that EIIANtr influences the biochemical reactions that deliver carbon between the upper and lower central metabolic domains for the consumption of sugars by P. putida. These findings indicate that the EIIANtr protein is a key player for orchestrating the fate of carbon in various physiological destinations in this bacterium. Additionally, these results highlight the importance of the posttranslational regulation of extant enzymatic complexes for increasing the robustness of the corresponding metabolic networks.
Collapse
|
25
|
Arce-Rodríguez A, Durante-Rodríguez G, Platero R, Krell T, Calles B, de Lorenzo V. The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Environ Microbiol 2011; 14:702-13. [PMID: 22040086 DOI: 10.1111/j.1462-2920.2011.02622.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the genome of Pseudomonas putida KT2440 encodes an orthologue of the crp gene of Escherichia coli (encoding the cAMP receptor protein), the regulatory scope of this factor seems to be predominantly co-opted in this bacterium for controlling non-metabolic functions. In order to investigate the reasons for such a functional divergence in otherwise nearly identical proteins, the Crp regulator of P. putida (Crp(P. putida)) was purified to apparent homogeneity and subject to a battery of in vitro assays aimed at determining its principal physicochemical properties. Analytical ultracentrifugation indicated effector-free Crp(P. putida) to be a dimer in solution that undergoes a significant change in its hydrodynamic shape in the presence of cAMP. Such a conformational transition was confirmed by limited proteolysis of the protein in the absence or presence of the inducer. Thermodynamic parameters calculated by isothermal titration calorimetry revealed a tight cAMP-Crp(P. putida) association with an apparent K(D) of 22.5 ± 2.8 nM, i.e. much greater affinity than that reported for the E. coli's counterpart. The regulator also bound cGMP, but with a K(D) = 2.6 ± 0.3 µM. An in vitro transcription system was then set up with purified P. putida's RNA polymerase for examining the preservation of the correct protein-protein architecture that makes Crp to activate target promoters. These results, along with cognate gel retardation assays indicated that all basic features of the reference Crp(E. coli) protein are kept in the P. putida's counterpart, albeit operating under a different set of parameters, the extraordinarily high affinity for cAMP being the most noticeable.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | |
Collapse
|