1
|
Pinilla-Macua I, Surve S, Sorkin A. Cell migration signaling through the EGFR-VAV2-Rac1 pathway is sustained in endosomes. J Cell Sci 2025; 138:jcs263541. [PMID: 39744818 PMCID: PMC11828472 DOI: 10.1242/jcs.263541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Ligand binding to EGFR activates Rho family GTPases, triggering actin cytoskeleton reorganization, cell migration and invasion. Activated EGFR is also rapidly endocytosed but the role of EGFR endocytosis in cell motility is poorly understood. Hence, we used live-cell microscopy imaging to demonstrate that endogenous fluorescently labeled VAV2, a guanine nucleotide exchange factor for Rho GTPases, is co-endocytosed with EGFR in genome-edited human oral squamous cell carcinoma (HSC3) cells, an in vitro model for head-and-neck cancer where VAV2 is known to promote metastasis and is associated with poor prognosis. Chemotactic migration of HSC3 cells toward an EGF gradient is found to require both VAV2 and clathrin-mediated endocytosis. Moreover, sustained activation of Rac1, a Rho family GTPase promoting cell migration and a major substrate of VAV2, also depends on clathrin. Endogenous fluorescently labeled Rac1 localizes to EGFR-containing endosomes. Altogether, our findings suggest that signaling through the EGFR-VAV2-Rac1 pathway persists in endosomes and that this endosomal signaling is required for EGFR-driven cell migration.
Collapse
Affiliation(s)
- Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sachin Surve
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Yue F, Ku AT, Stevens PD, Michalski MN, Jiang W, Tu J, Shi Z, Dou Y, Wang Y, Feng XH, Hostetter G, Wu X, Huang S, Shroyer NF, Zhang B, Williams BO, Liu Q, Lin X, Li Y. Loss of ZNRF3/RNF43 Unleashes EGFR in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574969. [PMID: 38260423 PMCID: PMC10802575 DOI: 10.1101/2024.01.10.574969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the protein most negatively correlated with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptors, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.
Collapse
Affiliation(s)
- Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Payton D. Stevens
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
- Biological Sciences Department, Miami University, Oxford, Ohio, 45056, USA
| | - Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jianghua Tu
- Texas Therapeutics Institute and Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Galen Hostetter
- Van Andel Institute, Core Technologies and Services, Grand Rapids, Michigan 49503, USA
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shixia Huang
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Education, Innovation & Technology, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Noah F. Shroyer
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
- Van Andel Institute, Core Technologies and Services, Grand Rapids, Michigan 49503, USA
| | - Qingyun Liu
- Texas Therapeutics Institute and Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Xia Lin
- The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Dee W, Sequeira I, Lobley A, Slabaugh G. Cell-vision fusion: A Swin transformer-based approach for predicting kinase inhibitor mechanism of action from Cell Painting data. iScience 2024; 27:110511. [PMID: 39175778 PMCID: PMC11340608 DOI: 10.1016/j.isci.2024.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Image-based profiling of the cellular response to drug compounds has proven effective at characterizing the morphological changes resulting from perturbation experiments. As data availability increases, however, there are growing demands for novel deep-learning methods. We applied the SwinV2 computer vision architecture to predict the mechanism of action of 10 kinase inhibitor compounds directly from Cell Painting images. This method outperforms the standard approach of using image-based profiles (IBP)-multidimensional feature set representations generated by bioimaging software. Furthermore, our fusion approach-cell-vision fusion, combining three different data modalities, images, IBPs, and chemical structures-achieved 69.79% accuracy and 70.56% F1 score, 4.20% and 5.49% higher, respectively, than the best-performing IBP method. We provide three techniques, specific to Cell Painting images, which enable deep-learning architectures to train effectively and demonstrate approaches to combat the significant batch effects present in large Cell Painting datasets.
Collapse
Affiliation(s)
- William Dee
- Digital Environment Research Institute (DERI), Queen Mary University of London, London E1 1HH, UK
- Centre for Oral Immunobiology and Regenerative Medicine, Barts Centre for Squamous Cancer, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
- Exscientia Plc, The Schrödinger Building Oxford Science Park, Oxford OX4 4GE, UK
| | - Ines Sequeira
- Centre for Oral Immunobiology and Regenerative Medicine, Barts Centre for Squamous Cancer, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | - Anna Lobley
- Exscientia Plc, The Schrödinger Building Oxford Science Park, Oxford OX4 4GE, UK
| | - Gregory Slabaugh
- Digital Environment Research Institute (DERI), Queen Mary University of London, London E1 1HH, UK
| |
Collapse
|
4
|
Abstract
The cell cycle is the series of events that take place in a cell that drives it to divide and produce two new daughter cells. Through more than 100 years of efforts by scientists, we now have a much clearer picture of cell cycle progression and its regulation. The typical cell cycle in eukaryotes is composed of the G1, S, G2, and M phases. The M phase is further divided into prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that controls the activity of various Cdk-cyclin complexes. Most cellular events, including DNA duplication, gene transcription, protein translation, and post-translational modification of proteins, occur in a cell-cycle-dependent manner. To understand these cellular events and their underlying molecular mechanisms, it is desirable to have a population of cells that are traversing the cell cycle synchronously. This can be achieved through a process called cell synchronization. Many methods have been developed to synchronize cells to the various phases of the cell cycle. These methods could be classified into two groups: synchronization methods using chemical inhibitors and synchronization methods without using chemical inhibitors. All these methods have their own merits and shortcomings.
Collapse
Affiliation(s)
- Zhixiang Wang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021; 10:cells10123327. [PMID: 34943835 PMCID: PMC8699227 DOI: 10.3390/cells10123327] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.
Collapse
|
6
|
Shalev M, Arman E, Stein M, Cohen-Sharir Y, Brumfeld V, Kapishnikov S, Royal I, Tuckermann J, Elson A. PTPRJ promotes osteoclast maturation and activity by inhibiting Cbl-mediated ubiquitination of NFATc1 in late osteoclastogenesis. FEBS J 2021; 288:4702-4723. [PMID: 33605542 DOI: 10.1111/febs.15778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Yael Cohen-Sharir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Royal
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.,Institut du Cancer de Montréal, QC, Canada.,Department of Medicine, University of Montreal, QC, Canada
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Tom EC, Mushtaq I, Mohapatra BC, Luan H, Bhat AM, Zutshi N, Chakraborty S, Islam N, Arya P, Bielecki TA, Iseka FM, Bhattacharyya S, Cypher LR, Goetz BT, Negi SK, Storck MD, Rana S, Barnekow A, Singh PK, Ying G, Guda C, Natarajan A, Band V, Band H. EHD1 and RUSC2 Control Basal Epidermal Growth Factor Receptor Cell Surface Expression and Recycling. Mol Cell Biol 2020; 40:e00434-19. [PMID: 31932478 PMCID: PMC7076251 DOI: 10.1128/mcb.00434-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/26/2019] [Accepted: 12/26/2019] [Indexed: 01/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While postactivation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/preactivation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular structures and at the Golgi compartment. Inducible EHD1 knockdown reduced the cell surface EGFR expression with accumulation at the Golgi compartment, a phenotype rescued by exogenous EHD1. RUSC2 knockdown phenocopied the EHD1 depletion effects. EHD1 or RUSC2 depletion impaired the EGF-induced cell proliferation, demonstrating that the novel, EHD1- and RUSC2-dependent transport of unstimulated EGFR from the Golgi compartment to the cell surface that we describe is functionally important, with implications for physiologic and oncogenic roles of EGFR and targeted cancer therapies.
Collapse
Affiliation(s)
- Eric C Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Namista Islam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fany M Iseka
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sohinee Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luke R Cypher
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Simarjeet K Negi
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angelika Barnekow
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Early Events in Actin Cytoskeleton Dynamics and E-Cadherin-Mediated Cell-Cell Adhesion during Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9030578. [PMID: 32121325 PMCID: PMC7140442 DOI: 10.3390/cells9030578] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in development and also in initiation of metastasis during cancer. Disruption of cell-cell contacts during EMT allowing cells to detach from and migrate away from their neighbors remains poorly understood. Using immunofluorescent staining and live-cell imaging, we analyzed early events during EMT induced by epidermal growth factor (EGF) in IAR-20 normal epithelial cells. Control cells demonstrated stable adherens junctions (AJs) and robust contact paralysis, whereas addition of EGF caused rapid dynamic changes at the cell-cell boundaries: fragmentation of the circumferential actin bundle, assembly of actin network in lamellipodia, and retrograde flow. Simultaneously, an actin-binding protein EPLIN was phosphorylated, which may have decreased the stability of the circumferential actin bundle. Addition of EGF caused gradual replacement of linear E-cadherin–based AJs with dynamic and unstable punctate AJs, which, unlike linear AJs, colocalized with the mechanosensitive protein zyxin, confirming generation of centripetal force at the sites of cell-cell contacts during EMT. Our data show that early EMT promotes heightened dynamics at the cell-cell boundaries—replacement of stable AJs and actin structures with dynamic ones—which results in overall weakening of cell-cell adhesion, thus priming the cells for front-rear polarization and eventual migration.
Collapse
|
9
|
Rodríguez-Fdez S, Bustelo XR. The Vav GEF Family: An Evolutionary and Functional Perspective. Cells 2019; 8:E465. [PMID: 31100928 PMCID: PMC6562523 DOI: 10.3390/cells8050465] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Vav proteins play roles as guanosine nucleotide exchange factors for Rho GTPases and signaling adaptors downstream of protein tyrosine kinases. The recent sequencing of the genomes of many species has revealed that this protein family originated in choanozoans, a group of unicellular organisms from which animal metazoans are believed to have originated from. Since then, the Vav family underwent expansions and reductions in its members during the evolutionary transitions that originated the agnates, chondrichthyes, some teleost fish, and some neoaves. Exotic members of the family harboring atypical structural domains can be also found in some invertebrate species. In this review, we will provide a phylogenetic perspective of the evolution of the Vav family. We will also pay attention to the structure, signaling properties, regulatory layers, and functions of Vav proteins in both invertebrate and vertebrate species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| |
Collapse
|
10
|
Abdrabou A, Wang Z. Post-Translational Modification and Subcellular Distribution of Rac1: An Update. Cells 2018; 7:cells7120263. [PMID: 30544910 PMCID: PMC6316090 DOI: 10.3390/cells7120263] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
11
|
Cevenini A, Orrù S, Mancini A, Alfieri A, Buono P, Imperlini E. Molecular Signatures of the Insulin-like Growth Factor 1-mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers. Int J Mol Sci 2018; 19:ijms19082411. [PMID: 30111747 PMCID: PMC6122069 DOI: 10.3390/ijms19082411] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system, which is constituted by the IGF-1 and IGF-2 peptide hormones, their corresponding receptors and several IGF binding proteins, is involved in physiological and pathophysiological processes. The IGF system promotes cancer proliferation/survival and its signaling induces the epithelial-mesenchymal transition (EMT) phenotype, which contributes to the migration, invasiveness, and metastasis of epithelial tumors. These cancers share two major IGF-1R signaling transduction pathways, PI3K/AKT and RAS/MEK/ERK. However, as far as we could review at this time, each type of cancer cell undergoes EMT through tumor-specific routes. Here, we review the tumor-specific molecular signatures of IGF-1-mediated EMT in breast, lung, and gastric cancers.
Collapse
Affiliation(s)
- Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | - Annamaria Mancini
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Andreina Alfieri
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | | |
Collapse
|
12
|
Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck MD, Meza J, Sheinin Y, Band V, Band H. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget 2018; 7:51107-51123. [PMID: 27276677 PMCID: PMC5239462 DOI: 10.18632/oncotarget.9812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
CBL-family ubiquitin ligases are critical negative regulators of tyrosine kinase signaling, with a clear redundancy between CBL and CBL-B evident in the immune cell and hematopoietic stem cell studies. Since CBL and CBL-B are negative regulators of immune cell activation, elimination of their function to boost immune cell activities could be beneficial in tumor immunotherapy. However, mutations of CBL are associated with human leukemias, pointing to tumor suppressor roles of CBL proteins; hence, it is critical to assess the tumor-intrinsic roles of CBL and CBL-B in cancers. This has not been possible since the only available whole-body CBL-B knockout mice exhibit constitutive tumor rejection. We engineered a new CBL-Bflox/flox mouse, combined this with an existing CBLflox/flox mouse to generate CBLflox/flox; CBL-Bflox/flox mice, and tested the tissue-specific concurrent deletion of CBL and CBL-B using the widely-used CD4-Cre transgenic allele to produce a T-cell-specific double knockout. Altered T-cell development, constitutive peripheral T-cell activation, and a lethal multi-organ immune infiltration phenotype largely resembling the previous Lck-Cre driven floxed-CBL deletion on a CBL-B knockout background establish the usefulness of the new model for tissue-specific CBL/CBL-B deletion. Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre for T-cell-restricted gene deletion. The establishment of a new model of concurrent tissue-selective CBL/CBL-B deletion should allow a clear assessment of the tumor-intrinsic roles of CBL/CBL-B in non-myeloid malignancies and help test the potential for CBL/CBL-B inactivation in immunotherapy of tumors.
Collapse
Affiliation(s)
- Benjamin Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fany Iseka
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuri Sheinin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Rübsam M, Mertz AF, Kubo A, Marg S, Jüngst C, Goranci-Buzhala G, Schauss AC, Horsley V, Dufresne ER, Moser M, Ziegler W, Amagai M, Wickström SA, Niessen CM. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun 2017; 8:1250. [PMID: 29093447 PMCID: PMC5665913 DOI: 10.1038/s41467-017-01170-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Generation of a barrier in multi-layered epithelia like the epidermis requires restricted positioning of functional tight junctions (TJ) to the most suprabasal viable layer. This positioning necessitates tissue-level polarization of junctions and the cytoskeleton through unknown mechanisms. Using quantitative whole-mount imaging, genetic ablation, and traction force microscopy and atomic force microscopy, we find that ubiquitously localized E-cadherin coordinates tissue polarization of tension-bearing adherens junction (AJ) and F-actin organization to allow formation of an apical TJ network only in the uppermost viable layer. Molecularly, E-cadherin localizes and tunes EGFR activity and junctional tension to inhibit premature TJ complex formation in lower layers while promoting increased tension and TJ stability in the granular layer 2. In conclusion, our data identify an E-cadherin-dependent mechanical circuit that integrates adhesion, contractile forces and biochemical signaling to drive the polarized organization of junctional tension necessary to build an in vivo epithelial barrier.
Collapse
Affiliation(s)
- Matthias Rübsam
- Department of Dermatology, University of Cologne, Cologne, 50931, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne, Cologne, 50931, Germany
| | - Aaron F Mertz
- Department of Physics, Yale University, New Haven, CT, 06520, USA
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, 10065, USA
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Susanna Marg
- Hannover Medical School, 30625, Hannover, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
| | - Gladiola Goranci-Buzhala
- Department of Dermatology, University of Cologne, Cologne, 50931, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne, Cologne, 50931, Germany
| | - Astrid C Schauss
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Eric R Dufresne
- Department of Physics, Yale University, New Haven, CT, 06520, USA
- Departments of Mechanical Engineering and Materials Science, Chemical and Environmental Engineering, and Cell Biology, Yale University, New Haven, CT, 06520, USA
| | - Markus Moser
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | | | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sara A Wickström
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Carien M Niessen
- Department of Dermatology, University of Cologne, Cologne, 50931, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany.
- Center for Molecular Medicine Cologne (CMMC) University of Cologne, Cologne, 50931, Germany.
| |
Collapse
|
14
|
Ruggiero C, Doghman-Bouguerra M, Sbiera S, Sbiera I, Parsons M, Ragazzon B, Morin A, Robidel E, Favier J, Bertherat J, Fassnacht M, Lalli E. Dosage-dependent regulation of VAV2 expression by steroidogenic factor-1 drives adrenocortical carcinoma cell invasion. Sci Signal 2017; 10:eaal2464. [PMID: 28270555 DOI: 10.1126/scisignal.aal2464] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a dismal prognosis. Genomic studies have enabled progress in our understanding of the molecular bases of ACC, but factors that influence its prognosis are lacking. Amplification of the gene encoding the transcription factor steroidogenic factor-1 (SF-1; also known as NR5A1) is one of the genetic alterations common in ACC. We identified a transcriptional regulatory mechanism involving increased abundance of VAV2, a guanine nucleotide exchange factor for small GTPases that control the cytoskeleton, driven by increased expression of the gene encoding SF-1 in ACC. Manipulating SF-1 and VAV2 abundance in cultured ACC cells revealed that VAV2 was a critical factor for SF-1-induced cytoskeletal remodeling and invasion in culture (Matrigel) and in vivo (chicken chorioallantoic membrane) models. Analysis of ACC patient cohorts indicated that greater VAV2 abundance robustly correlated with poor prognosis in ACC patients. Because VAV2 is a druggable target, our findings suggest that blocking VAV2 may be a new therapeutic approach to inhibit metastatic progression in ACC patients.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Université Côte d'Azur, Sophia Antipolis, 06560 Valbonne, France
- CNRS UMR7275, Sophia Antipolis, 06560 Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France
| | - Mabrouka Doghman-Bouguerra
- Université Côte d'Azur, Sophia Antipolis, 06560 Valbonne, France
- CNRS UMR7275, Sophia Antipolis, 06560 Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Iuliu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Bruno Ragazzon
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 74014 Paris, France
| | - Aurélie Morin
- Université Paris Descartes, Sorbonne Paris Cité, 74014 Paris, France
- Inserm, UMR970, Paris Cardiovascular Research Centre, 75015 Paris, France
| | - Estelle Robidel
- Université Paris Descartes, Sorbonne Paris Cité, 74014 Paris, France
- Inserm, UMR970, Paris Cardiovascular Research Centre, 75015 Paris, France
| | - Judith Favier
- Université Paris Descartes, Sorbonne Paris Cité, 74014 Paris, France
- Inserm, UMR970, Paris Cardiovascular Research Centre, 75015 Paris, France
| | - Jérôme Bertherat
- Inserm, U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 74014 Paris, France
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Enzo Lalli
- Université Côte d'Azur, Sophia Antipolis, 06560 Valbonne, France.
- CNRS UMR7275, Sophia Antipolis, 06560 Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France
| |
Collapse
|
15
|
Mohapatra B, Zutshi N, An W, Goetz B, Arya P, Bielecki TA, Mushtaq I, Storck MD, Meza JL, Band V, Band H. An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance. Development 2017; 144:1072-1086. [PMID: 28100467 DOI: 10.1242/dev.138164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
The ubiquitin ligases CBL and CBL-B are negative regulators of tyrosine kinase signaling with established roles in the immune system. However, their physiological roles in epithelial tissues are unknown. Here, we used MMTV-Cre-mediated Cbl gene deletion on a Cbl-b null background, as well as a tamoxifen-inducible mammary stem cell (MaSC)-specific Cbl and Cbl-b double knockout (Cbl/Cbl-b DKO) using Lgr5-EGFP-IRES-CreERT2, to demonstrate a mammary epithelial cell-autonomous requirement of CBL and CBL-B in the maintenance of MaSCs. Using a newly engineered tamoxifen-inducible Cbl and Cbl-b deletion model with a dual fluorescent reporter (Cblflox/flox; Cbl-bflox/flox; Rosa26-CreERT; mT/mG), we show that Cbl/Cbl-b DKO in mammary organoids leads to hyperactivation of AKT-mTOR signaling with depletion of MaSCs. Chemical inhibition of AKT or mTOR rescued MaSCs from Cbl/Cbl-b DKO-induced depletion. Our studies reveal a novel, cell-autonomous requirement of CBL and CBL-B in epithelial stem cell maintenance during organ development and remodeling through modulation of mTOR signaling.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA .,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Nadeau SA, An W, Mohapatra BC, Mushtaq I, Bielecki TA, Luan H, Zutshi N, Ahmad G, Storck MD, Sanada M, Ogawa S, Band V, Band H. Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene. J Biol Chem 2017; 292:3666-3682. [PMID: 28082680 DOI: 10.1074/jbc.m116.772723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Mutations of the tyrosine kinase-directed ubiquitin ligase CBL cause myeloid leukemias, but the molecular determinants of the dominant leukemogenic activity of mutant CBL oncogenes are unclear. Here, we first define a gain-of-function attribute of the most common leukemia-associated CBL mutant, Y371H, by demonstrating its ability to increase proliferation of hematopoietic stem/progenitor cells (HSPCs) derived from CBL-null and CBL/CBL-B-null mice. Next, we express second-site point/deletion mutants of CBL-Y371H in CBL/CBL-B-null HSPCs or the cytokine-dependent human leukemic cell line TF-1 to show that individual or combined Tyr → Phe mutations of established phosphotyrosine residues (Tyr-700, Tyr-731, and Tyr-774) had little impact on the activity of the CBL-Y371H mutant in HSPCs, and the triple Tyr → Phe mutant was only modestly impaired in TF-1 cells. In contrast, intact tyrosine kinase-binding (TKB) domain and proline-rich region (PRR) were critical in both cell models. PRR deletion reduced the stem cell factor (SCF)-induced hyper-phosphorylation of the CBL-Y371H mutant and the c-KIT receptor and eliminated the sustained p-ERK1/2 and p-AKT induction by SCF. GST fusion protein pulldowns followed by phospho-specific antibody array analysis identified distinct CBL TKB domains or PRR-binding proteins that are phosphorylated in CBL-Y371H-expressing TF-1 cells. Our results support a model of mutant CBL gain-of-function in which mutant CBL proteins effectively compete with the remaining wild type CBL-B and juxtapose TKB domain-associated PTKs with PRR-associated signaling proteins to hyper-activate signaling downstream of hematopoietic growth factor receptors. Elucidation of mutant CBL domains required for leukemogenesis should facilitate targeted therapy approaches for patients with mutant CBL-driven leukemias.
Collapse
Affiliation(s)
- Scott A Nadeau
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Wei An
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Bhopal C Mohapatra
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Biochemistry and Molecular Biology
| | - Insha Mushtaq
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | | | - Haitao Luan
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Neha Zutshi
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | - Gulzar Ahmad
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Matthew D Storck
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Masashi Sanada
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Vimla Band
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Hamid Band
- From the Eppley Institute for Research in Cancer and Allied Diseases, .,the Departments of Genetics, Cell Biology and Anatomy.,Biochemistry and Molecular Biology.,Pathology and Microbiology, College of Medicine, and.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
17
|
Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A 2016; 113:E8228-E8237. [PMID: 27930322 DOI: 10.1073/pnas.1615677113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.
Collapse
|
18
|
Zhang L, Teng Y, Fan Y, Wang Y, Li W, Shi J, Ma Y, Li C, Shi X, Qu X, Liu Y. The E3 ubiquitin ligase Cbl-b improves the prognosis of RANK positive breast cancer patients by inhibiting RANKL-induced cell migration and metastasis. Oncotarget 2016; 6:22918-33. [PMID: 26087197 PMCID: PMC4673209 DOI: 10.18632/oncotarget.4382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
The receptor activator of nuclear factor κ-B ligand (RANKL)/RANK pathway plays an important role in breast cancer progression. Despite the known role of Casitas B-lineage lymphoma (Cbl)-b as an essential regulator of the RANKL/RANK pathway, its effect on RANK pathway in breast cancer remains unclear. Thus, the present study investigated the effect of Cbl-b on the prognosis of RANK-expressing breast cancer patients, as well as on RANKL/RANK pathway. The results showed that RANK and Cbl-b expression was separately detected in 154 (154/300, 51.3%) and 165 (165/300, 55.0%) breast cancer tissue samples. In RANK-expressing breast cancer patients, Cbl-b expression was correlated with low metastasis rate (p = 0.004), better disease-free survival (DFS) and breast cancer-specific survival (BCSS) (p = 0.004 and p = 0.036, respectively). In addition, multivariate analysis showed that Cbl-b expression was an independent predictor of DFS (p = 0.038). Animal experiment results demonstrated that silencing Cbl-b expression in breast cancer cells increased the incidence of lung metastasis in nude mice. Further mechanism investigation revealed that Cbl-b down-regulated RANK protein expression and inhibited RANKL-induced breast cancer cell migration by negatively regulating the Src-Akt/ERK pathway. Our results suggest that Cbl-b improves the prognosis of RANK-expressing breast cancer patients by inhibiting RANKL-induced breast cancer cell migration and metastasis.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Wei Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yanju Ma
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaonan Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Abstract
Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
20
|
Fan Y, Qu X, Ma Y, Liu Y, Hu X. Cbl-b promotes cell detachment via ubiquitination of focal adhesion kinase. Oncol Lett 2016; 12:1113-1118. [PMID: 27446403 DOI: 10.3892/ol.2016.4730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/12/2016] [Indexed: 11/06/2022] Open
Abstract
Cancer cell detachment from the primary tumor site represents the first stage of metastasis. Previous studies have identified that cell detachment is triggered by cytoskeletal disruption, which may induce a wide variety of cellular changes. Focal adhesion kinase (FAK) exhibits crucial cellular functions, including regulation of the cytoskeleton. These observations have provided exciting insights into the effect of FAK in cell detachment; however, the involvement of FAK in cell detachment remains controversial. The aim of the present study was to evaluate the effect of FAK and its function in the process of cell detachment. The results revealed that FAK expression was downregulated following trypsin treatment in human gastric, lung, colon and breast cancer cell lines, as well as a human gastric epithelial cell line. Knockdown of FAK enhanced cell detachment in gastric cancer MGC803 cells, indicating that FAK inhibits cell detachment. Further investigation revealed that trypsin induced monoubiquitination of FAK. In addition, the lysosome inhibitor, NH4Cl, decreased trypsin-induced degradation of FAK. Casitas B-lineage lymphoma-b (Cbl-b), an E3 ubiquitin ligase, was involved in this process, which interacted with FAK, as demonstrated by co-precipitation experiments, and promoted trypsin-induced ubiquitin-lysosome degradation of FAK. These results indicate that Cbl-b promotes cell detachment via ubiquitination of FAK. These findings provide novel insights regarding the effect of FAK and Cbl-b in the process of cancer cell detachment.
Collapse
Affiliation(s)
- Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanju Ma
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Hu
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
21
|
Kim DY, Helfman DM. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene 2016; 35:4495-508. [PMID: 26876209 DOI: 10.1038/onc.2015.508] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023]
Abstract
Myosin light chain kinase (MLCK) expression is downregulated in breast cancer, including invasive ductal carcinoma compared with ductal breast carcinoma in situ and metastatic breast tumors. However, little is known about how loss of MLCK expression contributes to tumor progression. MLCK is a component of the actin cytoskeleton and its known role is the phosphorylation of the regulatory light chain of myosin II. To gain insights into the role of MLCK in breast cancer, we perturbed its function using small interfering RNA (siRNA) or pharmacological inhibition in untransformed breast epithelial cells (MCF10A). Loss of MLCK by siRNAs led to increased cell migration and invasion, disruption of cell-cell adhesions and enhanced formation of focal adhesions at the leading edge of migratory cells. In addition, downregulation of MLCK cooperated with HER2 in MCF10A cells to promote cell migration and invasion and low levels of MLCK is associated with a poor prognosis in HER2-positive breast cancer patients. Associated with these altered migratory behaviors were increased expression of epidermal growth factor receptor and activation of extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways in MLCK downregulated MCF10A cells. By contrast, inhibition of the kinase function of MLCK using pharmacological agents inhibited cell migration and invasion, and did not affect cellular adhesions. Our results show that loss of MLCK contributes to the migratory properties of epithelial cells resulting from changes in cell-cell and cell-matrix adhesions, and increased epidermal growth factor receptor signaling. These findings suggest that decreased expression of MLCK may have a critical role during tumor progression by facilitating the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- D Y Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - D M Helfman
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
22
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
23
|
Chung BM, Tom E, Zutshi N, Bielecki TA, Band V, Band H. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants. World J Clin Oncol 2014; 5:806-823. [PMID: 25493220 PMCID: PMC4259944 DOI: 10.5306/wjco.v5.i5.806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/19/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy.
Collapse
|
24
|
Cdc42 induces EGF receptor protein accumulation and promotes EGF receptor nuclear transport and cellular transformation. FEBS Lett 2014; 589:255-62. [PMID: 25497016 DOI: 10.1016/j.febslet.2014.11.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
Cdc42 is a Ras-related small GTP-binding protein. A previous study has shown that Cdc42 binding to the γ subunit of the coatomer protein complex (γCOP) is essential for Cdc42-regulated cellular transformation, but the molecular mechanism involved is not well understood. Here, we demonstrate that constitutively-active Cdc42 binding to γCOP induced the accumulation of epithelial growth factor receptor (EGFR) in the cells, sustained EGF-stimulated extracellular signal-regulated kinase (ERK), JUN amino-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) signaling and promoted cell division. Moreover, constitutive Cdc42 activity facilitated the nuclear translocation of EGFR, and this indicates a novel mechanism through which Cdc42 might promote cellular transformation.
Collapse
|
25
|
Ahmad G, Mohapatra BC, Schulte NA, Nadeau SA, Luan H, Zutshi N, Tom E, Ortega-Cava C, Tu C, Sanada M, Ogawa S, Toews ML, Band V, Band H. Cbl-family ubiquitin ligases and their recruitment of CIN85 are largely dispensable for epidermal growth factor receptor endocytosis. Int J Biochem Cell Biol 2014; 57:123-34. [PMID: 25449262 DOI: 10.1016/j.biocel.2014.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
Members of the casitas B-lineage lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of (125)I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl-CIN85-endophilin complex is not required for efficient internalization of EGFR, a prototype RTK.
Collapse
Affiliation(s)
- Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Nancy A Schulte
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Scott A Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Cesar Ortega-Cava
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Chun Tu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Myron L Toews
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
26
|
Plasticity of Mammary Cell Boundaries Governed by EGF and Actin Remodeling. Cell Rep 2014; 8:1722-1730. [DOI: 10.1016/j.celrep.2014.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/01/2014] [Accepted: 08/12/2014] [Indexed: 11/20/2022] Open
|
27
|
Kiuchi T, Ortiz-Zapater E, Monypenny J, Matthews DR, Nguyen LK, Barbeau J, Coban O, Lawler K, Burford B, Rolfe DJ, de Rinaldis E, Dafou D, Simpson MA, Woodman N, Pinder S, Gillett CE, Devauges V, Poland SP, Fruhwirth G, Marra P, Boersma YL, Plückthun A, Gullick WJ, Yarden Y, Santis G, Winn M, Kholodenko BN, Martin-Fernandez ML, Parker P, Tutt A, Ameer-Beg SM, Ng T. The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility. Sci Signal 2014; 7:ra78. [PMID: 25140053 DOI: 10.1126/scisignal.2005157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.
Collapse
Affiliation(s)
- Tai Kiuchi
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Elena Ortiz-Zapater
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - James Monypenny
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel R Matthews
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jody Barbeau
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Oana Coban
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Katherine Lawler
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Brian Burford
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel J Rolfe
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Emanuele de Rinaldis
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Dimitra Dafou
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael A Simpson
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Natalie Woodman
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Sarah Pinder
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Cheryl E Gillett
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Viviane Devauges
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Simon P Poland
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Gilbert Fruhwirth
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Pierfrancesco Marra
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Ykelien L Boersma
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - William J Gullick
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Yosef Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - George Santis
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Martyn Winn
- Computational Science and Engineering Department, Daresbury Laboratory, Science and Technology Facilities Council, Research Complex at Warrington, Warrington WA4 4AD, UK
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Peter Parker
- Division of Cancer Studies, King's College London, London SE1 1UL, UK. Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Simon M Ameer-Beg
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK.
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK. UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Li H, Xu L, Li C, Zhao L, Ma Y, Zheng H, Li Z, Zhang Y, Wang R, Liu Y, Qu X. Ubiquitin ligase Cbl-b represses IGF-I-induced epithelial mesenchymal transition via ZEB2 and microRNA-200c regulation in gastric cancer cells. Mol Cancer 2014; 13:136. [PMID: 24885194 PMCID: PMC4052283 DOI: 10.1186/1476-4598-13-136] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Insulin-like growth factor I (IGF-I) can induce epithelial mesenchymal transition (EMT) in many epithelial tumors; however, the molecular mechanism by which this occurs is not clearly understood. Additionally, little is known about the involvement of IGF-I in gastric cancer. METHODS Two gastric cancer cell lines were treated with IGF-I to induce EMT and levels of transcription factor ZEB2 and microRNA-200c (miR-200c) were measured. Cells were treated with Akt/ERK inhibitors to investigate the role of these pathways in IGF-I-mediated EMT. Transfection of shRNA plasmids was used to silence the ubiquitin ligase Cbl-b to assess its involvement in this process. The relationship between IGF-IR and Cbl-b expression, and the effect of IGF-IR and Cbl-b on metastasis were analyzed in primary gastric adenocarcinoma patients. RESULTS IGF-I-induced gastric cancer cell EMT was accompanied by ZEB2 up-regulation. Furthermore, both Akt/ERK inhibitors and knockdown of Akt/ERK gene reversed IGF-I-induced ZEB2 up-regulation and EMT through up-regulation of miR-200c, suggesting the involvement of an Akt/ERK-miR-200c-ZEB2 axis in IGF-I-induced EMT. The ubiquitin ligase Cbl-b also ubiquitinated and degraded IGF-IR and inhibited the Akt/ERK-miR-200c-ZEB2 axis, leading to the repression of IGF-I-induced EMT. There was a significant negative correlation between the expression of IGF-IR and Cbl-b in gastric cancer patient tissues (r = -0.265, p < 0.05). More of patients with IGF-IR-positive expression and Cbl-b-negative expression were with lymph node metastasis (p < 0.001). CONCLUSIONS Together, these findings demonstrate that the ubiquitin ligase Cbl-b represses IGF-I-induced EMT, likely through targeting IGF-IR for degradation and further inhibiting the Akt/ERK-miR-200c-ZEB2 axis in gastric cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, NO,155, North Nanjing Street, Heping District, Shenyang 110001, China.
| | | |
Collapse
|
29
|
Schneeberger VE, Luetteke N, Ren Y, Berns H, Chen L, Foroutan P, Martinez GV, Haura EB, Chen J, Coppola D, Wu J. SHP2E76K mutant promotes lung tumorigenesis in transgenic mice. Carcinogenesis 2014; 35:1717-25. [PMID: 24480804 DOI: 10.1093/carcin/bgu025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is a major disease carrying heterogeneous molecular lesions and many of them remain to be analyzed functionally in vivo. Gain-of-function (GOF) SHP2 (PTPN11) mutations have been found in various types of human cancer, including lung cancer. However, the role of activating SHP2 mutants in lung cancer has not been established. We generated transgenic mice containing a doxycycline (Dox)-inducible activating SHP2 mutant (tetO-SHP2(E76K)) and analyzed the role of SHP2(E76K) in lung tumorigenesis in the Clara cell secretory protein (CCSP)-reverse tetracycline transactivator (rtTA)/tetO-SHP2(E76K) bitransgenic mice. SHP2(E76K) activated Erk1/Erk2 (Erk1/2) and Src, and upregulated c-Myc and Mdm2 in the lungs of bitransgenic mice. Atypical adenomatous hyperplasia and small adenomas were observed in CCSP-rtTA/tetO-SHP2(E76K) bitransgenic mice induced with Dox for 2-6 months and progressed to larger adenoma and adenocarcinoma by 9 months. Dox withdrawal from bitransgenic mice bearing magnetic resonance imaging-detectable lung tumors resulted in tumor regression. These results show that the activating SHP2 mutant promotes lung tumorigenesis and that the SHP2 mutant is required for tumor maintenance in this mouse model of non-small cell lung cancer. SHP2(E76K) was associated with Gab1 in the lung of transgenic mice. Elevated pGab1 was observed in the lung of Dox-induced CCSP-rtTA/tetO-SHP2(E76K) mice and in cell lines expressing SHP2(E76K), indicating that the activating SHP2 mutant autoregulates tyrosine phosphorylation of its own docking protein. Gab1 tyrosine phosphorylation is sensitive to inhibition by the Src inhibitor dasatinib in GOF SHP2-mutant-expressing cells, suggesting that Src family kinases are involved in SHP2 mutant-induced Gab1 tyrosine phosphorylation.
Collapse
Affiliation(s)
- Valentina E Schneeberger
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida
| | | | - Yuan Ren
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute
| | | | - Liwei Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute
| | | | | | - Eric B Haura
- Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Department of Oncologic Sciences, University of South Florida College of Medicine and
| | - Jiandong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Department of Oncologic Sciences, University of South Florida College of Medicine and
| | - Domenico Coppola
- Department of Oncologic Sciences, University of South Florida College of Medicine and Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jie Wu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Department of Oncologic Sciences, University of South Florida College of Medicine and
| |
Collapse
|
30
|
Abe T, Hirasaka K, Kohno S, Ochi A, Yamagishi N, Ohno A, Teshima-Kondo S, Nikawa T. Ubiquitin ligase Cbl-b and obesity-induced insulin resistance. Endocr J 2014; 61:529-38. [PMID: 24614797 DOI: 10.1507/endocrj.ej14-0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Obesity causes type 2 diabetes, atherosclerosis and cardiovascular diseases by inducing systemic insulin resistance. It is now recognized that obesity is related to chronic low-grade inflammation in adipose tissue. Specifically, activated immune cells infiltrate adipose tissue and cause inflammation. There is increasing evidence that activated macrophages accumulate in the hypertrophied adipose tissue of rodents and humans and induce systemic insulin resistance by secreting inflammatory cytokines. Accordingly, a better understanding of the molecular mechanisms underlying macrophage activation in adipose tissue will facilitate the development of new therapeutic strategies. Currently, little is known about the regulation of macrophage activation, although E3 ubiquitin ligase Casitas B-lineage lymphoma (Cbl)-b was identified recently as a novel negative regulator of macrophage activation in adipose tissue. Cbl-b, which is a suppressor of T- and B-cell activation, inhibits intracellular signal transduction by targeting some tyrosine kinases. Notably, preventing Cbl-b-mediated macrophage activation improves obesity-induced insulin resistance in mice. c-Cbl is another member of the Cbl family that is associated with insulin resistance in obesity. These reports suggest that Cbl-b and c-Cbl are potential therapeutic targets for treating obesity-induced insulin resistance. In this review, we focus on the importance of Cbl-b in macrophage activation in aging-induced and high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Tomoki Abe
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
32
|
Fernández-Espartero CH, Ramel D, Farago M, Malartre M, Luque CM, Limanovich S, Katzav S, Emery G, Martín-Bermudo MD. The GEF Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation. J Cell Sci 2013; 126:2285-93. [DOI: 10.1242/jcs.124438] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Guided cell migration is a key mechanism for cell positioning in morphogenesis. The current model suggests that the spatially controlled activation of receptor tyrosine kinases (RTKs) by guidance cues would limit Rac activity at the leading edge, which is critical for establishing and maintaining polarized cell protrusions at the front. However, little is known about the mechanisms by which RTKs control the local activation of Rac. Here, using a multidisciplinary approach, we identify the GTP exchange factor (GEF) vav as a key regulator of Rac activity downstream of RTKs in a developmentally regulated cell migration event, that of the Drosophila border cells (BCs). We show that elimination of vav impairs BC migration. Live imaging analysis reveals that vav is required for the stabilization and maintenance of protrusions at the front of the BC cluster. In addition, activation of the PDGF/VEGF-related receptor (PVR) by its ligand the PDGF/PVF1 factor brings about Vav activation by direct interaction with the intracellular domain of PVR. Finally, FRET analyses demonstrate that Vav is required in BCs for the asymmetric distribution of Rac activity at the front. Our results unravel an important role for the Vav proteins as signal transducers that couple signalling downstream of RTKs with local Rac activation during morphogenetic movements.
Collapse
|
33
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nethe M, de Kreuk BJ, Tauriello DVF, Anthony EC, Snoek B, Stumpel T, Salinas PC, Maurice MM, Geerts D, Deelder AM, Hensbergen PJ, Hordijk PL. Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts. J Cell Sci 2012; 125:3430-42. [PMID: 22467858 DOI: 10.1242/jcs.100925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4 (Nedd4). This interaction requires the hypervariable C-terminal domain of Rac1 and the WW domains of Nedd4. Activated Rac1 colocalises with endogenous Nedd4 at epithelial cell-cell contacts. Reduction of Nedd4 expression by shRNA results in reduced transepithelial electrical resistance (TER) and concomitant changes in the distribution of adherens and tight junction markers. Conversely, expression of Nedd4 promotes TER, suggesting that Nedd4 cooperates with Rac1 in the induction of junctional maturation. We found that Nedd4, but not Nedd4-2, mediates the ubiquitylation and degradation of the adapter protein dishevelled-1 (Dvl1), the expression of which negatively regulates cell-cell contact. Nedd4-mediated ubiquitylation requires its binding to the C-terminal domain of Dvl1, comprising the DEP domain, and targets an N-terminal lysine-rich region upstream of the Dvl1 DIX domain. We found that endogenous Rac1 colocalises with endogenous Dvl1 in intracellular puncta as well as on cell-cell junctions. Finally, activated Rac1 was found to stimulate Nedd4 activity, resulting in increased ubiquitylation of Dvl1. Together, these data reveal a novel Rac1-dependent signalling pathway that, through Nedd4-mediated ubiquitylation of Dvl1, stimulates the maturation of epithelial cell-cell contacts.
Collapse
Affiliation(s)
- Micha Nethe
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu L, Zhang Y, Liu J, Qu J, Hu X, Zhang F, Zheng H, Qu X, Liu Y. TRAIL-activated EGFR by Cbl-b-regulated EGFR redistribution in lipid rafts antagonises TRAIL-induced apoptosis in gastric cancer cells. Eur J Cancer 2012; 48:3288-99. [PMID: 22456178 DOI: 10.1016/j.ejca.2012.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/17/2012] [Accepted: 03/03/2012] [Indexed: 12/30/2022]
Abstract
Most gastric cancer cells are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Since TRAIL resistance is associated with lipid rafts, in which both death receptors and epidermal growth factor receptors (EGFR) are enriched, our aim is to identify how lipid raft-regulated receptor redistribution influences the sensitivity of TRAIL in gastric cancer cells. In TRAIL-resistant gastric cancer cells, TRAIL did not induce effective death-inducing signalling complex (DISC) formation in lipid rafts, accompanied with EGFR translocation into lipid rafts, and activation of EGFR pathway. Knockdown of casitas B-lineage lymphoma-b (Cbl-b) enhanced TRAIL-induced apoptosis by promoting DISC formation in lipid rafts. However, knockdown of Cbl-b also enhanced EGFR translocation into lipid rafts and EGFR pathway activation induced by TRAIL. Either using inhibitors of EGFR or depletion of EGFR with small interfering RNA (siRNA) prevented EGFR pathway activation, and thus increased TRAIL-induced apoptosis, especially in Cbl-b knockdown clones. Taken together, TRAIL-induced EGFR activation through Cbl-b-regulated EGFR redistribution in lipid rafts antagonised TRAIL-induced apoptosis. The contribution of DISC formation and the inhibition of EGFR signal triggered in lipid rafts are both essential for increasing the sensitivity of gastric cancer cells to TRAIL.
Collapse
Affiliation(s)
- Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bocca C, Bozzo F, Cannito S, Parola M, Miglietta A. Celecoxib inactivates epithelial-mesenchymal transition stimulated by hypoxia and/or epidermal growth factor in colon cancer cells. Mol Carcinog 2011; 51:783-95. [PMID: 21882253 DOI: 10.1002/mc.20846] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 12/13/2022]
Abstract
Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has been reported to exert chemopreventive and antitumor effects on colon cancer, one of the most common solid epithelial malignancy worldwide. The aim of this study was to elucidate whether celecoxib may be able to affect epithelial-mesenchymal transition (EMT), a critical process involved in cancer cell invasiveness and metastasis and then proposed to be relevant for cancer progression. Human HT-29 colon cancer cells were exposed to carefully controlled hypoxic conditions and/or epidermal growth factor (EGF) and then investigated for EMT changes and signal transduction pathways involved by using morphological, molecular, and cell biology techniques. Celecoxib inhibited basal and EGF-stimulated proliferation, hypoxia-related HIF-1α recruitment/stabilization as well as hypoxia- and EGF-dependent activation of ERK and PI3K. Interestingly, celecoxib prevented EMT-related changes, as shown by modifications of β-catenin intracellular localization or vimentin and E-cadherin levels, as well as HT-29 invasiveness induced by hypoxia, EGF, or hypoxia plus EGF. Finally, experiments performed on SW-480 colon cancer cells (i.e., cells lacking COX-2) exposed to hypoxia, used here as a stimulus able to induce EMT and invasiveness, revealed that in these cells celecoxib was ineffective. Results of the present study indicate that celecoxib has the potential to negatively affect induction of EMT and increased invasiveness of colon cancer cells as elicited by different signals originating from tumor microenvironment (i.e., hypoxia and EGF). Moreover, these effects are likely be related to the pharmacological inhibitory effect exerted on COX-2 activity.
Collapse
Affiliation(s)
- Claudia Bocca
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
38
|
Jiao X, Jin B, Qu X, Yan S, Hou K, Liu Y, Hu X. [Expressions of c-Cbl, Cbl-b and EGFR and its role of prognosis in NSCLC]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:512-7. [PMID: 21645455 PMCID: PMC5999894 DOI: 10.3779/j.issn.1009-3419.2011.06.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE Epidermal growth factor receptor (EGFR) is closely correlated with the progression of lung cancer. Its activity is modulated by Casitas B-lineage lymphoma (Cbl) family. The aim of this study is to investigate the expression and clinical relevance of c-Cbl, Cbl-b and EGFR in non-small cell lung cancer (NSCLC). METHODS Expressions of c-Cbl, Cbl-b and EGFR protein were detected with tissue microarrays and immunohistochemistry technique in 94 cases of NSCLC. The correlations between the expression of the three proteins and clinicopathological parameters were analyzed. RESULTS The positive expression rates of EGFR, c-Cbl and Cbl-b were 60.6% (57/94), 30.9% (29/94) and 84.0% (79/94), respectively. The expression of EGFR, c-Cbl and Cbl-b was not associated with age, pathological type, TNM stage, lymph node metastasis, and smoking history. c-Cbl and Cbl-b status was not significantly correlated with overall survival. Subgroup analyses showed that c-Cbl-positive patients had longer survival than c-Cbl-negative patients in EGFR-positive group (P=0.014). CONCLUSION Detection of c-Cbl protein levels might contribute to the prognosis evaluation of EGFR-positive NSCLC.
Collapse
Affiliation(s)
- Xin Jiao
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, 110001, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Naramura M, Nadeau S, Mohapatra B, Ahmad G, Mukhopadhyay C, Sattler M, Raja SM, Natarajan A, Band V, Band H. Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders. Oncotarget 2011; 2:245-50. [PMID: 21422499 PMCID: PMC3134300 DOI: 10.18632/oncotarget.233] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/20/2011] [Indexed: 12/02/2022] Open
Abstract
Casitas B-lineage lymphoma (Cbl) family proteins are evolutionarily-conserved attenuators of protein tyrosine kinase (PTK) signaling. Biochemical analyses over the past two decades have firmly established that the negative regulatory functions of Cbl proteins are mediated through their ability to facilitate ubiquitination and thus promote degradation of PTKs. As aberrant activation of PTKs is frequently associated with oncogenesis, it has long been postulated that loss of normal Cbl functions may lead to unregulated activation of PTKs and cellular transformation. In the last few years, mutations in the CBL gene have been identified in a subset of human patients with myeloid malignancies. Here we discuss insights gained from the analyses of Cbl mutants both in human patients and in animal models and propose potential mechanisms of oncogenesis through this pathway.
Collapse
Affiliation(s)
- Mayumi Naramura
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Scott Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Chandrani Mukhopadhyay
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Martin Sattler
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|