1
|
Rostamighadi M, Kamelshahroudi A, Pitsitikas V, Jacobson KA, Salavati R. Pilot-Scale Screening of Clinically Approved Drugs to Identify Uridine Insertion/Deletion RNA Editing Inhibitors in Trypanosoma brucei. ACS Infect Dis 2024; 10:3289-3303. [PMID: 39118542 PMCID: PMC11456206 DOI: 10.1021/acsinfecdis.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
RNA editing pathway is a validated target in kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) that cause severe diseases in humans and livestock. An essential large protein complex, the editosome, mediates uridine insertion and deletion in RNA editing through a stepwise process. This study details the discovery of editosome inhibitors by screening a library of widely used human drugs using our previously developed in vitro biochemical Ribozyme Insertion Deletion Editing (RIDE) assay. Subsequent studies on the mode of action of the identified hits and hit expansion efforts unveiled compounds that interfere with RNA-editosome interactions and novel ligase inhibitors with IC50 values in the low micromolar range. Docking studies on the ligase demonstrated similar binding characteristics for ATP and our novel epigallocatechin gallate inhibitor. The inhibitors demonstrated potent trypanocidal activity and are promising candidates for drug repurposing due to their lack of cytotoxic effects. Further studies are necessary to validate these targets using more definitive gene-editing techniques and to enhance the safety profile.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Arezou Kamelshahroudi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Vanessa Pitsitikas
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, Maryland 20892, United States
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Quebec, Canada
| |
Collapse
|
2
|
Rostamighadi M, Kamelshahroudi A, Mehta V, Zeng FY, Pass I, Chung TDY, Salavati R. High-throughput screening of compounds targeting RNA editing in Trypanosoma brucei: Novel molecular scaffolds with broad trypanocidal effects. Biochem Pharmacol 2024; 219:115937. [PMID: 37995979 DOI: 10.1016/j.bcp.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format. Leveraging this assay, we screened over 100,000 compounds against purified editosomes derived from Trypanosoma brucei, identifying seven confirmed primary hits. We sourced and evaluated various analogs to enhance the inhibitory and parasiticidal effects of these primary hits. In combination with secondary assays, our compounds marked inhibition of essential catalytic activities, including the RNA editing ligase and interactions of editosome proteins. Although the primary hits did not exhibit any growth inhibitory effect on parasites, we describe eight analog compounds capable of effectively killing T. brucei and/or Leishmania donovani parasites within a low micromolar concentration. Whether parasite killing is - at least in part - due to inhibition of RNA editing in vivo remains to be assessed. Our findings introduce novel molecular scaffolds with the potential for broad antitrypanosomal effects.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Arezou Kamelshahroudi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Thomas D Y Chung
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
3
|
Rostamighadi M, Mehta V, Hassan Khan R, Moses D, Salavati R. Hammerhead ribozyme-based U-insertion and deletion RNA editing assays for multiplexing in HTS applications. RNA (NEW YORK, N.Y.) 2023; 29:252-261. [PMID: 36456183 PMCID: PMC9891259 DOI: 10.1261/rna.079454.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 05/14/2023]
Abstract
Untranslatable mitochondrial transcripts in kinetoplastids are decrypted post-transcriptionally through an RNA editing process that entails uridine insertion/deletion. This unique stepwise process is mediated by the editosome, a multiprotein complex that is a validated drug target of considerable interest in addressing the unmet medical needs for kinetoplastid diseases. With that objective, several in vitro RNA editing assays have been developed, albeit with limited success in discovering potent inhibitors. This manuscript describes the development of three hammerhead ribozyme (HHR) FRET reporter-based RNA editing assays for precleaved deletion, insertion, and ligation assays that bypass the rate-limiting endonucleolytic cleavage step, providing information on U-deletion, U-insertion, and ligation activities. These assays exhibit higher editing efficiencies in shorter incubation times while requiring significantly less purified editosome and 10,000-fold less ATP than the previously published full round of in vitro RNA editing assay. Moreover, modifications in the reporter ribozyme sequence enable the feasibility of multiplexing a ribozyme-based insertion/deletion editing (RIDE) assay that simultaneously surveils U-insertion and deletion editing suitable for HTS. These assays can be used to find novel chemical compounds with chemotherapeutic applications or as probes for studying the editosome machinery.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Rufaida Hassan Khan
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Daniel Moses
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
4
|
Mehta V, Moshiri H, Srikanth A, Kala S, Lukeš J, Salavati R. Sulfonated inhibitors of the RNA editing ligases validate the essential role of the MRP1/2 proteins in kinetoplastid RNA editing. RNA (NEW YORK, N.Y.) 2020; 26:827-835. [PMID: 32276989 PMCID: PMC7297121 DOI: 10.1261/rna.075598.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 05/21/2023]
Abstract
The RNA editing core complex (RECC) catalyzes mitochondrial U-insertion/deletion mRNA editing in trypanosomatid flagellates. Some naphthalene-based sulfonated compounds, such as C35 and MrB, competitively inhibit the auto-adenylylation activity of an essential RECC enzyme, kinetoplastid RNA editing ligase 1 (KREL1), required for the final step in editing. Previous studies revealed the ability of these compounds to interfere with the interaction between the editosome and its RNA substrates, consequently affecting all catalytic activities that comprise RNA editing. This observation implicates a critical function for the affected RNA binding proteins in RNA editing. In this study, using the inhibitory compounds, we analyzed the composition and editing activities of functional editosomes and identified the mitochondrial RNA binding proteins 1 and 2 (MRP1/2) as their preferred targets. While the MRP1/2 heterotetramer complex is known to bind guide RNA and promote annealing to its cognate pre-edited mRNA, its role in RNA editing remained enigmatic. We show that the compounds affect the association between the RECC and MRP1/2 heterotetramer. Furthermore, RECC purified post-treatment with these compounds exhibit compromised in vitro RNA editing activity that, remarkably, recovers upon the addition of recombinant MRP1/2 proteins. This work provides experimental evidence that the MRP1/2 heterotetramer is required for in vitro RNA editing activity and substantiates the hypothesized role of these proteins in presenting the RNA duplex to the catalytic complex in the initial steps of RNA editing.
Collapse
Affiliation(s)
- Vaibhav Mehta
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Akshaya Srikanth
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Reza Salavati
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| |
Collapse
|
5
|
Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev Res 2020; 83:225-252. [PMID: 32249457 DOI: 10.1002/ddr.21664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Human trypanosomiasis and leishmaniasis are vector-borne neglected tropical diseases caused by infection with the protozoan parasites Trypanosoma spp. and Leishmania spp., respectively. Once restricted to endemic areas, these diseases are now distributed worldwide due to human migration, climate change, and anthropogenic disturbance, causing significant health and economic burden globally. The current chemotherapy used to treat these diseases has limited efficacy, and drug resistance is spreading. Hence, new drugs are urgently needed. Phenotypic compound screenings have prevailed as the leading method to discover new drug candidates against these diseases. However, the publication of the complete genome sequences of multiple strains, advances in the application of CRISPR/Cas9 technology, and in vivo bioluminescence-based imaging have set the stage for advancing target-based drug discovery. This review analyses the limitations of the narrow pool of available drugs presently used for treating these diseases. It describes the current drug-based clinical trials highlighting the most promising leads. Furthermore, the review presents a focused discussion on the most important biological and pharmacological challenges that target-based drug discovery programs must overcome to advance drug candidates. Finally, it examines the advantages and limitations of modern research tools designed to identify and validate essential genes as drug targets, including genomic editing applications and in vivo imaging.
Collapse
Affiliation(s)
- Fernando Altamura
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Rishi Rajesh
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | | - Nilmar S Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
6
|
Catharina L, Lima CR, Franca A, Guimarães ACR, Alves-Ferreira M, Tuffery P, Derreumaux P, Carels N. A Computational Methodology to Overcome the Challenges Associated With the Search for Specific Enzyme Targets to Develop Drugs Against Leishmania major. Bioinform Biol Insights 2017. [PMID: 28638238 PMCID: PMC5470852 DOI: 10.1177/1177932217712471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We present an approach for detecting enzymes that are specific of Leishmania major compared with Homo sapiens and provide targets that may assist research in drug development. This approach is based on traditional techniques of sequence homology comparison by similarity search and Markov modeling; it integrates the characterization of enzymatic functionality, secondary and tertiary protein structures, protein domain architecture, and metabolic environment. From 67 enzymes represented by 42 enzymatic activities classified by AnEnPi (Analogous Enzymes Pipeline) as specific for L major compared with H sapiens, only 40 (23 Enzyme Commission [EC] numbers) could actually be considered as strictly specific of L major and 27 enzymes (19 EC numbers) were disregarded for having ambiguous homologies or analogies with H sapiens. Among the 40 strictly specific enzymes, we identified sterol 24-C-methyltransferase, pyruvate phosphate dikinase, trypanothione synthetase, and RNA-editing ligase as 4 essential enzymes for L major that may serve as targets for drug development.
Collapse
Affiliation(s)
- Larissa Catharina
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Carlyle Ribeiro Lima
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université Paris 7, Paris, France.,Molécules Thérapeutiques in silico (UMR-S 973), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alexander Franca
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marcelo Alves-Ferreira
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Pierre Tuffery
- Molécules Thérapeutiques in silico (UMR-S 973), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université Paris 7, Paris, France
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Gazestani VH, Nikpour N, Mehta V, Najafabadi HS, Moshiri H, Jardim A, Salavati R. A Protein Complex Map of Trypanosoma brucei. PLoS Negl Trop Dis 2016; 10:e0004533. [PMID: 26991453 PMCID: PMC4798371 DOI: 10.1371/journal.pntd.0004533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/20/2016] [Indexed: 12/27/2022] Open
Abstract
The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org. Due to high evolutionary divergence of trypanosomatid pathogens from other eukaryotes, accurate prediction of functional roles for most of their proteins is not feasible based on homology-based approaches. Although protein co-complex maps provide a compelling tool for the functional annotation of proteins, as subunits of a complex are expected to be involved in similar biological processes, the current knowledge about these maps is still rudimentary. Here, we systematically examined the protein co-complex membership of more than one third of T. brucei proteome using two orthogonal fractionation approaches. A high-confidence network of co-complex relationships predicts the network context of 866 proteins, including many hypothetical and experimentally unannotated proteins. To our knowledge, this study presents the largest proteomics-based interaction map of trypanosomatid parasites to date, providing a useful resource for formulating new biological hypothesises and further experimental leads.
Collapse
Affiliation(s)
- Vahid H. Gazestani
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Najmeh Nikpour
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Hamed S. Najafabadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Houtan Moshiri
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Armando Jardim
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
8
|
Zimmermann S, Hall L, Riley S, Sørensen J, Amaro RE, Schnaufer A. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases. Nucleic Acids Res 2015; 44:e24. [PMID: 26400159 PMCID: PMC4756849 DOI: 10.1093/nar/gkv938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/12/2023] Open
Abstract
The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds.
Collapse
Affiliation(s)
- Stephan Zimmermann
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Laurence Hall
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean Riley
- The Scripps Research Institute, 4122 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Jesper Sørensen
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, CA 92093, USA
| | - Achim Schnaufer
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
9
|
Abstract
It is widely accepted that protein receptors exist as an ensemble of conformations in solution. How best to incorporate receptor flexibility into virtual screening protocols used for drug discovery remains a significant challenge. Here, stepwise methodologies are described to generate and select relevant protein conformations for virtual screening in the context of the relaxed complex scheme (RCS), to design small molecule libraries for docking, and to perform statistical analyses on the virtual screening results. Methods include equidistant spacing, RMSD-based clustering, and QR factorization protocols for ensemble generation and ROC analysis for ensemble selection.
Collapse
|
10
|
Mehta V, Sen R, Moshiri H, Salavati R. Mutational analysis of Trypanosoma brucei RNA editing ligase reveals regions critical for interaction with KREPA2. PLoS One 2015; 10:e0120844. [PMID: 25790471 PMCID: PMC4366279 DOI: 10.1371/journal.pone.0120844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/10/2015] [Indexed: 12/04/2022] Open
Abstract
The Trypanosoma brucei parasite causes the vector-borne disease African sleeping sickness. Mitochondrial mRNAs of T. brucei undergo posttranscriptional RNA editing to make mature, functional mRNAs. The final step of this process is catalyzed by the essential ligase, T. brucei RNA Editing Ligase 1 (TbREL1) and the closely related T. brucei RNA Editing Ligase 2 (TbREL2). While other ligases such as T7 DNA ligase have both a catalytic and an oligonucleotide/oligosaccharide-binding (OB)-fold domain, T. brucei RNA editing ligases contain only the catalytic domain. The OB-fold domain, which is required for interaction with the substrate RNA, is provided in trans by KREPA2 (for TbREL1) and KREPA1 (for TbREL2). KREPA2 enhancement of TbREL1 ligase activity is presumed to occur via an OB-fold-mediated increase in substrate specificity and catalysis. We characterized the interaction between TbREL1 and KREPA2 in vitro using full-length, truncated, and point-mutated ligases. As previously shown, our data indicate strong, specific stimulation of TbREL1 catalytic activity by KREPA2. We narrowed the region of contact to the final 59 C-terminal residues of TbREL1. Specifically, the TbREL1 C-terminal KWKE (441–444) sequence appear to coordinate the KREPA2-mediated enhancement of TbREL1 activities. N-terminal residues F206, T264 and Y275 are crucial for the overall activity of TbREL1, particularly for F206, a mutation of this residue also disrupts KREPA2 interaction. Thus, we have identified the critical TbREL1 regions and amino acids that mediate the KREPA2 interaction.
Collapse
Affiliation(s)
- Vaibhav Mehta
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
| | - Rajashree Sen
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
| | - Reza Salavati
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G1Y6, Canada
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec, H9X3V9, Canada
- McGill Centre for Bioinformatics, McGill University, Duff Medical Building, 3775 University Street, Montreal, Quebec, H3A2B4, Canada
- * E-mail:
| |
Collapse
|
11
|
Leeder WM, Reuss AJ, Brecht M, Kratz K, Wachtveitl J, Göringer HU. Charge reduction and thermodynamic stabilization of substrate RNAs inhibit RNA editing. PLoS One 2015; 10:e0118940. [PMID: 25742417 PMCID: PMC4350841 DOI: 10.1371/journal.pone.0118940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023] Open
Abstract
African trypanosomes cause a parasitic disease known as sleeping sickness. Mitochondrial transcript maturation in these organisms requires a RNA editing reaction that is characterized by the insertion and deletion of U-nucleotides into otherwise non-functional mRNAs. Editing represents an ideal target for a parasite-specific therapeutic intervention since the reaction cycle is absent in the infected host. In addition, editing relies on a macromolecular protein complex, the editosome, that only exists in the parasite. Therefore, all attempts to search for editing interfering compounds have been focused on molecules that bind to proteins of the editing machinery. However, in analogy to other RNA-driven biochemical pathways it should be possible to stall the reaction by targeting its substrate RNAs. Here we demonstrate inhibition of editing by specific aminoglycosides. The molecules bind into the major groove of the gRNA/pre-mRNA editing substrates thereby causing a stabilization of the RNA molecules through charge compensation and an increase in stacking. The data shed light on mechanistic details of the editing process and identify critical parameters for the development of new trypanocidal compounds.
Collapse
Affiliation(s)
- W.-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas J. Reuss
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Brecht
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Katja Kratz
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - H. Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
12
|
Moshiri H, Mehta V, Yip CW, Salavati R. Pilot-scale compound screening against RNA editing identifies trypanocidal agents. ACTA ACUST UNITED AC 2014; 20:92-100. [PMID: 25170016 DOI: 10.1177/1087057114548833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most mitochondrial messenger RNAs in trypanosomatid pathogens undergo a unique type of posttranscriptional modification involving insertion and/or deletion of uridylates. This process, RNA editing, is catalyzed by a multiprotein complex (~1.6 MDa), the editosome. Knockdown of core editosome proteins compromises mitochondrial function and, ultimately, parasite viability. Hence, because the editosome is restricted to trypanosomatids, it serves as a unique drug target in these pathogens. Currently, there is a lack of editosome inhibitors for antitrypanosomatid drug development or that could serve as unique tools for perturbing and characterizing editosome interactions or RNA editing reaction stages. Here, we screened a library of pharmacologically active compounds (LOPAC1280) using high-throughput screening to identify RNA editing inhibitors. We report that aurintricarboxylic acid, mitoxantrone, PPNDS, and NF449 are potent inhibitors of deletion RNA editing (IC50 range, 1-5 µM). However, none of these compounds could specifically inhibit the catalytic steps of RNA editing. Mitoxantrone blocked editing by inducing RNA-protein aggregates, whereas the other three compounds interfered with editosome-RNA interactions to varying extents. Furthermore, NF449, a suramin analogue, was effective at killing Trypanosoma brucei in vitro. Thus, new tools for editosome characterization and downstream RNA editing inhibitor have been identified.
Collapse
Affiliation(s)
- Houtan Moshiri
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Mehta
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Chun Wai Yip
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Reza Salavati
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada Institute of Parasitology, McGill University, Montreal, Quebec, Canada McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Demir O, Labaied M, Merritt C, Stuart K, Amaro RE. Computer-aided discovery of Trypanosoma brucei RNA-editing terminal uridylyl transferase 2 inhibitors. Chem Biol Drug Des 2014; 84:131-9. [PMID: 24903413 DOI: 10.1111/cbdd.12302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/12/2013] [Accepted: 02/07/2014] [Indexed: 11/27/2022]
Abstract
Human African trypanosomiasis (HAT) is a major health problem in sub-Saharan Africa caused by Trypanosoma brucei infection. Current HAT drugs are difficult to administer and not effective against all parasite species at different stages of the disease which indicates an unmet pharmaceutical need. TbRET2 is an indispensable enzyme for the parasite and is targeted here using a computational approach that combines molecular dynamics simulations and virtual screening. The compounds prioritized are then tested in T. brucei via Alamar blue cell viability assays. This work identified 20 drug-like compounds which are candidates for further testing in the drug discovery process.
Collapse
Affiliation(s)
- Ozlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | |
Collapse
|
14
|
Chauleau M, Shuman S. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3'-OH base mispairs and damaged base lesions. RNA (NEW YORK, N.Y.) 2013; 19:1840-7. [PMID: 24158792 PMCID: PMC3884662 DOI: 10.1261/rna.041731.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
T4 RNA ligase 2 (Rnl2) repairs 3'-OH/5'-PO4 nicks in duplex nucleic acids in which the broken 3'-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2-(lysyl-Nζ)-AMP intermediate (step 1); transfer of AMP to the 5'-PO4 of the nick to form an activated AppN- intermediate (step 2); and attack by the nick 3'-OH on the AppN- strand to form a 3'-5' phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2-AMP. For substrates with correctly base-paired 3'-OH nick termini, kstep2 was fast (9.5 to 17.9 sec(-1)) and similar in magnitude to kstep3 (7.9 to 32 sec(-1)). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3'-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3'-OH elicited severe decrements in the rate of 5'-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3'-terminal ribonucleoside at the nick for optimal 5'-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage.
Collapse
|
15
|
Abstract
Computational simulations of essential biological systems in pathogenic organisms are increasingly being used to reveal structural and dynamical features for targets of interest. At the same time, increased research efforts, especially from academia, have been directed toward drug discovery for neglected tropical diseases. Although these diseases cripple large populations in less fortunate parts of the world, either very few new drugs are being developed or the available treatments for them have severe side effects, including death. This chapter walks readers through a computational investigation used to find novel inhibitors to target one of these neglected diseases, African sleeping sickness (human African trypanosomiasis). Such studies may suggest novel small-molecule compounds that could be considered as part of an early-stage drug discovery effort. As an example target protein of interest, we focus on the essential protein RNA-editing ligase 1 (REL1) in Trypanosoma brucei, the causative agent of human African trypanosomiasis.
Collapse
Affiliation(s)
- Ozlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
16
|
Kafková L, Ammerman ML, Faktorová D, Fisk JC, Zimmer SL, Sobotka R, Read LK, Lukeš J, Hashimi H. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2012; 18:1846-61. [PMID: 22898985 PMCID: PMC3446708 DOI: 10.1261/rna.033852.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/11/2012] [Indexed: 05/20/2023]
Abstract
A majority of Trypanosoma brucei proteins have unknown functions, a consequence of its independent evolutionary history within the order Kinetoplastida that allowed for the emergence of several unique biological properties. Among these is RNA editing, needed for expression of mitochondrial-encoded genes. The recently discovered mitochondrial RNA binding complex 1 (MRB1) is composed of proteins with several functions in processing organellar RNA. We characterize two MRB1 subunits, referred to herein as MRB8170 and MRB4160, which are paralogs arisen from a large chromosome duplication occurring only in T. brucei. As with many other MRB1 proteins, both have no recognizable domains, motifs, or orthologs outside the order. We show that they are both novel RNA binding proteins, possibly representing a new class of these proteins. They associate with a similar subset of MRB1 subunits but not directly with each other. We generated cell lines that either individually or simultaneously target the mRNAs encoding both proteins using RNAi. Their dual silencing results in a differential effect on moderately and pan-edited RNAs, suggesting a possible functional separation of the two proteins. Cell growth persists upon RNAi silencing of each protein individually in contrast to the dual knockdown. Yet, their apparent redundancy in terms of cell viability is at odds with the finding that only one of these knockdowns results in the general degradation of pan-edited RNAs. While MRB8170 and MRB4160 share a considerable degree of conservation, our results suggest that their recent sequence divergence has led to them influencing mitochondrial mRNAs to differing degrees.
Collapse
Affiliation(s)
- Lucie Kafková
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Michelle L. Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Drahomíra Faktorová
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Roman Sobotka
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Julius Lukeš
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Corresponding authorE-mail
| |
Collapse
|
17
|
Salavati R, Moshiri H, Kala S, Shateri Najafabadi H. Inhibitors of RNA editing as potential chemotherapeutics against trypanosomatid pathogens. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2011; 2:36-46. [PMID: 24533263 DOI: 10.1016/j.ijpddr.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 01/14/2023]
Abstract
The related trypanosomatid pathogens, Trypanosoma brucei spp., Trypanosoma cruzi and Leishmania spp. cause devastating diseases in humans and animals and continue to pose a major challenge in drug development. Mitochondrial RNA editing, catalyzed by multi-protein complexes known as editosomes, has provided an opportunity for development of efficient and specific chemotherapeutic targets against trypanosomatid pathogens. This review will discuss both methods for discovery of RNA editing inhibitors, as well as inhibitors against the T. brucei editosome that were recently discovered through creative virtual and high throughput screening methods. In addition, the use of these inhibitors as agents that can block or perturb one or more steps of the RNA editing process will be discussed. These inhibitors can potentially be used to study the dynamic processing and assembly of the editosome proteins. A thorough understanding of the mechanisms and specificities of these new inhibitors is needed in order to contribute to both the functional studies of an essential gene expression mechanism and to the possibility of future drug development against the trypanosomatid pathogens.
Collapse
Affiliation(s)
- Reza Salavati
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6 ; Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 ; McGill Centre for Bioinformatics, McGill University, Bellini Building, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G0B1
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6 ; Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9
| | - Smriti Kala
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9
| | - Hamed Shateri Najafabadi
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 ; McGill Centre for Bioinformatics, McGill University, Bellini Building, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G0B1
| |
Collapse
|
18
|
Mooers BHM, Singh A. The crystal structure of an oligo(U):pre-mRNA duplex from a trypanosome RNA editing substrate. RNA (NEW YORK, N.Y.) 2011; 17:1870-1883. [PMID: 21878548 PMCID: PMC3185919 DOI: 10.1261/rna.2880311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/30/2011] [Indexed: 05/31/2023]
Abstract
Guide RNAs bind antiparallel to their target pre-mRNAs to form editing substrates in reaction cycles that insert or delete uridylates (Us) in most mitochondrial transcripts of trypanosomes. The 5' end of each guide RNA has an anchor sequence that binds to the pre-mRNA by base-pair complementarity. The template sequence in the middle of the guide RNA directs the editing reactions. The 3' ends of most guide RNAs have ∼15 contiguous Us that bind to the purine-rich unedited pre-mRNA upstream of the editing site. The resulting U-helix is rich in G·U wobble base pairs. To gain insights into the structure of the U-helix, we crystallized 8 bp of the U-helix in one editing substrate for the A6 mRNA of Trypanosoma brucei. The fragment provides three samples of the 5'-AGA-3'/5'-UUU-3' base-pair triple. The fusion of two identical U-helices head-to-head promoted crystallization. We obtained X-ray diffraction data with a resolution limit of 1.37 Å. The U-helix had low and high twist angles before and after each G·U wobble base pair; this variation was partly due to shearing of the wobble base pairs as revealed in comparisons with a crystal structure of a 16-nt RNA with all Watson-Crick base pairs. Both crystal structures had wider major grooves at the junction between the poly(U) and polypurine tracts. This junction mimics the junction between the template helix and the U-helix in RNA-editing substrates and may be a site of major groove invasion by RNA editing proteins.
Collapse
Affiliation(s)
- Blaine H M Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104-5419, USA.
| | | |
Collapse
|