1
|
Mousavi SI, Lacy MM, Li X, Berro J. Fast Actin Disassembly and Fimbrin Mechanosensitivity Support Rapid Turnover in a Model of Clathrin-Mediated Endocytosis. Cytoskeleton (Hoboken) 2025. [PMID: 40035221 DOI: 10.1002/cm.22002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/05/2025]
Abstract
The actin cytoskeleton is central to force production in numerous cellular processes in eukaryotic cells. During clathrin-mediated endocytosis (CME), a dynamic actin meshwork is required to deform the membrane against high membrane tension or turgor pressure. Previous experimental work from our lab showed that several endocytic proteins, including actin and actin-interacting proteins, turn over several times during the formation of a vesicle during CME in yeast, and their dwell time distributions were reminiscent of gamma distributions with a peak around 1 s. However, the distribution for the filament cross-linking protein fimbrin contains a second peak around 0.5 s. To better understand the nature of these dwell time distributions, we developed a stochastic model for the dynamics of actin and its binding partners. Our model demonstrates that very fast actin filament disassembly is necessary to reproduce experimental dwell time distributions. Our model also predicts that actin-binding proteins bind rapidly to nascent filaments and filaments are fully decorated. Last, our model predicts that fimbrin detachment from actin endocytic structures is mechanosensitive to explain the extra peak observed in the dwell time distribution.
Collapse
Affiliation(s)
- Sayed Iman Mousavi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
| | - Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
| | - Xiaobai Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Tang Q, Pollard LW, Homa KE, Kovar DR, Trybus KM. Acetylation of fission yeast tropomyosin does not promote differential association with cognate formins. Cytoskeleton (Hoboken) 2023; 80:77-92. [PMID: 36692369 PMCID: PMC10121778 DOI: 10.1002/cm.21745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
It was proposed from cellular studies that S. pombe tropomyosin Cdc8 (Tpm) segregates into two populations due to the presence or absence of an amino-terminal acetylation that specifies which formin-mediated F-actin networks it binds, but with no supporting biochemistry. To address this mechanism in vitro, we developed methods for S. pombe actin expression in Sf9 cells. We then employed 3-color TIRF microscopy using all recombinant S. pombe proteins to probe in vitro multicomponent mechanisms involving actin, acetylated and unacetylated Tpm, formins, and myosins. Acetyl-Tpm exhibits tight binding to actin in contrast to weaker binding by unacetylated Tpm. In disagreement with the differential recruitment model, Tpm showed no preferential binding to filaments assembled by the FH1-FH2-domains of two S. pombe formins, nor did Tpm binding have any bias towards the growing formin-bound actin filament barbed end. Although our in vitro findings do not support a direct formin-tropomyosin interaction, it is possible that formins bias differential tropomyosin isoform recruitment through undiscovered mechanisms. Importantly, despite a 12% sequence divergence between skeletal and S. pombe actin, S. pombe myosins Myo2 and Myo51 exhibited similar motile behavior with these two actins, validating key prior findings with these myosins that used skeletal actin.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Kaitlin E. Homa
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - David R. Kovar
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| |
Collapse
|
3
|
Vahokoski J, Calder LJ, Lopez AJ, Molloy JE, Kursula I, Rosenthal PB. High-resolution structures of malaria parasite actomyosin and actin filaments. PLoS Pathog 2022; 18:e1010408. [PMID: 35377914 PMCID: PMC9037914 DOI: 10.1371/journal.ppat.1010408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/25/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. The complex includes the malaria parasite actin filament (PfAct1) complexed with the class XIV myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at improved resolution.
Collapse
Affiliation(s)
- Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Justin E. Molloy
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
4
|
Boiero Sanders M, Toret CP, Guillotin A, Antkowiak A, Vannier T, Robinson RC, Michelot A. Specialization of actin isoforms derived from the loss of key interactions with regulatory factors. EMBO J 2022; 41:e107982. [PMID: 35178724 PMCID: PMC8886540 DOI: 10.15252/embj.2021107982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
A paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin‐binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.
Collapse
Affiliation(s)
| | - Christopher P Toret
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Audrey Guillotin
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Adrien Antkowiak
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Thomas Vannier
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Alphée Michelot
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| |
Collapse
|
5
|
Zweifel ME, Sherer LA, Mahanta B, Courtemanche N. Nucleation limits the lengths of actin filaments assembled by formin. Biophys J 2021; 120:4442-4456. [PMID: 34506773 DOI: 10.1016/j.bpj.2021.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 10/24/2022] Open
Abstract
Formins stimulate actin polymerization by promoting both filament nucleation and elongation. Because nucleation and elongation draw upon a common pool of actin monomers, the rate at which each reaction proceeds influences the other. This interdependent mechanism determines the number of filaments assembled over the course of a polymerization reaction, as well as their equilibrium lengths. In this study, we used kinetic modeling and in vitro polymerization reactions to dissect the contributions of filament nucleation and elongation to the process of formin-mediated actin assembly. We found that the rates of nucleation and elongation evolve over the course of a polymerization reaction. The period over which each process occurs is a key determinant of the total number of filaments that are assembled, as well as their average lengths at equilibrium. Inclusion of formin in polymerization reactions speeds filament nucleation, thus increasing the number and shortening the lengths of filaments that are assembled over the course of the reaction. Modulation of the elongation rate produces modest changes in the equilibrium lengths of formin-bound filaments. However, the dependence of filament length on the elongation rate is limited by the number of filament ends generated via formin's nucleation activity. Sustained elongation of small numbers of formin-bound filaments, therefore, requires inhibition of nucleation via monomer sequestration and a low concentration of activated formin. Our results underscore the mechanistic advantage for keeping formin's nucleation efficiency relatively low in cells, where unregulated actin assembly would produce deleterious effects on cytoskeletal dynamics. Under these conditions, differences in the elongation rates mediated by formin isoforms are most likely to impact the kinetics of actin assembly.
Collapse
Affiliation(s)
- Mark E Zweifel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Laura A Sherer
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
6
|
Boiero Sanders M, Antkowiak A, Michelot A. Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. Open Biol 2020; 10:200157. [PMID: 32873155 PMCID: PMC7536088 DOI: 10.1098/rsob.200157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The actin cytoskeleton has the particularity of being assembled into many functionally distinct filamentous networks from a common reservoir of monomeric actin. Each of these networks has its own geometrical, dynamical and mechanical properties, because they are capable of recruiting specific families of actin-binding proteins (ABPs), while excluding the others. This review discusses our current understanding of the underlying molecular mechanisms that cells have developed over the course of evolution to segregate ABPs to appropriate actin networks. Segregation of ABPs requires the ability to distinguish actin networks as different substrates for ABPs, which is regulated in three different ways: (1) by the geometrical organization of actin filaments within networks, which promotes or inhibits the accumulation of ABPs; (2) by the identity of the networks' filaments, which results from the decoration of actin filaments with additional proteins such as tropomyosin, from the use of different actin isoforms or from covalent modifications of actin; (3) by the existence of collaborative or competitive binding to actin filaments between two or multiple ABPs. This review highlights that all these effects need to be taken into account to understand the proper localization of ABPs in cells, and discusses what remains to be understood in this field of research.
Collapse
Affiliation(s)
- Micaela Boiero Sanders
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Adrien Antkowiak
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
7
|
Barger SR, James ML, Pellenz CD, Krendel M, Sirotkin V. Human myosin 1e tail but not motor domain replaces fission yeast Myo1 domains to support myosin-I function during endocytosis. Exp Cell Res 2019; 384:111625. [PMID: 31542284 DOI: 10.1016/j.yexcr.2019.111625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 10/26/2022]
Abstract
In both unicellular and multicellular organisms, long-tailed class I myosins function in clathrin-mediated endocytosis. Myosin 1e (Myo1e) in vertebrates and Myo1 in fission yeast have similar domain organization, yet whether these proteins or their individual protein domains are functionally interchangeable remains unknown. In an effort to assess functional conservation of class I myosins, we tested whether human Myo1e could replace Myo1 in fission yeast Schizosaccharomyces pombe and found that it was unable to substitute for yeast Myo1. To determine if any individual protein domain is responsible for the inability of Myo1e to function in yeast, we created human-yeast myosin-I chimeras. By functionally testing these chimeric myosins in vivo, we concluded that the Myo1e motor domain is unable to function in yeast, even when combined with the yeast Myo1 tail and a full complement of yeast regulatory light chains. Conversely, the Myo1e tail, when attached to the yeast Myo1 motor domain, supports localization to endocytic actin patches and partially rescues the endocytosis defect in myo1Δ cells. Further dissection showed that both the TH1 and TH2-SH3 domains in the human Myo1e tail are required for localization and function of chimeric myosin-I at endocytic sites. Overall, this study provides insights into the role of individual myosin-I domains, expands the utility of fission yeast as a simple model system to study the effects of disease-associated MYO1E mutations, and supports a model of co-evolution between a myosin motor and its actin track.
Collapse
Affiliation(s)
- Sarah R Barger
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael L James
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
8
|
Pollard TD. Cell Motility and Cytokinesis: From Mysteries to Molecular Mechanisms in Five Decades. Annu Rev Cell Dev Biol 2019; 35:1-28. [PMID: 31394047 DOI: 10.1146/annurev-cellbio-100818-125427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the story of someone who has been fortunate to work in a field of research where essentially nothing was known at the outset but that blossomed with the discovery of profound insights about two basic biological processes: cell motility and cytokinesis. The field started with no molecules, just a few people, and primitive methods. Over time, technological advances in biophysics, biochemistry, and microscopy allowed the combined efforts of scientists in hundreds of laboratories to explain mysterious processes with molecular mechanisms that can be embodied in mathematical equations and simulated by computers. The success of this field is a tribute to the power of the reductionist strategy for understanding biology.
Collapse
Affiliation(s)
- Thomas D Pollard
- Departments of Molecular, Cellular and Developmental Biology; Molecular Biophysics and Biochemistry; and Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
| |
Collapse
|
9
|
Kumpula EP, Lopez AJ, Tajedin L, Han H, Kursula I. Atomic view into Plasmodium actin polymerization, ATP hydrolysis, and fragmentation. PLoS Biol 2019; 17:e3000315. [PMID: 31199804 PMCID: PMC6599135 DOI: 10.1371/journal.pbio.3000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/28/2019] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Plasmodium actins form very short filaments and have a noncanonical link between ATP hydrolysis and polymerization. Long filaments are detrimental to the parasites, but the structural factors constraining Plasmodium microfilament lengths have remained unknown. Using high-resolution crystallography, we show that magnesium binding causes a slight flattening of the Plasmodium actin I monomer, and subsequent phosphate release results in a more twisted conformation. Thus, the Mg-bound monomer is closer in conformation to filamentous (F) actin than the Ca form, and this likely facilitates polymerization. A coordinated potassium ion resides in the active site during hydrolysis and leaves together with the phosphate, a process governed by the position of the Arg178/Asp180-containing A loop. Asp180 interacts with either Lys270 or His74, depending on the protonation state of the histidine, while Arg178 links the inner and outer domains (ID and OD) of the actin protomer. Hence, the A loop acts as a switch between stable and unstable filament conformations, the latter leading to fragmentation. Our data provide a comprehensive model for polymerization, ATP hydrolysis and phosphate release, and fragmentation of parasite microfilaments. Similar mechanisms may well exist in canonical actins, although fragmentation is much less favorable due to several subtle sequence differences as well as the methylation of His73, which is absent on the corresponding His74 in Plasmodium actin I. A detailed mechanistic study of malaria parasite actins reveals at the atomic level how they polymerize, hydrolyze ATP, and are fragmented to keep actin filament lengths short enough for parasite survival.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Leila Tajedin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Huijong Han
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- European XFEL GmbH, Schenefeld, Germany
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- European XFEL GmbH, Schenefeld, Germany
- * E-mail:
| |
Collapse
|
10
|
Berro J. "Essentially, all models are wrong, but some are useful"-a cross-disciplinary agenda for building useful models in cell biology and biophysics. Biophys Rev 2018; 10:1637-1647. [PMID: 30421276 PMCID: PMC6297095 DOI: 10.1007/s12551-018-0478-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Intuition alone often fails to decipher the mechanisms underlying the experimental data in Cell Biology and Biophysics, and mathematical modeling has become a critical tool in these fields. However, mathematical modeling is not as widespread as it could be, because experimentalists and modelers often have difficulties communicating with each other, and are not always on the same page about what a model can or should achieve. Here, we present a framework to develop models that increase the understanding of the mechanisms underlying one's favorite biological system. Development of the most insightful models starts with identifying a good biological question in light of what is known and unknown in the field, and determining the proper level of details that are sufficient to address this question. The model should aim not only to explain already available data, but also to make predictions that can be experimentally tested. We hope that both experimentalists and modelers who are driven by mechanistic questions will find these guidelines useful to develop models with maximum impact in their field.
Collapse
Affiliation(s)
- Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
11
|
Lacy MM, Ma R, Ravindra NG, Berro J. Molecular mechanisms of force production in clathrin-mediated endocytosis. FEBS Lett 2018; 592:3586-3605. [PMID: 30006986 PMCID: PMC6231980 DOI: 10.1002/1873-3468.13192] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 01/21/2023]
Abstract
During clathrin-mediated endocytosis (CME), a flat patch of membrane is invaginated and pinched off to release a vesicle into the cytoplasm. In yeast CME, over 60 proteins-including a dynamic actin meshwork-self-assemble to deform the plasma membrane. Several models have been proposed for how actin and other molecules produce the forces necessary to overcome the mechanical barriers of membrane tension and turgor pressure, but the precise mechanisms and a full picture of their interplay are still not clear. In this review, we discuss the evidence for these force production models from a quantitative perspective and propose future directions for experimental and theoretical work that could clarify their various contributions.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, USA
| | - Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Neal G Ravindra
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA, and actin filaments. Proc Natl Acad Sci U S A 2018; 115:E8642-E8651. [PMID: 30150414 DOI: 10.1073/pnas.1717594115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We used fluorescence spectroscopy and EM to determine how binding of ATP, nucleation-promoting factors, actin monomers, and actin filaments changes the conformation of Arp2/3 complex during the process that nucleates an actin filament branch. We mutated subunits of Schizosaccharomyces pombe Arp2/3 complex for labeling with fluorescent dyes at either the C termini of Arp2 and Arp3 or ArpC1 and ArpC3. We measured Förster resonance energy transfer (FRET) efficiency (ETeff) between the dyes in the presence of the various ligands. We also computed class averages from electron micrographs of negatively stained specimens. ATP binding made small conformational changes of the nucleotide-binding cleft of the Arp2 subunit. WASp-VCA, WASp-CA, and WASp-actin-VCA changed the ETeff between the dyes on the Arp2 and Arp3 subunits much more than between dyes on ArpC1 and ArpC3. Ensemble FRET detected an additional structural change that brought ArpC1 and ArpC3 closer together when Arp2/3 complex bound actin filaments. VCA binding to Arp2/3 complex causes a conformational change that favors binding to the side of an actin filament, which allows further changes required to nucleate a daughter filament.
Collapse
|
13
|
Hatano T, Alioto S, Roscioli E, Palani S, Clarke ST, Kamnev A, Hernandez-Fernaud JR, Sivashanmugam L, Chapa-Y-Lazo B, Jones AME, Robinson RC, Sampath K, Mishima M, McAinsh AD, Goode BL, Balasubramanian MK. Rapid production of pure recombinant actin isoforms in Pichia pastoris. J Cell Sci 2018. [PMID: 29535210 PMCID: PMC5976186 DOI: 10.1242/jcs.213827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Actins are major eukaryotic cytoskeletal proteins, and they are involved in many important cell functions, including cell division, cell polarity, wound healing and muscle contraction. Despite obvious drawbacks, muscle actin, which is easily purified, is used extensively for biochemical studies of the non-muscle actin cytoskeleton. Here, we report a rapid and cost-effective method to purify heterologous actins expressed in the yeast Pichia pastoris. Actin is expressed as a fusion with the actin-binding protein thymosin β4 and purified by means of an affinity tag introduced in the fusion. Following cleavage of thymosin β4 and the affinity tag, highly purified functional full-length actin is liberated. We purify actins from Saccharomycescerevisiae and Schizosaccharomycespombe, and the β- and γ-isoforms of human actin. We also report a modification of the method that facilitates expression and purification of arginylated actin, a form of actin thought to regulate dendritic actin networks in mammalian cells. The methods we describe can be performed in all laboratories equipped for molecular biology, and should greatly facilitate biochemical and cell biological studies of the actin cytoskeleton. Summary:Here, we describe a method to purify recombinant actin to homogeneity by expression in Pichia pastoris. The purified actin is polymerisation competent and should facilitate biochemical and cell biological studies of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Salvatore Alioto
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Emanuele Roscioli
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Saravanan Palani
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Scott T Clarke
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Anton Kamnev
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | | - Lavanya Sivashanmugam
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | | - Robert C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore.,Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore.,Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Karuna Sampath
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
14
|
Abstract
Organisms from all domains of life depend on filaments of the protein actin to provide structure and to support internal movements. Many eukaryotic cells use forces produced by actin polymerization for their motility, and myosin motor proteins use ATP hydrolysis to produce force on actin filaments. Actin polymerizes spontaneously, followed by hydrolysis of a bound adenosine triphosphate (ATP). Dissociation of the γ-phosphate prepares the polymer for disassembly. This review provides an overview of the properties of actin and shows how dozens of proteins control both the assembly and disassembly of actin filaments. These players catalyze nucleotide exchange on actin monomers, initiate polymerization, promote phosphate dissociation, cap the ends of polymers, cross-link filaments to each other and other cellular components, and sever filaments.
Collapse
|
15
|
LeClaire LL, Fortwendel JR. Differential Support of Aspergillus fumigatus Morphogenesis by Yeast and Human Actins. PLoS One 2015; 10:e0142535. [PMID: 26555617 PMCID: PMC4640809 DOI: 10.1371/journal.pone.0142535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
The actin cytoskeleton is highly conserved among eukaryotes and is essential for cellular processes regulating growth and differentiation. In fungi, filamentous actin (F-actin) orchestrates hyphal tip structure and extension via organization of exocytic and endocytic processes at the hyphal tip. Although highly conserved, there are key differences among actins of fungal species as well as between mammalian and fungal actins. For example, the F-actin stabilizing molecules, phalloidin and jasplakinolide, bind to actin structures in yeast and human cells, whereas phalloidin does not bind actin structures of Aspergillus. These discrepancies suggest structural differences between Aspergillus actin filaments and those of human and yeast cells. Additionally, fungal actin kinetics are much faster than those of humans, displaying 5-fold faster nucleation and 40-fold faster nucleotide exchange rates. Limited published studies suggest that these faster actin kinetics are required for normal growth and morphogenesis of yeast cells. In the current work, we show that replacement of Aspergillus actin with yeast actin generates a morphologically normal strain, suggesting that Aspergillus actin kinetics are similar to those of yeast. In contrast to wild type A. fumigatus, F-actin in this strain binds phalloidin, and pharmacological stabilization of these actin structures with jasplakinolide inhibits germination and alters morphogenesis in a dose-dependent manner. We also show that human β-actin cannot support Aspergillus viability, even though the amino acid sequences of human and Aspergillus actins are 89.3% identical. Our findings show that minor differences in actin protein sequence account for loss of phalloidin and jasplakinolide sensitivity in Aspergillus species.
Collapse
Affiliation(s)
- Lawrence L. LeClaire
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Jarrod R. Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kandasamy MK, McKinney EC, Roy E, Meagher RB. Ascomycete fungal actins differentially support plant spatial cell and organ development. Cytoskeleton (Hoboken) 2015; 72:80-92. [PMID: 25428798 DOI: 10.1002/cm.21198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 01/18/2023]
Abstract
Actin interacts with a wide variety of cytoplasmic and nuclear proteins to support spatial development in nearly all eukaryotes. Null mutations in plant vegetative actins produce dramatically altered cell, tissue, and organ morphologies. Animal cytoplasmic actins (e.g., human HsACTB, HsACTG1) and some ancestral protist actins fully suppress these mutant phenotypes suggesting that some animal, plant, and protist actins share functional competence for spatial development. Considering that fungi have a phylogenetic origin closer to animals than plants, we were interested to explore whether the fungal actins may have this same capacity to function in plants and support development. We ectopically expressed actins from four highly divergent ascomycete fungi in two different Arabidopsis double vegetative actin null mutants. We found that expression of actin from the earliest diverging ascomycete subphyla, the archiascomycete Schizosaccharomyces pombe, qualitatively and quantitatively suppressed the root cell polarity and root organ developmental defects of act8/act7 mutants and the root-hairless cell elongation phenotype of act2/act8 mutants. Interestingly, the actin from the pyrenomycete Neurospora crassa was modestly effective in the suppression of vegetative actin mutant phenotypes. In contrast, actins from the saccharomycetes Saccharomyces cerevisiae and Candida albicans were unable to support any aspect of plant development, and moreover induced severe dwarfism and sterility. These data imply that basal fungi inherited an actin with full competence for spatial development from their protist ancestor and maintained it via non-progressive sequence evolution, while the later more derived fungal species lost these activities.
Collapse
Affiliation(s)
- Muthugapatti K Kandasamy
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, Georgia; Biomedical Microscopy Core, Coverdell Center, University of Georgia, Athens, Georgia
| | | | | | | |
Collapse
|
17
|
Abstract
Endocytosis includes a number of processes by which cells internalize segments of their plasma membrane, enclosing a wide variety of material from outside the cell. Endocytosis can contribute to uptake of nutrients, regulation of signaling molecules, control of osmotic pressure, and function of synapses. The actin cytoskeleton plays an essential role in several of these processes. Actin assembly can create protrusions that encompass extracellular materials. Actin can also support the processes of invagination of a membrane segment into the cytoplasm, elongation of the invagination, scission of the new vesicle from the plasma membrane, and movement of the vesicle away from the membrane. We briefly discuss various types of endocytosis, including phagocytosis, macropinocytosis, and clathrin-independent endocytosis. We focus mainly on new findings on the relative importance of actin in clathrin-mediated endocytosis (CME) in yeast versus mammalian cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
18
|
Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog 2011; 7:e1002280. [PMID: 21998582 PMCID: PMC3188518 DOI: 10.1371/journal.ppat.1002280] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/17/2011] [Indexed: 01/05/2023] Open
Abstract
Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.
Collapse
|
19
|
Wen KK, McKane M, Stokasimov E, Rubenstein PA. Mutant profilin suppresses mutant actin-dependent mitochondrial phenotype in Saccharomyces cerevisiae. J Biol Chem 2011; 286:41745-41757. [PMID: 21956104 DOI: 10.1074/jbc.m110.217661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the Saccharomyces cerevisiae actin-profilin interface, Ala(167) of the actin barbed end W-loop and His(372) near the C terminus form a clamp around a profilin segment containing residue Arg(81) and Tyr(79). Modeling suggests that altering steric packing in this interface regulates actin activity. An actin A167E mutation could increase interface crowding and alter actin regulation, and A167E does cause growth defects and mitochondrial dysfunction. We assessed whether a profilin Y79S mutation with its decreased mass could compensate for actin A167E crowding and rescue the mutant phenotype. Y79S profilin alone caused no growth defect in WT actin cells under standard conditions in rich medium and rescued the mitochondrial phenotype resulting from both the A167E and H372R actin mutations in vivo consistent with our model. Rescue did not result from effects of profilin on actin nucleotide exchange or direct effects of profilin on actin polymerization. Polymerization of A167E actin was less stimulated by formin Bni1 FH1-FH2 fragment than was WT actin. Addition of WT profilin to mixtures of A167E actin and formin fragment significantly altered polymerization kinetics from hyperbolic to a decidedly more sigmoidal behavior. Substitution of Y79S profilin in this system produced A167E behavior nearly identical to that of WT actin. A167E actin caused more dynamic actin cable behavior in vivo than observed with WT actin. Introduction of Y79S restored cable movement to a more normal phenotype. Our studies implicate the importance of the actin-profilin interface for formin-dependent actin and point to the involvement of formin and profilin in the maintenance of mitochondrial integrity and function.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Melissa McKane
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Ema Stokasimov
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Peter A Rubenstein
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242.
| |
Collapse
|
20
|
Scott BJ, Neidt EM, Kovar DR. The functionally distinct fission yeast formins have specific actin-assembly properties. Mol Biol Cell 2011; 22:3826-39. [PMID: 21865598 PMCID: PMC3192862 DOI: 10.1091/mbc.e11-06-0492] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fission yeast expresses three formins required for distinct actin cytoskeletal processes: Cdc12 (cytokinesis), For3 (polarization), and Fus1 (mating). We propose that in addition to differential regulation, key actin-assembly properties tailor formins for a particular role. In direct comparison to the well-studied Cdc12, we report the first in vitro characterization of the actin-assembly properties of For3 and Fus1. All three share fundamental formin activities; however, particular reaction rates vary significantly. Cdc12 is an efficient nucleator (one filament per approximately 3 Cdc12 dimers) that processively elongates profilin-actin at a moderate rate of 10 subunits s(-1) μM(-1), but lacks filament-bundling activity. Fus1 is also an efficient nucleator, yet processively elongates profilin-actin at one-half the rate of and dissociates 10-fold more rapidly than Cdc12; it also bundles filaments. For3 nucleates filaments 100-fold less well than Fus1, but like Cdc12, processively elongates profilin-actin at a moderate rate and lacks filament-bundling activity. Additionally, both the formin homology FH1 and FH2 domains contribute to the overall rate of profilin-actin elongation. We also confirmed the physiological importance of the actin-assembly activity of the fission yeast formins. Point mutants that disrupt their ability to stimulate actin assembly in vitro do not function properly in vivo.
Collapse
Affiliation(s)
- Bonnie J Scott
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
21
|
Suarez C, Roland J, Boujemaa-Paterski R, Kang H, McCullough BR, Reymann AC, Guérin C, Martiel JL, De la Cruz EM, Blanchoin L. Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries. Curr Biol 2011; 21:862-8. [PMID: 21530260 DOI: 10.1016/j.cub.2011.03.064] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 11/30/2022]
Abstract
Actin-based motility demands the spatial and temporal coordination of numerous regulatory actin-binding proteins (ABPs), many of which bind with affinities that depend on the nucleotide state of actin filament. Cofilin, one of three ABPs that precisely choreograph actin assembly and organization into comet tails that drive motility in vitro, binds and stochastically severs aged ADP actin filament segments of de novo growing actin filaments. Deficiencies in methodologies to track in real time the nucleotide state of actin filaments, as well as cofilin severing, limit the molecular understanding of coupling between actin filament chemical and mechanical states and severing. We engineered a fluorescently labeled cofilin that retains actin filament binding and severing activities. Because cofilin binding depends strongly on the actin-bound nucleotide, direct visualization of fluorescent cofilin binding serves as a marker of the actin filament nucleotide state during assembly. Bound cofilin allosterically accelerates P(i) release from unoccupied filament subunits, which shortens the filament ATP/ADP-P(i) cap length by nearly an order of magnitude. Real-time visualization of filament severing indicates that fragmentation scales with and occurs preferentially at boundaries between bare and cofilin-decorated filament segments, thereby controlling the overall filament length, depending on cofilin binding density.
Collapse
Affiliation(s)
- Cristian Suarez
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Sciences et Technologies pour le Vivant, CEA/CNRS/INRA/UJF, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|