1
|
Dekmak MY, Mäusle SM, Brandhorst J, Simon PS, Dau H. Tracking the first electron transfer step at the donor side of oxygen-evolving photosystem II by time-resolved infrared spectroscopy. PHOTOSYNTHESIS RESEARCH 2024; 162:353-369. [PMID: 37995064 PMCID: PMC11615052 DOI: 10.1007/s11120-023-01057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
In oxygen-evolving photosystem II (PSII), the multi-phasic electron transfer from a redox-active tyrosine residue (TyrZ) to a chlorophyll cation radical (P680+) precedes the water-oxidation chemistry of the S-state cycle of the Mn4Ca cluster. Here we investigate these early events, observable within about 10 ns to 10 ms after laser-flash excitation, by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of 1310-1890 cm-1 for oxygen-evolving PSII membrane particles from spinach. Comparing the IR difference spectra at 80 ns, 500 ns, and 10 µs allowed for the identification of quinone, P680 and TyrZ contributions. A broad electronic absorption band assignable P680+ was used to trace largely specifically the P680+ reduction kinetics. The experimental time resolution was taken into account in least-square fits of P680+ transients with a sum of four exponentials, revealing two nanosecond phases (30-46 ns and 690-1110 ns) and two microsecond phases (4.5-8.3 µs and 42 µs), which mostly exhibit a clear S-state dependence, in agreement with results obtained by other methods. Our investigation paves the road for further insight in the early events associated with TyrZ oxidation and their role in the preparing the PSII donor side for the subsequent water oxidation chemistry.
Collapse
Affiliation(s)
| | - Sarah M Mäusle
- Department of Physics, Freie Universität Berlin, Berlin, Germany.
| | | | - Philipp S Simon
- Department of Physics, Freie Universität Berlin, Berlin, Germany
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Noji T, Saito K, Ishikita H. Absence of a link between stabilized charge-separated state and structural changes proposed from crystal structures of a photosynthetic reaction center. Commun Chem 2024; 7:192. [PMID: 39215069 PMCID: PMC11364808 DOI: 10.1038/s42004-024-01281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Structural differences between illuminated and unilluminated crystal structures led to the proposal that the charge-separated state was stabilized by structural changes in its membrane extrinsic protein subunit H in a bacterial photosynthetic reaction center [Katona, G. et al. Nat. Struct. Mol. Biol. 2005, 12, 630-631]. Here, we explored the proposal by titrating all titratable sites and calculating the redox potential (Em) values in these crystal structures. Contrary to the expected charge-separated states, Em for quinone, Em(QA/QA•-), is even lower in the proposed charge-separated structure than in the ground-state structure. The subunit-H residues, which were proposed to exhibit electron-density changes in the two crystal structures, contribute to an Em(QA/QA•-) difference of only <0.5 mV. Furthermore, the protonation states of the titratable residues in the entire reaction center are practically identical in the two structures. These findings indicate that the proposed structural differences are irrelevant to explaining the significant prolongation of the charge-separated-state lifetime.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Sugo Y, Ishikita H. Proton-mediated photoprotection mechanism in photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:934736. [PMID: 36161009 PMCID: PMC9490181 DOI: 10.3389/fpls.2022.934736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Photo-induced charge separation, which is terminated by electron transfer from the primary quinone QA to the secondary quinone QB, provides the driving force for O2 evolution in photosystem II (PSII). However, the backward charge recombination using the same electron-transfer pathway leads to the triplet chlorophyll formation, generating harmful singlet-oxygen species. Here, we investigated the molecular mechanism of proton-mediated QA ⋅- stabilization. Quantum mechanical/molecular mechanical (QM/MM) calculations show that in response to the loss of the bicarbonate ligand, a low-barrier H-bond forms between D2-His214 and QA ⋅-. The migration of the proton from D2-His214 toward QA ⋅- stabilizes QA ⋅-. The release of the bicarbonate ligand from the binding Fe2+ site is an energetically uphill process, whereas the bidentate-to-monodentate reorientation is almost isoenergetic. These suggest that the bicarbonate protonation and decomposition may be a basis of the mechanism of photoprotection via QA ⋅-/QAH⋅ stabilization, increasing the QA redox potential and activating a charge-recombination pathway that does not generate the harmful singlet oxygen.
Collapse
Affiliation(s)
- Yu Sugo
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Sugo Y, Saito K, Ishikita H. Conformational Changes and H-Bond Rearrangements during Quinone Release in Photosystem II. Biochemistry 2022; 61:1836-1843. [PMID: 35914244 PMCID: PMC9454826 DOI: 10.1021/acs.biochem.2c00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII) and photosynthetic reaction centers from purple bacteria (PbRC), the electron released from the electronically excited chlorophyll is transferred to the terminal electron acceptor quinone, QB. QB accepts two electrons and two protons before leaving the protein. We investigated the molecular mechanism of quinone exchange in PSII, conducting molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations. MD simulations suggest that the release of QB leads to the transformation of the short helix (D1-Phe260 to D1-Ser264), which is adjacent to the stromal helix de (D1-Asn247 to D1-Ile259), into a loop and to the formation of a water-intake channel. Water molecules enter the QB binding pocket via the channel and form an H-bond network. QM/MM calculations indicate that the H-bond network serves as a proton-transfer pathway for the reprotonation of D1-His215, the proton donor during QBH-/QBH2 conversion. Together with the absence of the corresponding short helix but the presence of Glu-L212 in PbRC, it seems likely that the two type-II reaction centers undergo quinone exchange via different mechanisms.
Collapse
Affiliation(s)
- Yu Sugo
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Bicarbonate-controlled reduction of oxygen by the Q A semiquinone in Photosystem II in membranes. Proc Natl Acad Sci U S A 2022; 119:2116063119. [PMID: 35115403 PMCID: PMC8833163 DOI: 10.1073/pnas.2116063119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In Photosystem II (PSII), O2 reduction by QA•− is often discussed but has not been demonstrated. Here, we show in PSII membranes that QA•− can reduce O2 to superoxide, but only when bicarbonate is absent from its binding site on the nonheme Fe2+. Bicarbonate’s role in PSII was recently shown to involve a regulatory/protective redox-tuning mechanism linking PSII function to CO2 concentration. A key aspect is the presence of stable QA•− causing release of bicarbonate from its site on Fe2+. Here, we show that under these conditions, O2 binds to the empty site on the Fe2+ and is reduced by QA•−. This unexpected reaction may be a further indication of cross-talk between the regulation of PSII and CO2 fixation. Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, plays a key energy input role in the biosphere. QA•−, the reduced semiquinone form of the nonexchangeable quinone, is often considered capable of a side reaction with O2, forming superoxide, but this reaction has not yet been demonstrated experimentally. Here, using chlorophyll fluorescence in plant PSII membranes, we show that O2 does oxidize QA•− at physiological O2 concentrations with a t1/2 of 10 s. Superoxide is formed stoichiometrically, and the reaction kinetics are controlled by the accessibility of O2 to a binding site near QA•−, with an apparent dissociation constant of 70 ± 20 µM. Unexpectedly, QA•− could only reduce O2 when bicarbonate was absent from its binding site on the nonheme iron (Fe2+) and the addition of bicarbonate or formate blocked the O2-dependant decay of QA•−. These results, together with molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations, indicate that electron transfer from QA•− to O2 occurs when the O2 is bound to the empty bicarbonate site on Fe2+. A protective role for bicarbonate in PSII was recently reported, involving long-lived QA•− triggering bicarbonate dissociation from Fe2+ [Brinkert et al., Proc. Natl. Acad. Sci. U.S.A. 113, 12144–12149 (2016)]. The present findings extend this mechanism by showing that bicarbonate release allows O2 to bind to Fe2+ and to oxidize QA•−. This could be beneficial by oxidizing QA•− and by producing superoxide, a chemical signal for the overreduced state of the electron transfer chain.
Collapse
|
6
|
Tamura H, Saito K, Ishikita H. Long-Range Electron Tunneling from the Primary to Secondary Quinones in Photosystem II Enhanced by Hydrogen Bonds with a Nonheme Fe Complex. J Phys Chem B 2021; 125:13460-13466. [PMID: 34875835 DOI: 10.1021/acs.jpcb.1c09538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms governing the long-range electron tunneling from the primary (QA) to secondary (QB) quinones in photosystem II are clarified by analyzing superexchange pathways through a nonheme Fe complex, using a quantum mechanics/molecular mechanics/polarizable continuum model approach. The electron tunneling rate is evaluated using the Marcus-Levich-Jortner theory considering electronic coupling, energy difference, and Franck-Condon factor. The superexchange QA → QB electron tunneling is enhanced by hybridized σ/σ* orbitals of histidines (D2-His214 and D1-His215) via penetration of the wave function into hydrogen bonds with both QA and QB. Despite a large energy gap to the intermediate states, the contributions of the histidine σ/σ* orbitals to the superexchange coupling are larger than those of π/π* orbitals. Fe2+ is not an essential component for the QA → QB electron tunneling because hybridized histidine molecular orbitals can be coupled with both QA and QB simultaneously in the absence of Fe d orbitals.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
7
|
Mäusle SM, Abzaliyeva A, Greife P, Simon PS, Perez R, Zilliges Y, Dau H. Activation energies for two steps in the S 2→ S 3 transition of photosynthetic water oxidation from time-resolved single-frequency infrared spectroscopy. J Chem Phys 2020; 153:215101. [PMID: 33291916 DOI: 10.1063/5.0027995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mechanism of water oxidation by the Photosystem II (PSII) protein-cofactor complex is of high interest, but specifically, the crucial coupling of protonation dynamics to electron transfer (ET) and dioxygen chemistry remains insufficiently understood. We drove spinach-PSII membranes by nanosecond-laser flashes synchronously through the water-oxidation cycle and traced the PSII processes by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of symmetric carboxylate vibrations of protein side chains. After the collection of IR-transients from 100 ns to 1 s, we analyzed the proton-removal step in the S2 ⇒ S3 transition, which precedes the ET that oxidizes the Mn4CaOx-cluster. Around 1400 cm-1, pronounced changes in the IR-transients reflect this pre-ET process (∼40 µs at 20 °C) and the ET step (∼300 µs at 20 °C). For transients collected at various temperatures, unconstrained multi-exponential simulations did not provide a coherent set of time constants, but constraining the ET time constants to previously determined values solved the parameter correlation problem and resulted in an exceptionally high activation energy of 540 ± 30 meV for the pre-ET step. We assign the pre-ET step to deprotonation of a group that is re-protonated by accepting a proton from the substrate-water, which binds concurrently with the ET step. The analyzed IR-transients disfavor carboxylic-acid deprotonation in the pre-ET step. Temperature-dependent amplitudes suggest thermal equilibria that determine how strongly the proton-removal step is reflected in the IR-transients. Unexpectedly, the proton-removal step is only weakly reflected in the 1400 cm-1 transients of PSII core complexes of a thermophilic cyanobacterium (T. elongatus).
Collapse
Affiliation(s)
- Sarah M Mäusle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Aiganym Abzaliyeva
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Paul Greife
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Philipp S Simon
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebeca Perez
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Yvonne Zilliges
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
8
|
Schuth N, Zaharieva I, Chernev P, Berggren G, Anderlund M, Styring S, Dau H, Haumann M. Kα X-ray Emission Spectroscopy on the Photosynthetic Oxygen-Evolving Complex Supports Manganese Oxidation and Water Binding in the S3 State. Inorg Chem 2018; 57:10424-10430. [DOI: 10.1021/acs.inorgchem.8b01674] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nils Schuth
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ivelina Zaharieva
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Petko Chernev
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gustav Berggren
- Ångström Laboratory, Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden
| | - Magnus Anderlund
- Ångström Laboratory, Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden
| | - Stenbjörn Styring
- Ångström Laboratory, Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
9
|
Adam S, Knapp-Mohammady M, Yi J, Bondar AN. Revised CHARMM force field parameters for iron-containing cofactors of photosystem II. J Comput Chem 2017; 39:7-20. [PMID: 28850168 DOI: 10.1002/jcc.24918] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 01/25/2023]
Abstract
Photosystem II is a complex protein-cofactor machinery that splits water molecules into molecular oxygen, protons, and electrons. All-atom molecular dynamics simulations have the potential to contribute to our general understanding of how photosystem II works. To perform reliable all-atom simulations, we need accurate force field parameters for the cofactor molecules. We present here CHARMM bonded and non-bonded parameters for the iron-containing cofactors of photosystem II that include a six-coordinated heme moiety coordinated by two histidine groups, and a non-heme iron complex coordinated by bicarbonate and four histidines. The force field parameters presented here give water interaction energies and geometries in good agreement with the quantum mechanical target data. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suliman Adam
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Michaela Knapp-Mohammady
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Jun Yi
- Department of Biological Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin D-14195, Germany
| |
Collapse
|
10
|
Shlyk O, Samish I, Matěnová M, Dulebo A, Poláková H, Kaftan D, Scherz A. A single residue controls electron transfer gating in photosynthetic reaction centers. Sci Rep 2017; 7:44580. [PMID: 28300167 PMCID: PMC5353731 DOI: 10.1038/srep44580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Interquinone QA− → QB electron-transfer (ET) in isolated photosystem II reaction centers (PSII-RC) is protein-gated. The temperature-dependent gating frequency “k” is described by the Eyring equation till levelling off at T ≥ 240 °K. Although central to photosynthesis, the gating mechanism has not been resolved and due to experimental limitations, could not be explored in vivo. Here we mimic the temperature dependency of “k” by enlarging VD1-208, the volume of a single residue at the crossing point of the D1 and D2 PSII-RC subunits in Synechocystis 6803 whole cells. By controlling the interactions of the D1/D2 subunits, VD1-208 (or 1/T) determines the frequency of attaining an ET-active conformation. Decelerated ET, impaired photosynthesis, D1 repair rate and overall cell physiology upon increasing VD1-208 to above 130 Å3, rationalize the >99% conservation of small residues at D1-208 and its homologous motif in non-oxygenic bacteria. The experimental means and resolved mechanism are relevant for numerous transmembrane protein-gated reactions.
Collapse
Affiliation(s)
- Oksana Shlyk
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| | - Ilan Samish
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| | - Martina Matěnová
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Alexander Dulebo
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Helena Poláková
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - David Kaftan
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic.,Institute of Microbiology CAS, Department of Phototrophic Microorganisms, 37981 Trebon, Czech Republic
| | - Avigdor Scherz
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| |
Collapse
|
11
|
Uto S, Kawakami K, Umena Y, Iwai M, Ikeuchi M, Shen JR, Kamiya N. Mutual relationships between structural and functional changes in a PsbM-deletion mutant of photosystem II. Faraday Discuss 2017; 198:107-120. [DOI: 10.1039/c6fd00213g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosystem II (PSII) is a membrane protein complex that performs light-induced electron transfer and oxygen evolution from water. PSII consists of 19 or 20 subunits in its crystal form and binds various cofactors such as chlorophyll a, plastoquinone, carotenoid, and lipids. After initial light excitation, the charge separation produces an electron, which is transferred to a plastoquinone molecule (QA) and then to another plastoquinone (QB). PsbM is a low-molecular-weight subunit with one transmembrane helix, and is located in the monomer–monomer interface of the PSII dimer. The function of PsbM has been reported to be stabilization of the PSII dimer and maintenance of electron transfer efficiency of PSII based on previous X-ray crystal structure analysis at a resolution of 4.2 Å. In order to elucidate the structure–function relationships of PsbM in detail, we improved the quality of PSII crystals from a PsbM-deleted mutant (ΔPsbM-PSII) of Thermosynechococcus elongatus, and succeeded in improving the diffraction quality to a resolution of 2.2 Å. X-ray crystal structure analysis of ΔPsbM-PSII showed that electron densities for the PsbM subunit and neighboring carotenoid and detergent molecules were absent in the monomer–monomer interface. The overall structure of ΔPsbM-PSII was similar to wild-type PSII, but the arrangement of the hydrophobic transmembrane subunits was significantly changed by the deletion of PsbM, resulting in a slight widening of the lipid hole involving QB. The lipid hole-widening further induced structural changes of the bicarbonate ion coordinated to the non-heme Fe(ii) atom and destabilized the polypeptide chains around the QB binding site located far from the position of PsbM. The fluorescence decay measurement indicated that the electron transfer rate from QA to QB was decreased in ΔPsbM-PSII compared with wild-type PSII. The functional change in electron transfer efficiency was fully interpreted based on structural changes caused by the deletion of the PsbM subunit.
Collapse
Affiliation(s)
- S. Uto
- Department of Chemistry
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - K. Kawakami
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)
- Osaka City University
- Osaka
- Japan
| | - Y. Umena
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)
- Osaka City University
- Osaka
- Japan
- JST-PRESTO
| | - M. Iwai
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - M. Ikeuchi
- Department of Life Sciences (Biology)
- Graduate School of Arts and Science
- The University of Tokyo
- Tokyo
- Japan
| | - J.-R. Shen
- Research Institute for Interdisciplinary Science
- Okayama University
- Okayama
- Japan
| | - N. Kamiya
- Department of Chemistry
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| |
Collapse
|
12
|
Bicarbonate-induced redox tuning in Photosystem II for regulation and protection. Proc Natl Acad Sci U S A 2016; 113:12144-12149. [PMID: 27791001 DOI: 10.1073/pnas.1608862113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The midpoint potential (Em) of [Formula: see text], the one-electron acceptor quinone of Photosystem II (PSII), provides the thermodynamic reference for calibrating PSII bioenergetics. Uncertainty exists in the literature, with two values differing by ∼80 mV. Here, we have resolved this discrepancy by using spectroelectrochemistry on plant PSII-enriched membranes. Removal of bicarbonate (HCO3-) shifts the Em from ∼-145 mV to -70 mV. The higher values reported earlier are attributed to the loss of HCO3- during the titrations (pH 6.5, stirred under argon gassing). These findings mean that HCO3- binds less strongly when QA-• is present. Light-induced QA-• formation triggered HCO3- loss as manifest by the slowed electron transfer and the upshift in the Em of QA HCO3--depleted PSII also showed diminished light-induced 1O2 formation. This finding is consistent with a model in which the increase in the Em of [Formula: see text] promotes safe, direct [Formula: see text] charge recombination at the expense of the damaging back-reaction route that involves chlorophyll triplet-mediated 1O2 formation [Johnson GN, et al. (1995) Biochim Biophys Acta 1229:202-207]. These findings provide a redox tuning mechanism, in which the interdependence of the redox state of QA and the binding by HCO3- regulates and protects PSII. The potential for a sink (CO2) to source (PSII) feedback mechanism is discussed.
Collapse
|
13
|
Zaharieva I, Chernev P, Berggren G, Anderlund M, Styring S, Dau H, Haumann M. Room-Temperature Energy-Sampling Kβ X-ray Emission Spectroscopy of the Mn4Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O2 Formation. Biochemistry 2016; 55:4197-211. [PMID: 27377097 DOI: 10.1021/acs.biochem.6b00491] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn Kβ1,3 line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The Kβ1,3 line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)3Mn(IV) in S0, Mn(III)2Mn(IV)2 in S1, Mn(III)Mn(IV)3 in S2, and Mn(IV)4 in S3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex. There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S4 state unlikely. The difference spectra of both manganese Kβ1,3 emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S2 → S3 transition when compared to Mn(III) oxidation in the S1 → S2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S2 → S3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal-ligand bonding patterns at the Mn4Ca complex in the S2 → S3 transition are discussed.
Collapse
Affiliation(s)
- Ivelina Zaharieva
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Petko Chernev
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Gustav Berggren
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Magnus Anderlund
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Stenbjörn Styring
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Holger Dau
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| |
Collapse
|
14
|
Lambreva MD, Russo D, Polticelli F, Scognamiglio V, Antonacci A, Zobnina V, Campi G, Rea G. Structure/function/dynamics of photosystem II plastoquinone binding sites. Curr Protein Pept Sci 2015; 15:285-95. [PMID: 24678671 PMCID: PMC4030317 DOI: 10.2174/1389203715666140327104802] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 11/22/2022]
Abstract
Photosystem II (PSII)
continuously attracts the attention of researchers aiming to unravel the riddle
of its functioning and efficiency fundamental for all life on Earth. Besides, an
increasing number of biotechnological applications have been envisaged
exploiting and mimicking the unique properties of this macromolecular
pigment-protein complex. The PSII organization and working principles have
inspired the design of electrochemical water splitting schemes and charge
separating triads in energy storage systems as well as biochips and sensors for
environmental, agricultural and industrial screening of toxic compounds. An
intriguing opportunity is the development of sensor devices, exploiting native
or manipulated PSII complexes or ad hoc synthesized polypeptides
mimicking the PSII reaction centre proteins as bio-sensing elements. This review
offers a concise overview of the recent improvements in the understanding of
structure and function of PSII donor side, with focus on the interactions of the
plastoquinone cofactors with the surrounding environment and operational
features. Furthermore, studies focused on photosynthetic proteins
structure/function/dynamics and computational analyses aimed at rational design
of high-quality bio-recognition elements in biosensor devices are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppina Rea
- Institute of Crystallography, National Research Council, Monterotondo, Italy.
| |
Collapse
|
15
|
Klauss A, Haumann M, Dau H. Seven Steps of Alternating Electron and Proton Transfer in Photosystem II Water Oxidation Traced by Time-Resolved Photothermal Beam Deflection at Improved Sensitivity. J Phys Chem B 2014; 119:2677-89. [DOI: 10.1021/jp509069p] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- André Klauss
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Holger Dau
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| |
Collapse
|
16
|
Müh F, Zouni A. The nonheme iron in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:295-314. [PMID: 24077892 DOI: 10.1007/s11120-013-9926-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a (bi)carbonate originating from CO2, the substrate of the dark reactions of oxygenic photosynthesis. Based on recent advances in the crystallography of PSII, we review the structure of the NHI in PSII and discuss ideas concerning its function and the role of bicarbonate along with a comparison to the reaction center of purple bacteria and other enzymes containing a mononuclear NHI site.
Collapse
|
17
|
Zhao N, Hastings G. On the Nature of the Hydrogen Bonds to Neutral Ubiquinone in the QA Binding Site in Purple Bacterial Photosynthetic Reaction Centers. J Phys Chem B 2013; 117:8705-13. [DOI: 10.1021/jp403833y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
18
|
Roach T, Sedoud A, Krieger-Liszkay A. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1183-90. [PMID: 23791666 DOI: 10.1016/j.bbabio.2013.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022]
Abstract
Chlamydomonas reinhardtii is a photoautotrophic green alga, which can be grown mixotrophically in acetate-supplemented media (Tris-acetate-phosphate). We show that acetate has a direct effect on photosystem II (PSII). As a consequence, Tris-acetate-phosphate-grown mixotrophic C. reinhardtii cultures are less susceptible to photoinhibition than photoautotrophic cultures when subjected to high light. Spin-trapping electron paramagnetic resonance spectroscopy showed that thylakoids from mixotrophic C. reinhardtii produced less (1)O2 than those from photoautotrophic cultures. The same was observed in vivo by measuring DanePy oxalate fluorescence quenching. Photoinhibition can be induced by the production of (1)O2 originating from charge recombination events in photosystem II, which are governed by the midpoint potentials (Em) of the quinone electron acceptors. Thermoluminescence indicated that the Em of the primary quinone acceptor (QA/QA(-)) of mixotrophic cells was stabilised while the Em of the secondary quinone acceptor (QB/QB(-)) was destabilised, therefore favouring direct non-radiative charge recombination events that do not lead to (1)O2 production. Acetate treatment of photosystem II-enriched membrane fragments from spinach led to the same thermoluminescence shifts as observed in C. reinhardtii, showing that acetate exhibits a direct effect on photosystem II independent from the metabolic state of a cell. A change in the environment of the non-heme iron of acetate-treated photosystem II particles was detected by low temperature electron paramagnetic resonance spectroscopy. We hypothesise that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition.
Collapse
Affiliation(s)
- Thomas Roach
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
19
|
Pokhrel R, Brudvig GW. Investigation of the inhibitory effect of nitrite on Photosystem II. Biochemistry 2013; 52:3781-9. [PMID: 23631466 DOI: 10.1021/bi400206q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of chloride in photosystem II (PSII) is unclear. Several monovalent anions compete for the Cl(-) site(s) in PSII, and some even support activity. NO2(-) has been reported to be an activator in Cl(-)-depleted PSII membranes. In this paper, we report a detailed investigation of the chemistry of NO2(-) with PSII. NO2(-) is shown to inhibit PSII activity, and the effects on the donor side as well as the acceptor side are characterized using steady-state O2-evolution assays, electron paramagnetic resonance (EPR) spectroscopy, electron-transfer assays, and flash-induced polarographic O2 yield measurements. Enzyme kinetics analysis shows multiple sites of NO2(-) inhibition in PSII with significant inhibition of oxygen evolution at <5 mM NO2(-). By EPR spectroscopy, the yield of the S2 state remains unchanged up to 15 mM NO2(-). However, the S2-state g = 4.1 signal is favored over the g = 2 multiline signal with increasing NO2(-) concentrations. This could indicate competition of NO2(-) for the Cl(-) site at higher NO2(-) concentrations. In addition to the donor-side chemistry, there is clear evidence of an acceptor-side effect of NO2(-). The g = 1.9 Fe(II)-QA(-•) signal is replaced by a broad g = 1.6 signal in the presence of NO2(-). Additionally, a g = 1.8 Fe(II)-Q(-•) signal is present in the dark, indicating the formation of a NO2(-)-bound Fe(II)-QB(-•) species in the dark. Electron-transfer assays suggest that the inhibitory effect of NO2(-) on the activity of PSII is largely due to the donor-side chemistry of NO2(-). UV-visible spectroscopy and flash-induced polarographic O2 yield measurements indicate that NO2(-) is oxidized by the oxygen-evolving complex in the higher S states, contributing to the donor-side inhibition by NO2(-).
Collapse
Affiliation(s)
- Ravi Pokhrel
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | | |
Collapse
|
20
|
Pang X, Han K, Cui Q. A simple but effective modeling strategy for structural properties of non-heme Fe(II) sites in proteins: test of force field models and application to proteins in the AlkB family. J Comput Chem 2013; 34:1620-35. [PMID: 23666816 DOI: 10.1002/jcc.23305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/09/2013] [Accepted: 04/03/2013] [Indexed: 12/25/2022]
Abstract
To facilitate computational study of proteins in the AlkB family and related α-ketoglutarate/Fe(II)-dependent dioxygenases, we have tested a simple modeling strategy for the non-heme Fe(II) site in which the iron is represented by a simple +2 point charge with Lennard-Jones parameters. Calculations for an AlkB active site model in the gas phase and ∼150 ns molecular dynamics (MD) simulations for two enzyme-dsDNA complexes (E. coli AlkB-dsDNA and ABH2-dsDNA) suggest that this simple modeling strategy provides a satisfactory description of structural properties of the Fe(II) site in AlkB enzymes, provided that care is exercised to control the binding mode of carboxylate (Asp) to the iron. MD simulations using the model for AlkB-dsDNA and ABH2-dsDNA systems find that although the structural features for the latter are overall in good agreement with the crystal structure, the dsDNA, and AlkB-dsDNA interface undergo substantial changes during the MD simulations from the crystal structure. Even for ABH2, new interactions form between a long loop region and dsDNA upon structural relaxation of the loop, supporting the role of this loop in DNA binding despite the lack of interactions between them in the crystal structure. Analysis of DNA backbone torsional distributions helps identify regions that adopt strained conformations. Collectively, the results highlight that crystal packing may have a significant impact on the structure of protein-DNA complexes; the simulations also provide additional insights regarding why AlkB and ABH2 prefer single-strand and double-strand DNA, respectively, as substrate.
Collapse
Affiliation(s)
- Xueqin Pang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, People's Republic of China
| | | | | |
Collapse
|
21
|
Sigfridsson KGV, Chernev P, Leidel N, Popović-Bijelić A, Gräslund A, Haumann M. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase. J Biol Chem 2013; 288:9648-9661. [PMID: 23400774 DOI: 10.1074/jbc.m112.438796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.
Collapse
Affiliation(s)
| | - Petko Chernev
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Nils Leidel
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Ana Popović-Bijelić
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Michael Haumann
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany.
| |
Collapse
|
22
|
Chernev P, Zaharieva I, Dau H, Haumann M. Coordination Changes of Carboxyl Ligands at the QAFeQB Triad in Photosynthetic Reaction Centers Studied by Density-Functional Theory. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-32034-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
23
|
Abstract
Photosystem II uses light to drive water oxidation and plastoquinone (PQ) reduction. PQ reduction involves two PQ cofactors, Q(A) and Q(B), working in series. Q(A) is a one-electron carrier, whereas Q(B) undergoes sequential reduction and protonation to form Q(B)H(2). Q(B)H(2) exchanges with PQ from the pool in the membrane. Based on the atomic coordinates of the Photosystem II crystal structure, we analyzed the proton transfer (PT) energetics adopting a quantum mechanical/molecular mechanical approach. The potential-energy profile suggests that the initial PT to Q(B)(•-) occurs from the protonated, D1-His252 to Q(B)(•)(-) via D1-Ser264. The second PT is likely to occur from D1-His215 to Q(B)H(-) via an H-bond with an energy profile with a single well, resulting in the formation of Q(B)H(2) and the D1-His215 anion. The pathway for reprotonation of D1-His215(-) may involve bicarbonate, D1-Tyr246 and water in the Q(B) site. Formate ligation to Fe(2+) did not significantly affect the protonation of reduced Q(B), suggesting that formate inhibits Q(B)H(2) release rather than its formation. The presence of carbonate rather than bicarbonate seems unlikely because the calculations showed that this greatly perturbed the potential of the nonheme iron, stabilizing the Fe(3+) state in the presence of Q(B)(•-), a situation not encountered experimentally. H-bonding from D1-Tyr246 and D2-Tyr244 to the bicarbonate ligand of the nonheme iron contributes to the stability of the semiquinones. A detailed mechanistic model for Q(B) reduction is presented.
Collapse
|
24
|
Hałas A, Orzechowska A, Derrien V, Chumakov AI, Sebban P, Fiedor J, Lipińska M, Zając M, Ślęzak T, Strzałka K, Matlak K, Korecki J, Fiedor L, Burda K. The dynamics of the non-heme iron in bacterial reaction centers from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2095-102. [PMID: 22921693 DOI: 10.1016/j.bbabio.2012.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 11/28/2022]
Abstract
We investigate the dynamical properties of the non-heme iron (NHFe) in His-tagged photosynthetic bacterial reaction centers (RCs) isolated from Rhodobacter (Rb.) sphaeroides. Mössbauer spectroscopy and nuclear inelastic scattering of synchrotron radiation (NIS) were applied to monitor the arrangement and flexibility of the NHFe binding site. In His-tagged RCs, NHFe was stabilized only in a high spin ferrous state. Its hyperfine parameters (IS=1.06±0.01mm/s and QS=2.12±0.01mm/s), and Debye temperature (θ(D0)~167K) are comparable to those detected for the high spin state of NHFe in non-His-tagged RCs. For the first time, pure vibrational modes characteristic of NHFe in a high spin ferrous state are revealed. The vibrational density of states (DOS) shows some maxima between 22 and 33meV, 33 and 42meV, and 53 and 60meV and a very sharp one at 44.5meV. In addition, we observe a large contribution of vibrational modes at low energies. This iron atom is directly connected to the protein matrix via all its ligands, and it is therefore extremely sensitive to the collective motions of the RC protein core. A comparison of the DOS spectra of His-tagged and non-His-tagged RCs from Rb. sphaeroides shows that in the latter case the spectrum was overlapped by the vibrations of the heme iron of residual cytochrome c(2), and a low spin state of NHFe in addition to its high spin one. This enabled us to pin-point vibrations characteristic for the low spin state of NHFe.
Collapse
Affiliation(s)
- A Hałas
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shevela D, Eaton-Rye JJ, Shen JR, Govindjee. Photosystem II and the unique role of bicarbonate: a historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1134-51. [PMID: 22521596 DOI: 10.1016/j.bbabio.2012.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50 years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9Å crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| | | | | | | |
Collapse
|
26
|
Extended protein/water H-bond networks in photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1177-90. [PMID: 22503827 DOI: 10.1016/j.bbabio.2012.03.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
Abstract
Oxidation of water molecules in the photosystem II (PSII) protein complex proceeds at the manganese-calcium complex, which is buried deeply in the lumenal part of PSII. Understanding the PSII function requires knowledge of the intricate coupling between the water-oxidation chemistry and the dynamic proton management by the PSII protein matrix. Here we assess the structural basis for long-distance proton transfer in the interior of PSII and for proton management at its surface. Using the recent high-resolution crystal structure of PSII, we investigate prominent hydrogen-bonded networks of the lumenal side of PSII. This analysis leads to the identification of clusters of polar groups and hydrogen-bonded networks consisting of amino acid residues and water molecules. We suggest that long-distance proton transfer and conformational coupling is facilitated by hydrogen-bonded networks that often involve more than one protein subunit. Proton-storing Asp/Glu dyads, such as the D1-E65/D2-E312 dyad connected to a complex water-wire network, may be particularly important for coupling protonation states to the protein conformation. Clusters of carboxylic amino acids could participate in proton management at the lumenal surface of PSII. We propose that rather than having a classical hydrophobic protein interior, the lumenal side of PSII resembles a complex polyelectrolyte with evolutionary optimized hydrogen-bonding networks. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
27
|
Dau H, Zaharieva I, Haumann M. Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 2012; 16:3-10. [DOI: 10.1016/j.cbpa.2012.02.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/27/2022]
|
28
|
Pieper J, Trapp M, Skomorokhov A, Natkaniec I, Peters J, Renger G. Temperature-dependent vibrational and conformational dynamics of photosystem II membrane fragments from spinach investigated by elastic and inelastic neutron scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1213-9. [PMID: 22465855 DOI: 10.1016/j.bbabio.2012.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/07/2012] [Accepted: 03/16/2012] [Indexed: 11/27/2022]
Abstract
Vibrational and conformational protein dynamics of photosystem II (PS II) membrane fragments from spinach were investigated by elastic and inelastic incoherent neutron scattering (EINS and IINS). As to the EINS experiments, the average atomic mean square displacement values of PS II membrane fragments hydrated at a relative humidity of 57% exhibit a dynamical transition at ~230K. In contrast, the dynamical transition was absent at a relative humidity of 44%. These findings are in agreement with previous studies which reported a "freezing" of protein mobility due to dehydration (Pieper et al. (2008) Eur. Biophys. J. 37: 657-663) and its correlation with an inhibition of electron transfer from Q(A)(-) to Q(B) (Kaminskaya et al. (2003) Biochemistry 42, 8119-8132). IINS spectra of a sample hydrated at a relative humidity of 57% show a distinct Boson peak at ~7.5meV at 20K, which shifts towards lower energy values upon temperature increase to 250K. This unexpected effect is interpreted in terms of a "softening" of the protein matrix along with the onset of conformational protein dynamics as revealed by the EINS experiments. Information on the density of vibrational states of pigment-protein complexes is important for a realistic calculation of excitation energy transfer kinetics and spectral lineshapes and is often routinely obtained by optical line-narrowing spectroscopy at liquid helium temperature. The data presented here demonstrate that IINS is a valuable experimental tool in determining the density of vibrational states not only at cryogenic, but also at nearly physiological temperatures up to 250K. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Jörg Pieper
- Institute of Physics, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
29
|
Renger G. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1164-76. [PMID: 22353626 DOI: 10.1016/j.bbabio.2012.02.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/27/2012] [Accepted: 02/05/2012] [Indexed: 11/24/2022]
Abstract
The reactions of light induced oxidative water splitting were analyzed within the framework of the empirical rate constant-distance relationship of non-adiabatic electron transfer in biological systems (C. C. Page, C. C. Moser, X. Chen , P. L. Dutton, Nature 402 (1999) 47-52) on the basis of structure information on Photosystem II (PS II) (A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, W. Saenger, A. Zouni, Chem. Phys. Chem. 11 (2010) 1160-1171, Y. Umena, K. Kawakami, J-R Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 47 (2011) 55-60). Comparison of these results with experimental data leads to the following conclusions: 1) The oxidation of tyrosine Y(z) by the cation radical P680(+·) in systems with an intact water oxidizing complex (WOC) is kinetically limited by the non-adiabatic electron transfer step and the extent of this reaction is thermodynamically determined by relaxation processes in the environment including rearrangements of hydrogen bond network(s). In marked contrast, all Y(z)(ox) induced oxidation steps in the WOC up to redox state S(3) are kinetically limited by trigger reactions which are slower by orders of magnitude than the rates calculated for non-adiabatic electron transfer. 3) The overall rate of the triggered reaction sequence of Y(z)(ox) reduction by the WOC in redox state S(3) eventually leading to formation and release of O(2) is kinetically limited by an uphill electron transfer step. Alternative models are discussed for this reaction. The protein matrix of the WOC and bound water molecules provide an optimized dynamic landscape of hydrogen bonded protons for catalyzing oxidative water splitting energetically driven by light induced formation of the cation radical P680(+·). In this way the PS II core acts as a molecular machine formed during a long evolutionary process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
30
|
Leidel N, Popović-Bijelić A, Havelius KGV, Chernev P, Voevodskaya N, Gräslund A, Haumann M. High-valent [MnFe] and [FeFe] cofactors in ribonucleotide reductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:430-44. [PMID: 22222354 DOI: 10.1016/j.bbabio.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-Ia RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Ct R2, two different Mn(IV)Fe(III) site configurations were assigned either L(4)Mn(IV)(μO)(2)Fe(III)L(4) (metal-metal distance of ~2.75Å, L = ligand) prevailing in metal-grown R2, or L(4)Mn(IV)(μO)(μOH)Fe(III)L(4) (~2.90Å) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (~2.55Å) with a L(4)Fe(IV)(μO)(2)Fe(III)L(3) core structure. Several Mn,Fe(III)Fe(III) (~2.9-3.1Å) and Mn,Fe(III)Fe(II) species (~3.3-3.4Å) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit R1. In Ct R2, the protonation of a bridging oxide in the Mn(IV)(μO)(μOH)Fe(III) core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.
Collapse
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Cardona T, Sedoud A, Cox N, Rutherford AW. Charge separation in photosystem II: a comparative and evolutionary overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:26-43. [PMID: 21835158 DOI: 10.1016/j.bbabio.2011.07.012] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Our current understanding of the PSII reaction centre owes a great deal to comparisons to the simpler and better understood, purple bacterial reaction centre. Here we provide an overview of the similarities with a focus on charge separation and the electron acceptors. We go on to discuss some of the main differences between the two kinds of reaction centres that have been highlighted by the improving knowledge of PSII. We attempt to relate these differences to functional requirements of water splitting. Some are directly associated with that function, e.g. high oxidation potentials, while others are associated with regulation and protection against photodamage. The protective and regulatory functions are associated with the harsh chemistry performed during its normal function but also with requirements of the enzyme while it is undergoing assembly and repair. Key aspects of PSII reaction centre evolution are also addressed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Tanai Cardona
- Institut de Biologie et Technologies de Saclay, URA 2096 CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|