1
|
Adomako AK, Gasu EN, Mensah JO, Borquaye LS. Antileishmanial natural products as potential inhibitors of the Leishmania pteridine reductase: insights from molecular docking and molecular dynamics simulations. In Silico Pharmacol 2024; 12:70. [PMID: 39091898 PMCID: PMC11289227 DOI: 10.1007/s40203-024-00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Although many natural product-derived compounds possess anti-leishmanial activities in vitro and in vivo, their molecular targets in the Leishmania parasite remain elusive. This is a major challenge in optimizing these compounds into leads. The Leishmania pteridine reductase (PTR1) is peculiar for folate and pterin metabolism and has been validated as a drug target. In this study, 17 compounds with anti-leishmanial activities were screened against Leishmania major PTR1 (LmPTR1) using molecular docking and molecular dynamics (MD) simulations. All ligands were bound in the active site pocket of LmPTR1 with binding affinities ranging from -11.2 to -5.2 kcal/mol. Agnuside, betulin, betulinic acid, gerberinol, ismailin, oleanolic acid, pristimerin, and ursolic acid demonstrated binding affinities similar to a known inhibitor, methyl 1-(4-{[2,4-diaminopteridin-6-yl) methyl] amino} benzoyl) piperidine-4-carboxylate (DVP). MD simulations revealed that betulin, betulinic acid, ismailin, oleanolic acid, pristimerin, and ursolic acid formed stable complexes with LmPTR1. The binding free energies of the complexes were very good (-87 to -148 kJ/mol), and much higher than the complex of the standard DVP inhibitor and LmPTR1 (-27 kJ/mol). Betulin, betulinic acid, ismailin, oleanolic acid, pristimerin, and ursolic acid likely exert their antileishmanial action by inhibiting PTR1 and could thus be used as a basis for the development of potential antileishmanial chemotherapeutic agents. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00247-8.
Collapse
Affiliation(s)
| | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
3
|
Linciano P, Pozzi C, Tassone G, Landi G, Mangani S, Santucci M, Luciani R, Ferrari S, Santarem N, Tagliazucchi L, Cordeiro-da-Silva A, Tonelli M, Tondi D, Bertarini L, Gul S, Witt G, Moraes CB, Costantino L, Costi MP. The discovery of aryl-2-nitroethyl triamino pyrimidines as anti-Trypanosoma brucei agents. Eur J Med Chem 2024; 264:115946. [PMID: 38043491 DOI: 10.1016/j.ejmech.2023.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Pteridine reductase 1 (PTR1) is a catalytic protein belonging to the folate metabolic pathway in Trypanosmatidic parasites. PTR1 is a known target for the medicinal chemistry development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. In previous studies, new nitro derivatives were elaborated as PTR1 inhibitors. The compounds showing a diamino-pyrimidine core structure were previously developed but they showed limited efficacy. Therefore, a new class of phenyl-, heteroaryl- and benzyloxy-nitro derivatives based on the 2-nitroethyl-2,4,6-triaminopyrimidine scaffold were designed and tested. The compounds were assayed for their ability to inhibit T. brucei and L. major PTR1 enzymes and for their antiparasitic activity towards T. brucei and L. infantum parasites. To understand the structure-activity relationships of the compounds against TbPTR1, the X-ray crystallographic structure of the 2,4,6-triaminopyrimidine (TAP) was obtained and molecular modelling studies were performed. As a next step, only the most effective compounds against T. brucei were then tested against the amastigote cellular stage of T. cruzi, searching for a broad-spectrum antiprotozoal agent. An early ADME-Tox profile evaluation was performed. The early toxicity profile of this class of compounds was investigated by measuring their inhibition of hERG and five cytochrome P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4), cytotoxicity towards A549 cells and mitochondrial toxicity. Pharmacokinetic studies (SNAP-PK) were performed on selected compounds using hydroxypropyl-β-cyclodextrins (50 % w/v) to preliminarily study their plasma concentration when administered per os at a dose of 20 mg/kg. Compound 1p, showed the best pharmacodynamic and pharmacokinetic properties, can be considered a good candidate for further bioavailability and efficacy studies.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Nuno Santarem
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge ViterboFerreira 228, 4050-313 Porto, Portugal
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy; Clinical and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 278, 41125, Modena, Italy
| | - Anabela Cordeiro-da-Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge ViterboFerreira 228, 4050-313 Porto, Portugal
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Carolina B Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), 13083-100, Campinas, SP, Brazil
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
4
|
Silva JV, Sueyoshi S, Snape TJ, Lal S, Giarolla J. Pteridine reductase (PTR1): initial structure-activity relationships studies of potential leishmanicidal arylindole derivatives compounds. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:661-687. [PMID: 37606690 DOI: 10.1080/1062936x.2023.2247331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/08/2023] [Indexed: 08/23/2023]
Abstract
Leishmaniasis is a public health concern, especially in Brazil and India. The drugs available for therapy are old, cause toxicity and have reports of resistance. Therefore, this paper aimed to carry out initial structure-activity relationships (applying molecular docking and dynamic simulations) of arylindole scaffolds against the pteridine reductase (PTR1), which is essential target for the survival of the parasite. Thus, we used a series of 43 arylindole derivatives as a privileged skeleton, which have been evaluated previously for different biological actions. Compound 7 stood out among its analogues presenting the best results of average number of interactions with binding site (2.00) and catalytic triad (1.00). Additionally, the same compound presented the best binding free energy (-32.33 kcal/mol) in dynamic simulations. Furthermore, with computational studies, it was possible to comprehend and discuss the influences of the substituent sizes, positions of substitutions in the aromatic ring and electronic influences. Therefore, this study can be a starting point for the structural improvements needed to obtain a good leishmanicidal drug.
Collapse
Affiliation(s)
- J V Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - S Sueyoshi
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - T J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - S Lal
- Amity Institute of Pharmacy, Amity University, Gurugram, India
| | - J Giarolla
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Singh R, Kashif M, Srivastava P, Manna PP. Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens 2023; 12:pathogens12050706. [PMID: 37242374 DOI: 10.3390/pathogens12050706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen called Leishmania, is transmitted through dipteran insect vectors (phlebotomine, sand flies) in three main clinical forms: fatal visceral leishmaniasis, self-healing cutaneous leishmaniasis, and mucocutaneous leishmaniasis. Generic pentavalent antimonials have long been the drug of choice against leishmaniasis; however, their success is plagued with limitations such as drug resistance and severe side effects, which makes them redundant as frontline therapy for endemic visceral leishmaniasis. Alternative therapeutic regimens based on amphotericin B, miltefosine, and paromomycin have also been approved. Due to the unavailability of human vaccines, first-line chemotherapies such as pentavalent antimonials, pentamidine, and amphotericin B are the only options to treat infected individuals. The higher toxicity, adverse effects, and perceived cost of these pharmaceutics, coupled with the emergence of parasite resistance and disease relapse, makes it urgent to identify new, rationalized drug targets for the improvement in disease management and palliative care for patients. This has become an emergent need and more relevant due to the lack of information on validated molecular resistance markers for the monitoring and surveillance of changes in drug sensitivity and resistance. The present study reviewed the recent advances in chemotherapeutic regimens by targeting novel drugs using several strategies including bioinformatics to gain new insight into leishmaniasis. Leishmania has unique enzymes and biochemical pathways that are distinct from those of its mammalian hosts. In light of the limited number of available antileishmanial drugs, the identification of novel drug targets and studying the molecular and cellular aspects of these drugs in the parasite and its host is critical to design specific inhibitors targeting and controlling the parasite. The biochemical characterization of unique Leishmania-specific enzymes can be used as tools to read through possible drug targets. In this review, we discuss relevant metabolic pathways and novel drugs that are unique, essential, and linked to the survival of the parasite based on bioinformatics and cellular and biochemical analyses.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mohammad Kashif
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Herrera-Acevedo C, de Menezes RPB, de Sousa NF, Scotti L, Scotti MT, Coy-Barrera E. Kaurane-Type Diterpenoids as Potential Inhibitors of Dihydrofolate Reductase-Thymidylate Synthase in New World Leishmania Species. Antibiotics (Basel) 2023; 12:antibiotics12040663. [PMID: 37107025 PMCID: PMC10135059 DOI: 10.3390/antibiotics12040663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The bifunctional enzyme Dihydrofolate reductase-thymidylate synthase (DHFR-TS) plays a crucial role in the survival of the Leishmania parasite, as folates are essential cofactors for purine and pyrimidine nucleotide biosynthesis. However, DHFR inhibitors are largely ineffective in controlling trypanosomatid infections, largely due to the presence of Pteridine reductase 1 (PTR1). Therefore, the search for structures with dual inhibitory activity against PTR1/DHFR-TS is crucial in the development of new anti-Leishmania chemotherapies. In this research, using the Leishmania major DHFR-TS recombinant protein, enzymatic inhibitory assays were performed on four kauranes and two derivatives that had been previously tested against LmPTR1. The structure 302 (6.3 µM) and its derivative 302a (4.5 µM) showed the lowest IC50 values among the evaluated molecules. To evaluate the mechanism of action of these structures, molecular docking calculations and molecular dynamics simulations were performed using a DHFR-TS hybrid model. Results showed that hydrogen bond interactions are critical for the inhibitory activity against LmDHFR-TS, as well as the presence of the p-hydroxyl group of the phenylpropanoid moiety of 302a. Finally, additional computational studies were performed on DHFR-TS structures from Leishmania species that cause cutaneous and mucocutaneous leishmaniasis in the New World (L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting potential of these kauranes in these species. It was demonstrated that structures 302 and 302a are multi-Leishmania species compounds with dual DHFR-TS/PTR1 inhibitory activity.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia
| | - Renata Priscila Barros de Menezes
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Natália Ferreira de Sousa
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Correspondence:
| |
Collapse
|
7
|
Lye LF, Owens KL, Jang S, Marcus JE, Brettmann EA, Beverley SM. An RNA Interference (RNAi) Toolkit and Its Utility for Functional Genetic Analysis of Leishmania ( Viannia). Genes (Basel) 2022; 14:93. [PMID: 36672832 PMCID: PMC9858808 DOI: 10.3390/genes14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool whose efficacy against a broad range of targets enables functional genetic tests individually or systematically. However, the RNAi pathway has been lost in evolution by a variety of eukaryotes including most Leishmania sp. RNAi was retained in species of the Leishmania subgenus Viannia, and here we describe the development, optimization, and application of RNAi tools to the study of L. (Viannia) braziliensis (Lbr). We developed vectors facilitating generation of long-hairpin or "stem-loop" (StL) RNAi knockdown constructs, using GatewayTM site-specific recombinase technology. A survey of applications of RNAi in L. braziliensis included genes interspersed within multigene tandem arrays such as quinonoid dihydropteridine reductase (QDPR), a potential target or modulator of antifolate sensitivity. Other tests include genes involved in cell differentiation and amastigote proliferation (A600), and essential genes of the intraflagellar transport (IFT) pathway. We tested a range of stem lengths targeting the L. braziliensis hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and reporter firefly luciferase (LUC) genes and found that the efficacy of RNAi increased with stem length, and fell off greatly below about 128 nt. We used the StL length dependency to establish a useful 'hypomorphic' approach not possible with other gene ablation strategies, with shorter IFT140 stems yielding viable cells with compromised flagellar morphology. We showed that co-selection for RNAi against adenine phosphoryl transferase (APRT1) using 4-aminopyrazolpyrimidine (APP) could increase the efficacy of RNAi against reporter constructs, a finding that may facilitate improvements in future work. Thus, for many genes, RNAi provides a useful tool for studying Leishmania gene function with some unique advantages.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
9
|
Pöhner I, Quotadamo A, Panecka-Hofman J, Luciani R, Santucci M, Linciano P, Landi G, Di Pisa F, Dello Iacono L, Pozzi C, Mangani S, Gul S, Witt G, Ellinger B, Kuzikov M, Santarem N, Cordeiro-da-Silva A, Costi MP, Venturelli A, Wade RC. Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1. J Med Chem 2022; 65:9011-9033. [PMID: 35675511 PMCID: PMC9289884 DOI: 10.1021/acs.jmedchem.2c00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The optimization
of compounds with multiple targets is a difficult
multidimensional problem in the drug discovery cycle. Here, we present
a systematic, multidisciplinary approach to the development of selective
antiparasitic compounds. Computational fragment-based design of novel
pteridine derivatives along with iterations of crystallographic structure
determination allowed for the derivation of a structure–activity
relationship for multitarget inhibition. The approach yielded compounds
showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L.
major PTR1, and selective submicromolar inhibition of parasite
dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining
design for polypharmacology with a property-based on-parasite optimization,
we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining
their target inhibition. Our results provide a basis for the further
development of pteridine-based compounds, and we expect our multitarget
approach to be generally applicable to the design and optimization
of anti-infective agents.
Collapse
Affiliation(s)
- Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, D-69120 Heidelberg, Germany
| | - Antonio Quotadamo
- Tydock Pharma srl, Strada Gherbella 294/B, 41126 Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Joanna Panecka-Hofman
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lucia Dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Nuno Santarem
- Instituto de Investigação e Inovação em Saúde, Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal.,Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Tydock Pharma srl, Strada Gherbella 294/B, 41126 Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, D-69120 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, D-69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Possart K, Herrmann FC, Jose J, Costi MP, Schmidt TJ. Sesquiterpene Lactones with Dual Inhibitory Activity against the Trypanosoma brucei Pteridine Reductase 1 and Dihydrofolate Reductase. Molecules 2021; 27:149. [PMID: 35011381 PMCID: PMC8747069 DOI: 10.3390/molecules27010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
The parasite Trypanosoma brucei (T. brucei) is responsible for human African trypanosomiasis (HAT) and the cattle disease "Nagana" which to this day cause severe medical and socio-economic issues for the affected areas in Africa. So far, most of the available treatment options are accompanied by harmful side effects and are constantly challenged by newly emerging drug resistances. Since trypanosomatids are auxotrophic for folate, their pteridine metabolism provides a promising target for an innovative chemotherapeutic treatment. They are equipped with a unique corresponding enzyme system consisting of the bifunctional dihydrofolate reductase-thymidylate synthase (TbDHFR-TS) and the pteridine reductase 1 (TbPTR1). Previously, gene knockout experiments with PTR1 null mutants have underlined the importance of these enzymes for parasite survival. In a search for new chemical entities with a dual inhibitory activity against the TbPTR1 and TbDHFR, a multi-step in silico procedure was employed to pre-select promising candidates against the targeted enzymes from a natural product database. Among others, the sesquiterpene lactones (STLs) cynaropicrin and cnicin were identified as in silico hits. Consequently, an in-house database of 118 STLs was submitted to an in silico screening yielding 29 further virtual hits. Ten STLs were subsequently tested against the target enzymes in vitro in a spectrophotometric inhibition assay. Five compounds displayed an inhibition over 50% against TbPTR1 as well as three compounds against TbDHFR. Cynaropicrin turned out to be the most interesting hit since it inhibited both TbPTR1 and TbDHFR, reaching IC50 values of 12.4 µM and 7.1 µM, respectively.
Collapse
Affiliation(s)
- Katharina Possart
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Fabian C. Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany;
| | - Maria P. Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Thomas J. Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| |
Collapse
|
11
|
Tassone G, Landi G, Linciano P, Francesconi V, Tonelli M, Tagliazucchi L, Costi MP, Mangani S, Pozzi C. Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase. Pharmaceuticals (Basel) 2021; 14:636. [PMID: 34209148 PMCID: PMC8308740 DOI: 10.3390/ph14070636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma and Leishmania parasites are the etiological agents of various threatening neglected tropical diseases (NTDs), including human African trypanosomiasis (HAT), Chagas disease, and various types of leishmaniasis. Recently, meaningful progresses in the treatment of HAT, due to Trypanosoma brucei (Tb), have been achieved by the introduction of fexinidazole and the combination therapy eflornithine-nifurtimox. Nevertheless, due to drug resistance issues and the exitance of animal reservoirs, the development of new NTD treatments is still required. For this purpose, we explored the combined targeting of two key folate enzymes, dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1). We formerly showed that the TbDHFR inhibitor cycloguanil (CYC) also targets TbPTR1, although with reduced affinity. Here, we explored a small library of CYC analogues to understand how their substitution pattern affects the inhibition of both TbPTR1 and TbDHFR. Some novel structural features responsible for an improved, but preferential, ability of CYC analogues to target TbPTR1 were disclosed. Furthermore, we showed that the known drug pyrimethamine (PYR) effectively targets both enzymes, also unveiling its binding mode to TbPTR1. The structural comparison between PYR and CYC binding modes to TbPTR1 and TbDHFR provided key insights for the future design of dual inhibitors for HAT therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| |
Collapse
|
12
|
Ali R, Tabrez S, Rahman F, Alouffi AS, Alshehri BM, Alshammari FA, Alaidarous MA, Banawas S, Dukhyil AAB, Rub A. Antileishmanial Evaluation of Bark Methanolic Extract of Acacia nilotica: In Vitro and In Silico Studies. ACS OMEGA 2021; 6:8548-8560. [PMID: 33817515 PMCID: PMC8015128 DOI: 10.1021/acsomega.1c00366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 05/12/2023]
Abstract
Acacia nilotica (A. nilotica) is an important medicinal plant, found in Africa, the Middle East, and the Indian subcontinent. Every part of the plant possesses a wide array of biologically active and therapeutically important compounds. We reported the antileishmanial activity of A. nilotica bark methanolic extract through in vitro antileishmanial assays and dissected the mechanism of its action through in silico studies. Bark methanolic extract exhibited antipromastigote and antiamastigote potential in a time and dose-dependent manner with IC50 values of 19.6 ± 0.9037 and 77.52 ± 5.167 μg/mL, respectively. It showed cytotoxicity on THP-1-derived human macrophages at very high dose with a CC50 value of 432.7 ± 7.71 μg/mL. The major constituents identified by gas chromatography-mass spectrometry (GC-MS) analysis, 13-docosenoic acid, lupeol, 9,12-octadecadienoic acid, and 6-octadecanoic acid, showed effective binding with the potential drug targets of Leishmania donovani (L. donovani) including sterol 24-c-methyltransferase, trypanothione reductase, pteridine reductase, and adenine phosphoribosyltransferase, suggesting the possible mechanism of its antileishmanial action. Pharmacokinetic studies on major phytoconstituents analyzed by GC-MS supported their use as safe antileishmanial drug candidates. This study proved the antileishmanial potential of bark methanolic extract A. nilotica and its mechanism of action through the inhibition of potential drug targets of L. donovani.
Collapse
Affiliation(s)
- Rahat Ali
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shams Tabrez
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Fazlur Rahman
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | | | - Bader M. Alshehri
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College
of Sciences and Literature Microbiology, Northern Border University, Arar 73222, Saudi Arabia
| | - Mohammed A. Alaidarous
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
- Deanship
of Scientific Research, Majmaah University, Al Majmaah, Al Majma’ah 11952, Saudi Arabia
| | - Saeed Banawas
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
- Deanship
of Scientific Research, Majmaah University, Al Majmaah, Al Majma’ah 11952, Saudi Arabia
- Department
of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Abdul Aziz Bin Dukhyil
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
| | - Abdur Rub
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- . Phone: +91-9560887383
| |
Collapse
|
13
|
Ben Khalaf N, Pham S, Romeo G, Abdelghany S, Intagliata S, Sedillo P, Salerno L, Gonzales J, Fathallah DM, Perkins DJ, Hurwitz I, Pittalà V. A computer-aided approach to identify novel Leishmania major protein disulfide isomerase inhibitors for treatment of leishmaniasis. J Comput Aided Mol Des 2021; 35:297-314. [PMID: 33615401 DOI: 10.1007/s10822-021-00374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and transmitted by the bite of a sand fly. To date, most available drugs for treatment are toxic and beyond the economic means of those affected by the disease. Protein disulfide isomerase (PDI) is a chaperone protein that plays a major role in the folding of newly synthesized proteins, specifically assisting in disulfide bond formation, breakage, or rearrangement in all non-native proteins. In previous work, we demonstrated that Leishmania major PDI (LmPDI) has an essential role in pathogen virulence. Furthermore, inhibition of LmPDI further blocked parasite infection in macrophages. In this study, we utilized a computer-aided approach to design a series of LmPDI inhibitors. Fragment-based virtual screening allowed for the understanding of the inhibitors' modes of action on LmPDI active sites. The generated compounds obtained after multiple rounds of virtual screening were synthesized and significantly inhibited target LmPDI reductase activity and were shown to decrease in vitro parasite growth in human monocyte-derived macrophages. This novel cheminformatics and synthetic approach led to the identification of a new series of compounds that might be optimized into novel drugs, likely more specific and less toxic for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Road 2904 Building 293, Manama, 329, Kingdom of Bahrain.
| | - Susie Pham
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Sara Abdelghany
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sebastiano Intagliata
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Peter Sedillo
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Jessica Gonzales
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dahmani M Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Road 2904 Building 293, Manama, 329, Kingdom of Bahrain
| | - Douglas J Perkins
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ivy Hurwitz
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
14
|
Shamshad H, Hafiz A, Althagafi II, Saeed M, Mirza AZ. Characterization of the Trypanosoma brucei Pteridine Reductase Active- Site using Computational Docking and Virtual Screening Techniques. Curr Comput Aided Drug Des 2020; 16:583-598. [DOI: 10.2174/1573409915666190827163327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/21/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023]
Abstract
Background:
Human African trypanosomiasis is a fatal disease prevalent in approximately
36 sub-Saharan countries. Emerging reports of drug resistance in Trypanosoma brucei are a serious
cause of concern as only limited drugs are available for the treatment of the disease. Pteridine reductase
is an enzyme of Trypanosoma brucei.
Methods:
It plays a critical role in the pterin metabolic pathway that is absolutely essential for its survival
in the human host. The success of finding a potent inhibitor in structure-based drug design lies
within the ability of computational tools to efficiently and accurately dock a ligand into the binding
cavity of the target protein. Here we report the computational characterization of Trypanosoma brucei
pteridine reductase (Tb-PR) active-site using twenty-four high-resolution co-crystal structures with various
drugs. Structurally, the Tb-PR active site can be grouped in two clusters; one with high Root Mean
Square Deviation (RMSD) of atomic positions and another with low RMSD of atomic positions. These
clusters provide fresh insight for rational drug design against Tb-PR. Henceforth, the effect of several
factors on docking accuracy, including ligand and protein flexibility were analyzed using Fred.
Results:
The online server was used to analyze the side chain flexibility and four proteins were selected
on the basis of results. The proteins were subjected to small-scale virtual screening using 85 compounds,
and statistics were calculated using Bedroc and roc curves. The enrichment factor was also calculated
for the proteins and scoring functions. The best scoring function was used to understand the ligand
protein interactions with top common compounds of four proteins. In addition, we made a 3D
structural comparison between the active site of Tb-PR and Leishmania major pteridine reductase (Lm-
PR). We described key structural differences between Tb-PR and Lm-PR that can be exploited for rational
drug design against these two human parasites.
Conclusion:
The results indicated that relying just on re-docking and cross-docking experiments for
virtual screening of libraries isn’t enough and results might be misleading. Hence it has been suggested
that small scale virtual screening should be performed prior to large scale screening.
Collapse
Affiliation(s)
- Hina Shamshad
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, University of Karachi, Karachi-75270, Pakistan
| | - Abdul Hafiz
- Department of Medical Parasitology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ismail I. Althagafi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maria Saeed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi- 75270, Pakistan
| | - Agha Zeeshan Mirza
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
15
|
Could chroman-4-one derivative be a better inhibitor of PTR1? - Reason for the identified disparity in its inhibitory potency in Trypanosoma brucei and Leishmania major. Comput Biol Chem 2020; 90:107412. [PMID: 33199197 DOI: 10.1016/j.compbiolchem.2020.107412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023]
Abstract
Most notable Kinetoplastids are of the genus Trypanosoma and Leishmania, affecting several millions of humans in Africa and Latin America. Current therapeutic options are limited by several drawbacks, hence the need to develop more efficacious inhibitors. An investigation to decipher the mechanism behind greater inhibitory potency of a chroman-4-one derivative (compound 1) in Trypanosoma brucei pteridine reductase 1 (TbPTR1) and Leishmania major pteridine reductase 1 (LmPTR1) was performed. Estimation of ΔGbind revealed that compound 1 had a greater binding affinity in TbPTR1 with a ΔGbind value of -49.0507 Kcal/mol than -29.2292 Kcal/mol in LmPTR1. The ΔGbind in TbPTR1 were predominantly contributed by "strong" electrostatic energy compared to the "weak" van der Waals in LmPTR1. In addition to this, the NADPH cofactor contributed significantly to the total energy of TbPTR1. A characteristic weak aromatic π interaction common in PTR1 was more prominent in TbPTR1 than LmPTR1. The consistent occurrence of high-affinity conventional hydrogen bond interactions as well as a steady interaction of crucial active site residues like Arg14/Arg17, Ser95/Ser111, Phe97/Phe113 in TbPTR1/LmPTR1 with chroman-4-one moiety equally revealed the important role the moiety played in the activity of compound 1. Overall, the structural and conformational analysis of the active site residues in TbPTR1 revealed them to be more rigid than LmPTR1. This could be the mechanism of interaction TbPTR1 employs in exerting a greater potency than LmPTR1. These findings will further give insight that will be assistive in modifying compound 1 for better potency and the design of novel inhibitors of PTR1.
Collapse
|
16
|
2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:259-290. [PMID: 32074064 DOI: 10.2478/acph-2020-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs.
Collapse
|
17
|
Raj S, Sasidharan S, Balaji SN, Saudagar P. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol Res 2020; 119:2025-2037. [DOI: 10.1007/s00436-020-06736-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
|
18
|
Landi G, Linciano P, Tassone G, Costi MP, Mangani S, Pozzi C. High-resolution crystal structure of Trypanosoma brucei pteridine reductase 1 in complex with an innovative tricyclic-based inhibitor. Acta Crystallogr D Struct Biol 2020; 76:558-564. [PMID: 32496217 DOI: 10.1107/s2059798320004891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/06/2020] [Indexed: 11/10/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the etiological agent of human African trypanosomiasis (HAT). HAT, together with other neglected tropical diseases, causes serious health and economic issues, especially in tropical and subtropical areas. The classical antifolates targeting dihydrofolate reductase (DHFR) are ineffective towards trypanosomatid parasites owing to a metabolic bypass by the expression of pteridine reductase 1 (PTR1). The combined inhibition of PTR1 and DHFR activities in Trypanosoma parasites represents a promising strategy for the development of new effective treatments for HAT. To date, only monocyclic and bicyclic aromatic systems have been proposed as inhibitors of T. brucei PTR1 (TbPTR1); nevertheless, the size of the catalytic cavity allows the accommodation of expanded molecular cores. Here, an innovative tricyclic-based compound has been explored as a TbPTR1-targeting molecule and its potential application for the development of a new class of PTR1 inhibitors has been evaluated. 2,4-Diaminopyrimido[4,5-b]indol-6-ol (1) was designed and synthesized, and was found to be effective in blocking TbPTR1 activity, with a Ki in the low-micromolar range. The binding mode of 1 was clarified through the structural characterization of its ternary complex with TbPTR1 and the cofactor NADP(H), which was determined to 1.30 Å resolution. The compound adopts a substrate-like orientation inside the cavity that maximizes the binding contributions of hydrophobic and hydrogen-bond interactions. The binding mode of 1 was compared with those of previously reported bicyclic inhibitors, providing new insights for the design of innovative tricyclic-based molecules targeting TbPTR1.
Collapse
Affiliation(s)
- Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
19
|
Labine M, DePledge L, Feirer N, Greenwich J, Fuqua C, Allen KD. Enzymatic and Mutational Analysis of the PruA Pteridine Reductase Required for Pterin-Dependent Control of Biofilm Formation in Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00098-20. [PMID: 32482721 PMCID: PMC8404713 DOI: 10.1128/jb.00098-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
Pterins are ubiquitous biomolecules with diverse functions including roles as cofactors, pigments, and redox mediators. Recently, a novel pterin-dependent signaling pathway that controls biofilm formation was identified in the plant pathogen, Agrobacterium tumefaciens A key player in this pathway is a pteridine reductase termed PruA, where its enzymatic activity has been shown to control surface attachment and limit biofilm formation. Here, we biochemically characterize PruA to investigate the catalytic properties and substrate specificity of this pteridine reductase. PruA demonstrates maximal catalytic efficiency with dihydrobiopterin and comparable activities with the stereoisomers dihydromonapterin and dihydroneopterin. Since A. tumefaciens does not synthesize or utilize biopterins, the likely physiological substrate is dihydromonapterin or dihydroneopterin, or both. Notably, PruA does not exhibit pteridine reductase activity with dihydrofolate or fully oxidized pterins. Site-directed mutagenesis studies of a conserved tyrosine residue, the key component of a putative catalytic triad, indicate that this tyrosine is not directly involved in PruA catalysis but may be important for substrate or cofactor binding. Additionally, mutagenesis of the arginine residue in the N-terminal TGX3RXG motif significantly reduces the catalytic efficiency of PruA, supporting its proposed role in pterin binding and catalysis. Finally, we report the enzymatic characterization of PruA homologs from Pseudomonas aeruginosa and Brucella abortus, thus expanding the roles and potential significance of pteridine reductases in diverse bacteria.Importance Biofilms are complex multicellular communities that are formed by diverse bacteria. In the plant pathogen, Agrobacterium tumefaciens, the transition from a free-living motile state to a non-motile biofilm state is governed by a novel signaling pathway involving small molecules called pterins. The involvement of pterins in biofilm formation is unexpected and prompts many questions about the molecular details of this pathway. This work biochemically characterizes the PruA pteridine reductase involved in the signaling pathway to reveal its enzymatic properties and substrate preference, thus providing important insight into pterin biosynthesis and its role in A. tumefaciens biofilm control. Additionally, the enzymatic characteristics of related pteridine reductases from mammalian pathogens are examined to uncover potential roles of these enzymes in other bacteria.
Collapse
Affiliation(s)
- Monica Labine
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lisa DePledge
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA, USA
| | - Nathan Feirer
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kylie D Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
20
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
21
|
Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med Chem 2019; 11:2107-2130. [DOI: 10.4155/fmc-2018-0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.
Collapse
|
22
|
Landi G, Linciano P, Borsari C, Bertolacini CP, Moraes CB, Cordeiro-da-Silva A, Gul S, Witt G, Kuzikov M, Costi MP, Pozzi C, Mangani S. Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors. ACS Infect Dis 2019; 5:1105-1114. [PMID: 31012301 DOI: 10.1021/acsinfecdis.8b00358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cycloguanil is a known dihydrofolate-reductase (DHFR) inhibitor, but there is no evidence of its activity on pteridine reductase (PTR), the main metabolic bypass to DHFR inhibition in trypanosomatid parasites. Here, we provide experimental evidence of cycloguanil as an inhibitor of Trypanosoma brucei PTR1 (TbPTR1). A small library of cycloguanil derivatives was developed, resulting in 1 and 2a having IC50 values of 692 and 186 nM, respectively, toward TbPTR1. Structural analysis revealed that the increased potency of 1 and 2a is due to the combined contributions of hydrophobic interactions, H-bonds, and halogen bonds. Moreover, in vitro cell-growth-inhibition tests indicated that 2a is also effective on T. brucei. The simultaneous inhibition of DHFR and PTR1 activity in T. brucei is a promising new strategy for the treatment of human African trypanosomiasis. For this purpose, 1,6-dihydrotriazines represent new molecular tools to develop potent dual PTR and DHFR inhibitors.
Collapse
Affiliation(s)
- Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Borsari
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Claudia P. Bertolacini
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Carolina B. Moraes
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde and IBMC-Institute for Molecular and Cell Biology, Universidade do Porto and Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), 4150-180 Porto, Portugal
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
23
|
Serban G. Future Prospects in the Treatment of Parasitic Diseases: 2-Amino-1,3,4-Thiadiazoles in Leishmaniasis. Molecules 2019; 24:E1557. [PMID: 31010226 PMCID: PMC6514673 DOI: 10.3390/molecules24081557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
Neglected tropical diseases affect the lives of a billion people worldwide. Among them, the parasitic infections caused by protozoan parasites of the Trypanosomatidae family have a huge impact on human health. Leishmaniasis, caused by Leishmania spp., is an endemic parasitic disease in over 88 countries and is closely associated with poverty. Although significant advances have been made in the treatment of leishmaniasis over the last decade, currently available chemotherapy is far from satisfactory. The lack of an approved vaccine, effective medication and significant drug resistance worldwide had led to considerable interest in discovering new, inexpensive, efficient and safe antileishmanial agents. 1,3,4-Thiadiazole rings are found in biologically active natural products and medicinally important synthetic compounds. The thiadiazole ring exhibits several specific properties: it is a bioisostere of pyrimidine or benzene rings with prevalence in biologically active compounds; the sulfur atom increases lipophilicity and combined with the mesoionic character of thiadiazoles imparts good oral absorption and good cell permeability, resulting in good bioavailability. This review presents synthetic 2-amino-1,3,4-thiadiazole derivatives with antileishmanial activity. Many reported derivatives can be considered as lead compounds for the synthesis of future agents as an alternative to the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Georgeta Serban
- Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga, 410028 Oradea, Romania.
| |
Collapse
|
24
|
Linciano P, Pozzi C, Iacono LD, di Pisa F, Landi G, Bonucci A, Gul S, Kuzikov M, Ellinger B, Witt G, Santarem N, Baptista C, Franco C, Moraes CB, Müller W, Wittig U, Luciani R, Sesenna A, Quotadamo A, Ferrari S, Pöhner I, Cordeiro-da-Silva A, Mangani S, Costantino L, Costi MP. Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections. J Med Chem 2019; 62:3989-4012. [DOI: 10.1021/acs.jmedchem.8b02021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pasquale Linciano
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lucia dello Iacono
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessio Bonucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Nuno Santarem
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Catarina Baptista
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Caio Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisaem Energia e Materiais (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisaem Energia e Materiais (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | | | | | - Rosaria Luciani
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antony Sesenna
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antonio Quotadamo
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | | | - Anabela Cordeiro-da-Silva
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Luca Costantino
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Maria Paola Costi
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
25
|
Ferreira LLG, Andricopulo AD. Chemoinformatics Strategies for Leishmaniasis Drug Discovery. Front Pharmacol 2018; 9:1278. [PMID: 30443215 PMCID: PMC6221941 DOI: 10.3389/fphar.2018.01278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis is a fatal neglected tropical disease (NTD) that is caused by more than 20 species of Leishmania parasites. The disease kills approximately 20,000 people each year and more than 1 billion are susceptible to infection. Although counting on a few compounds, the therapeutic arsenal faces some drawbacks such as drug resistance, toxicity issues, high treatment costs, and accessibility problems, which highlight the need for novel treatment options. Worldwide efforts have been made to that aim and, as well as in other therapeutic areas, chemoinformatics have contributed significantly to leishmaniasis drug discovery. Breakthrough advances in the comprehension of the parasites’ molecular biology have enabled the design of high-affinity ligands for a number of macromolecular targets. In addition, the use of chemoinformatics has allowed highly accurate predictions of biological activity and physicochemical and pharmacokinetics properties of novel antileishmanial compounds. This review puts into perspective the current context of leishmaniasis drug discovery and focuses on the use of chemoinformatics to develop better therapies for this life-threatening condition.
Collapse
Affiliation(s)
- Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
26
|
Panecka-Hofman J, Pöhner I, Spyrakis F, Zeppelin T, Di Pisa F, Dello Iacono L, Bonucci A, Quotadamo A, Venturelli A, Mangani S, Costi M, Wade RC. Comparative mapping of on-targets and off-targets for the discovery of anti-trypanosomatid folate pathway inhibitors. Biochim Biophys Acta Gen Subj 2017; 1861:3215-3230. [DOI: 10.1016/j.bbagen.2017.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/06/2023]
|
27
|
Linciano P, Dawson A, Pöhner I, Costa DM, Sá MS, Cordeiro-da-Silva A, Luciani R, Gul S, Witt G, Ellinger B, Kuzikov M, Gribbon P, Reinshagen J, Wolf M, Behrens B, Hannaert V, Michels PAM, Nerini E, Pozzi C, di Pisa F, Landi G, Santarem N, Ferrari S, Saxena P, Lazzari S, Cannazza G, Freitas-Junior LH, Moraes CB, Pascoalino BS, Alcântara LM, Bertolacini CP, Fontana V, Wittig U, Müller W, Wade RC, Hunter WN, Mangani S, Costantino L, Costi MP. Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. ACS OMEGA 2017; 2:5666-5683. [PMID: 28983525 PMCID: PMC5623949 DOI: 10.1021/acsomega.7b00473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained.
Collapse
Affiliation(s)
- Pasquale Linciano
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alice Dawson
- Biological Chemistry &
Drug Discovery, School of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Ina Pöhner
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - David M. Costa
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Monica S. Sá
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Rosaria Luciani
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sheraz Gul
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | | | - Maria Kuzikov
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | | | - Markus Wolf
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Birte Behrens
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Véronique Hannaert
- Research Unit for Tropical
Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Paul A. M. Michels
- Research Unit for Tropical
Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Erika Nerini
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio di Pisa
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nuno Santarem
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Stefania Ferrari
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Puneet Saxena
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sandra Lazzari
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Cannazza
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Bruno S. Pascoalino
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Laura M. Alcântara
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Claudia P. Bertolacini
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Vanessa Fontana
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Ulrike Wittig
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - Wolfgang Müller
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ−ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - William N. Hunter
- Biological Chemistry &
Drug Discovery, School of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | | | - Luca Costantino
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Maria P. Costi
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
28
|
Gu YT, Wang YC, Zhang HJ, Zhao TT, Sun SF, Wang H, Zhu B, Li P. Protective effect of dihydropteridine reductase against oxidative stress is abolished with A278C mutation. J Zhejiang Univ Sci B 2017. [DOI: 10.1631/jzus.b1600123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Gibson MW, Dewar S, Ong HB, Sienkiewicz N, Fairlamb AH. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase. PLoS Negl Trop Dis 2016; 10:e0004714. [PMID: 27175479 PMCID: PMC4866688 DOI: 10.1371/journal.pntd.0004714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.
Collapse
Affiliation(s)
- Marc W. Gibson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simon Dewar
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Han B. Ong
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Natasha Sienkiewicz
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
30
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
31
|
Antileishmanial activity of quinazoline derivatives: Synthesis, docking screens, molecular dynamic simulations and electrochemical studies. Eur J Med Chem 2015; 92:314-31. [DOI: 10.1016/j.ejmech.2014.12.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/23/2014] [Accepted: 12/28/2014] [Indexed: 12/31/2022]
|
32
|
Ong HB, Lee WS, Patterson S, Wyllie S, Fairlamb AH. Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage Trypanosoma brucei. Mol Microbiol 2014; 95:143-56. [PMID: 25367138 PMCID: PMC4460637 DOI: 10.1111/mmi.12853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 12/29/2022]
Abstract
De novo synthesis of threonine from aspartate occurs via the β-aspartyl phosphate pathway in plants, bacteria and fungi. However, the Trypanosoma brucei genome encodes only the last two steps in this pathway: homoserine kinase (HSK) and threonine synthase. Here, we investigated the possible roles for this incomplete pathway through biochemical, genetic and nutritional studies. Purified recombinant TbHSK specifically phosphorylates L-homoserine and displays kinetic properties similar to other HSKs. HSK null mutants generated in bloodstream forms displayed no growth phenotype in vitro or loss of virulence in vivo. However, following transformation into procyclic forms, homoserine, homoserine lactone and certain acyl homoserine lactones (AHLs) were found to substitute for threonine in growth media for wild-type procyclics, but not HSK null mutants. The tsetse fly is considered to be an unlikely source of these nutrients as it feeds exclusively on mammalian blood. Bioinformatic studies predict that tsetse endosymbionts possess part (up to homoserine in Wigglesworthia glossinidia) or all of the β-aspartyl phosphate pathway (Sodalis glossinidius). In addition S. glossinidius is known to produce 3-oxohexanoylhomoserine lactone which also supports trypanosome growth. We propose that T. brucei has retained HSK and threonine synthase in order to salvage these nutrients when threonine availability is limiting.
Collapse
Affiliation(s)
- Han B Ong
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
33
|
De Paula Lima CV, Batista M, Kugeratski FG, Vincent IM, Soares MJ, Probst CM, Krieger MA, Marchini FK. LM14 defined medium enables continuous growth of Trypanosoma cruzi. BMC Microbiol 2014; 14:238. [PMID: 25213265 PMCID: PMC4172853 DOI: 10.1186/s12866-014-0238-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, alternates between distinct morphological and functional forms during its life cycle. Axenic multiplication and differentiation processes of this protozoan parasite can be reproduced in vitro, enabling the isolation and study of the different evolutionary forms. Although there are several publications attempting the cultivation of T. cruzi under chemically defined conditions, in our experience none of the published media are capable of maintaining T. cruzi in continuous growth. RESULTS In this work we modified a known chemically defined medium for Trypanosoma brucei growth. The resulting LM14 and LM14B defined media enabled cultivation of five different strains of T. cruzi for more than forty passages until now. The parasite's biological characteristics such as morphology and differentiation to metacyclic trypomastigotes were maintained when defined media is used. CONCLUSIONS The establishment of a defined medium for T. cruzi cultivation is an important tool for basic biological research allowing several different approaches, providing new perspectives for further studies related to cell biology of this parasite.
Collapse
|
34
|
Bernal FA, Coy-Barrera E. In-silico analyses of sesquiterpene-related compounds on selected Leishmania enzyme-based targets. Molecules 2014; 19:5550-69. [PMID: 24786692 PMCID: PMC6271876 DOI: 10.3390/molecules19055550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 01/22/2023] Open
Abstract
A great number of sesquiterpenes are reported in the available literature as good antileishmanial leads. However, their mode of action at the molecular level has not been elucidated. The lack of molecular studies could be considered an impediment for studies seeking to improve sesquiterpene-based drug design. The present in silico study allows us to make important observations about the molecular details of the binding modes of a set of antileishmanial sesquiterpenes against four drug-enzyme targets [pteridine reductase-1 (PTR1), N-myristoyl transferase (NMT), cysteine synthase (CS), trypanothione synthetase (TryS)]. Through molecular docking it was found that two sesquiterpene coumarins are promising leads for the PTR1 and TryS inhibition purposes, and some xanthanolides also exhibited better affinity towards PTR1 and CS binding. In addition, the affinity values were clustered by Principal Component Analysis and drug-like properties were analyzed for the strongest-docking sesquiterpenes. The results are an excellent starting point for future studies of structural optimization of this kind of compounds.
Collapse
Affiliation(s)
- Freddy A Bernal
- Laboratorio de Química Bioorgánica, Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cundinamarca 250240, AA 49300, Colombia.
| | - Ericsson Coy-Barrera
- Laboratorio de Química Bioorgánica, Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cundinamarca 250240, AA 49300, Colombia.
| |
Collapse
|
35
|
Dube D, Sharma S, Singh TP, Kaur P. Pharmacophore Mapping, In Silico Screening and Molecular Docking to Identify SelectiveTrypanosoma bruceiPteridine Reductase Inhibitors. Mol Inform 2014; 33:124-34. [DOI: 10.1002/minf.201300023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022]
|
36
|
Kaur J, Dutta S, Chang KP, Singh N. A member of the Ras oncogene family, RAP1A, mediates antileishmanial activity of monastrol. J Antimicrob Chemother 2013; 68:1071-80. [PMID: 23292345 PMCID: PMC3625431 DOI: 10.1093/jac/dks507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the mode of action of monastrol in intracellular Leishmania. Methods Microarray experiments were conducted on an Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array, to determine the genes that encode proteins related to pathological alterations of cell signalling pathways in intracellular Leishmania amastigotes in response to monastrol treatment. Results Monastrol induced unprenylated Rap1A in intracellular Leishmania when exposed to this anticancer drug at the IC50 (10 μM). Monastrol, known to cause mitotic arrest in cancer cells, inhibited Rap1A prenylation (geranylgeranylation) in intracellular Leishmania, which resulted in blockade at the G1 phase of the cell cycle. Growth inhibition, rather than apoptosis, was found to be the mechanism by which monastrol displays antileishmanial activity. Conclusions Prenylation inhibitors (unprenylation) of cell signalling pathways can be exploited in Leishmania parasites as novel therapeutic tools.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute (CSIR), Chattar Manzil Palace, Lucknow, India
| | | | | | | |
Collapse
|
37
|
Gu Y, Gong Y, Zhang H, Dong X, Zhao T, Burczynski FJ, Wang G, Sun S, Zhu B, Han W, Wang H, Li P. Regulation of transforming growth factor beta 1 gene expression by dihydropteridine reductase in kidney 293T cells. Biochem Cell Biol 2012; 91:187-93. [PMID: 23668792 DOI: 10.1139/bcb-2012-0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Quinoid dihydropteridine reductase (QDPR) is an enzyme involved in the metabolic pathway of tetrahydrobiopterin (BH4). BH4 is an essential cofactor of nitric oxide synthase (NOS) and can catalyze arginine to citrulline to release nitric oxide. Point mutations of QDPR have been found in the renal cortex of spontaneous Otsuka Long Evans Tokushima Fatty (OLETF) diabetic rats. However, the role of QDPR in DN is not clear. This study investigates the effects of QDPR overexpression and knockdown on gene expression in the kidney. Rat QDPR cDNA was cloned into pcDNA3.1 vector and transfected in human kidney cells (293T). The expression of NOS, transforming growth factor beta 1 (TGF-β1), Smad3, and NADPH oxidase were examined by RT-PCR and Western blot analyses. BH4 was assayed by using ELISA. Expression of QDPR was significantly decreased and TGF-β1 and Smad3 were increased in the renal cortex of diabetic rats. Transfection of QDPR into 293T cells increased the abundance of QDPR in cytoplasm and significantly reduced the expression of TGF-β1, Smad3, and the NADPH oxidases NOX1 and NOX4. Moreover, abundance of neuronal NOS (nNOS) mRNA and BH4 content were significantly increased. Furthermore, inhibition of QDPR resulted in a significant increase in TGF-β1 expression. In conclusion, QDPR might be an important factor mediating diabetic nephropathy through its regulation of TGF-β1/Smad3 signaling and NADPH oxidase.
Collapse
Affiliation(s)
- Yanting Gu
- Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.
Collapse
|