1
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
2
|
Luo G, Chen J, Ren Z. Regulation of Methylase METTL3 on Fat Deposition. Diabetes Metab Syndr Obes 2021; 14:4843-4852. [PMID: 34984016 PMCID: PMC8709552 DOI: 10.2147/dmso.s344472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and abundant type of internal post-transcriptional RNA modification in eukaryotic cells. METTL3 is a methylation modifying enzyme, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing. In addition, it was found that 67% of 3'-UTR regions containing m6A sites had at least one miRNA binding site, and the number of m6A at 3'-UTR sites was closely related to the binding sites of miRNA. With the improvement of human living standards, obesity has become a very serious and urgent problem. The essence of obesity is the accumulation of excess fat. Exploring the origin and development mechanisms of adipocyte from the perspective of fat deposition has always been a hotspot in the field of adipocyte research. The aim of the present review is to focus on METTL3 regulating fat deposition through mRNA/adipocyte differentiation axis and pri-miRNA/pre-miRNA/target genes/adipocyte differentiation and to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for obesity, fat deposition disease and molecular breeding.
Collapse
Affiliation(s)
- Gang Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Jialing Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| |
Collapse
|
3
|
Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194609. [PMID: 32730897 DOI: 10.1016/j.bbagrm.2020.194609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
A wealth of biochemical and cellular data, accumulated over several years by multiple groups, has provided a great degree of insight into the molecular mechanisms of actions of GCN5 and PCAF in gene activation. Studies of these lysine acetyltransferases (KATs) in vitro, in cultured cells, have revealed general mechanisms for their recruitment by sequence-specific binding factors and their molecular functions as transcriptional co-activators. Genetic studies indicate that GCN5 and PCAF are involved in multiple developmental processes in vertebrates, yet our understanding of their molecular functions in these contexts remains somewhat rudimentary. Understanding the functions of GCN5/PCAF in developmental processes provides clues to the roles of these KATs in disease states. Here we will review what is currently known about the developmental roles of GCN5 and PCAF, as well as emerging role of these KATs in oncogenesis.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.
| |
Collapse
|
4
|
Bisphenol A enhances adipogenic signaling pathways in human mesenchymal stem cells. Genes Environ 2020; 42:13. [PMID: 32175033 PMCID: PMC7065324 DOI: 10.1186/s41021-020-00150-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background The endocrine disruptor Bisphenol-A (BPA), has been involved in dysregulating adipose tissue development and increasing the risk of obesity. The objective of this experiment was to investigate whether treatment of human mesenchymal stem cells with BPA could modulate adipogenesis and adipocyte differentiation. Methods In this experimental study, the human adipose-derived mesenchymal stem cells (hASCs) were cultured for 2 weeks with continuous exposure to 10− 10 M or 10− 8 M concentrations of BPA. The extent of triglyceride accumulation was visualized by Oil Red O staining. To evaluate BPA effect on the expression levels of key adipogenic trascripotion factors and proteins, we used Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and ELISA. Results The results presented a dose-dependent triglyceride accumulation in treated cells with BPA. Additionally, we observed that BPA induced transcription of the Peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT-enhancer-binding protein-alpha (C/EBPα), CCAAT-enhancer-binding protein-beta (C/EBPβ), sterol regulatory element-binding protein-1c (SREBP1c), Fatty acid synthase (FASN), and lipoprotein lipase (LPL); BPA suppressed the expression of Fatty acid binding protein-4 (FABP4) and Estrogen receptor-beta (ERβ). Conclusions Our findings supported the hypothesis that BPA enhances adipogenic differentiation thereby may play a role in development of obesity and dysregulation of metabolic homoeostasis.
Collapse
|
5
|
Xu T, Zhao K, Guo X, Tu J, Zhang D, Sun W, Kong X. Low-intensity pulsed ultrasound inhibits adipogenic differentiation via HDAC1 signalling in rat visceral preadipocytes. Adipocyte 2019; 8:292-303. [PMID: 31322450 PMCID: PMC6768184 DOI: 10.1080/21623945.2019.1643188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-drug strategy targeting adipocyte differentiation is critical for alleviating visceral obesity and its related diseases. However, whether and how low intensity pulsed ultrasound (LIPUS) could be used for inhibiting visceral adipocyte differentiation is not fully understood. In this study, we aim to investigate the effect and associated mechanism of LIPUS on primary visceral preadipocyte differentiation and explore its potential role for clinical visceral obesity management. The preadipocytes were daily exposed to LIPUS (0.5 MHz, 1.2 MPa) for 10 min. Adipogenic differentiation was estimated by the formation of lipid droplets and the levels of adipogenic transcriptional factors and representative markers. Mitogen-activated protein kinase (MAPK) member proteins and histone acetylation-related molecules were measured by western blotting. LIPUS stimulation with an average acoustic pressure of 1.2 MPa led to a prominent inhibition of adipogenic differentiation and expression of adipogenic markers. As a mechanism, LIPUS treatment increased the nuclear levels of histone deacetylase 1 (HDAC1) and decreased the acetylation of histone 3 and histone 4. Meanwhile, the inhibition of the HDAC1 could block the inhibitory effect of LIPUS on adipogenic differentiation via increasing AcH3 and AcH4 levels. Our study may provide an ultrasound-based promising strategy for clinical visceral obesity control.
Collapse
Affiliation(s)
- Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Lee E, Lee HA, Kim M, Do GY, Cho HM, Kim GJ, Jung H, Song JH, Cho JM, Kim I. Upregulation of C/EBPβ and TSC2 by an HDAC inhibitor CG200745 protects heart from DOCA-induced hypertrophy. Clin Exp Pharmacol Physiol 2018; 46:226-236. [PMID: 30099761 DOI: 10.1111/1440-1681.13022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
Abstract
Histone deacetylases (HDACs) are a vast family divided into four major classes: class I (1, 2, 3, and 8), class II (4, 5, 6, 7, 9 and 10), class III (sirtuin family) and class IV (HDAC11). HDAC inhibition attenuates cardiac hypertrophy through suppression of the mechanistic target of rapamycin complex1 (mTORC1) signaling. HDAC inhibitors upregulate the expression of tuberous sclerosis complex 2 (TSC2), an mTORC1 inhibitor. However, the molecular mechanism underlying HDAC inhibitor-mediated upregulation of TSC2 is unclear. We hypothesized that an HDAC inhibitor, CG200745 (CG), ameliorates cardiac hypertrophy through the inhibition of mTORC1 signaling by upregulating of the CCAAT/enhancer-binding protein-β (C/EBP-β)/TSC2 pathway. To establish a cardiac hypertrophy model, deoxycorticosterone acetate (DOCA, 40 mg/kg/wk) was subcutaneously injected for 4 weeks into Sprague-Dawley rats. All rats were unilaterally nephrectomized and had free access to drinking water containing 1% NaCl with or without CG of different concentrations. The expression level of TSC2 and C/EBP-β was measured by quantitative real-time PCR (qRT-PCR) and western blot analysis. Acetylation of C/EBP-β was analyzed by immunoprecipitation. The recruitment of C/EBP-β and polymerase II (Pol II) on TSC2 promoter region was analyzed by chromatin immunoprecipitation (ChIP). CG treatment increased the expression of TSC2. In addition, CG treated rats showed an increased in the expression and acetylation of C/EBP-β, owing to the increase in the recruitment of C/EBP-β and Pol II at Tsc2 gene promoter. Thus, CG ameliorates cardiac hypertrophy through the inhibition of mTORC1 signaling via upregulation of the C/EBP-β/TSC2 pathway in DOCA-induced hypertensive rats.
Collapse
Affiliation(s)
- Eunjo Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hae-Ahm Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mina Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ga Young Do
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun-Min Cho
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Gun Jik Kim
- Department of Thoracic and Cardiovascular Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Hanna Jung
- Department of Thoracic and Cardiovascular Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Jung Hup Song
- Division of Public Health Medical Service, Kyungpook National University Hospital, Daegu, Korea
| | | | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
7
|
Hansberg-Pastor V, González-Arenas A, Camacho-Arroyo I. CCAAT/enhancer binding protein β negatively regulates progesterone receptor expression in human glioblastoma cells. Mol Cell Endocrinol 2017; 439:317-327. [PMID: 27663075 DOI: 10.1016/j.mce.2016.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/29/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Many progesterone (P4) actions are mediated by its intracellular receptor (PR), which has two isoforms (PR-A and PR-B) differentially transcribed from separate promoters of a single gene. In glioblastomas, the most frequent and aggressive brain tumors, PR-B is the predominant isoform. In an in silico analysis we showed putative CCAAT/Enhancer Binding Protein (C/EBP) binding sites at PR-B promoter. We evaluated the role of C/EBPβ in PR-B expression regulation in glioblastoma cell lines, which expressed different ratios of PR and C/EBPβ isoforms (LAP1, LAP2, and LIP). ChIP assays showed a significant basal binding of C/EBPβ, specific protein 1 (Sp1) and estrogen receptor alpha (ERα) to PR-B promoter. C/EBPβ knockdown increased PR-B expression and treatment with estradiol (E2) reduced C/EBPβ binding to the promoter and up-regulated PR-B expression. P4 induced genes were differently regulated when CEBP/β was silenced. These data show that C/EBPβ negatively regulates PR-B expression in glioblastoma cells.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, UNAM, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Park JM, Jo SH, Kim MY, Kim TH, Ahn YH. Role of transcription factor acetylation in the regulation of metabolic homeostasis. Protein Cell 2015; 6:804-13. [PMID: 26334401 PMCID: PMC4624674 DOI: 10.1007/s13238-015-0204-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) of transcription factors play a crucial role in regulating metabolic homeostasis. These modifications include phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. Recent studies have shed light on the importance of lysine acetylation at nonhistone proteins including transcription factors. Acetylation of transcription factors affects subcellular distribution, DNA affinity, stability, transcriptional activity, and current investigations are aiming to further expand our understanding of the role of lysine acetylation of transcription factors. In this review, we summarize recent studies that provide new insights into the role of protein lysine-acetylation in the transcriptional regulation of metabolic homeostasis.
Collapse
Affiliation(s)
- Joo-Man Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Seong-Ho Jo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
9
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
10
|
Kuzmochka C, Abdou HS, Haché RJG, Atlas E. Inactivation of histone deacetylase 1 (HDAC1) but not HDAC2 is required for the glucocorticoid-dependent CCAAT/enhancer-binding protein α (C/EBPα) expression and preadipocyte differentiation. Endocrinology 2014; 155:4762-73. [PMID: 25203139 DOI: 10.1210/en.2014-1565] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several drugs currently used in the management of mood disorders, epilepsy (ie, valproic acid), or the control of inflammation (ie, corticosteroids) have been shown to promote visceral obesity in humans by increasing the number of newly formed adipocytes. Valproic acid is classified as a nonspecific histone deacetylase (HDAC) inhibitor, along with trichostatin A and butyric acid. In vitro experiments have demonstrated that such molecules greatly enhance the rate of preadipocyte differentiation, similarly to the effect of corticosteroids. The glucocorticoid receptor stimulates adipogenesis in part by enhancing the transcription of C/ebpa through the titration, and subsequent degradation, of HDAC1 from the C/ebpα promoter. There is, however, controversy in the literature as to the role of HDACs during adipogenesis. In this study, we sought to demonstrate, using 2 different strategies, the definite role of HDAC1 in adipogenesis. By using small interference RNA-mediated knockdown of HDAC1 and by generating an enzymatically inactive HDAC1D181A by site-directed mutagenesis, we were able to show that HDAC1, but not HDAC2, suppresses glucocorticoid receptor-potentiated preadipocyte differentiation by decreasing CCAAT/enhancer-binding protein (C/ebp)α and Pparγ expression levels at the onset of differentiation. Finally, we demonstrate that HDAC1D181A acts as a dominant negative mutant of HDAC1 during adipogenesis by modulating C/EBPβ transcriptional activity on the C/ebpα promoter.
Collapse
Affiliation(s)
- Claire Kuzmochka
- Northern Ontario School of Medicine, Ontario, Canada ON POM Reproduction, Mother and Youth Health (H.-S.A.), CHUQ Research Centre, Quebec city, Quebec, Canada G1R2J6; Environmental Health Science and Research Bureau (E.A.), Health Canada, Ottawa, Ontario, Canada M3J1P3; and York University (R.J.G.H.), Toronto, Ontario, Canada K1A0K9
| | | | | | | |
Collapse
|
11
|
Atlas E, Pope L, Wade MG, Kawata A, Boudreau A, Boucher JG. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter. Adipocyte 2014; 3:170-9. [PMID: 25068083 PMCID: PMC4110093 DOI: 10.4161/adip.28436] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/22/2023] Open
Abstract
Environmental pollutants, such as bisphenol A (BPA), have the potential to affect the differentiation processes and the biology of the adipose tissue. The 3T3-L1 model is one of the murine cell models used extensively for the investigation of the molecular events that govern the differentiation of adipocytes from a committed preadipocyte to a mature, lipid laden adipocyte. Most of the studies investigating the effects of BPA on preadipocyte differentiation have investigated the effects of this chemical in the presence of an optimal differentiation cocktail containing high concentrations of the synthetic glucocorticoid dexamethasone, conditions that result in 90% to 100% of differentiated adipocytes. Our studies employed the 3T3-L1 cell model in the absence of exogenous glucocorticoids. We show that BPA is able to increase the differentiation of the 3T3-L1 cells under these conditions. Furthermore, the effect of BPA was observed in the absence of the synthetic glucocorticoid (dexamethasone), a hormone known to be required for the differentiation of the 3T3-L1 cells. In addition, BPA upregulated the mRNA expression and protein levels of the terminal marker of adipogenesis the fatty acid binding protein (aP2) in these cells. Interestingly, the known modulators of adipogenesis such as the peroxisome proliferator-activated receptor (PPAR) γ or CCAAT enhancer binding protein (C/EBP) α were not elevated at the mRNA or protein level in response to BPA. Furthermore, BPA upregulated the expression levels of the marker of adipogenesis aP2, through an effect on the transcriptional activity of C/EBPδ and the glucocorticoid receptor (GR) at its promoter.
Collapse
|
12
|
Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis. Eur J Cell Biol 2014; 93:170-7. [PMID: 24810880 DOI: 10.1016/j.ejcb.2014.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 01/14/2023] Open
Abstract
Adipogenesis is a complex process strictly regulated by a well-established cascade that has been thoroughly studied in the last two decades. This process is governed by complex regulatory networks that involve the activation/inhibition of multiple functional genes, and is controlled by histone-modifying enzymes. Among such modification enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the transcriptional regulation and post-translational modification of protein acetylation. HATs and HDACs have been shown to respond to signals that regulate cell differentiation, participate in the regulation of protein acetylation, mediate transcription and post-translation modifications, and directly acetylate/deacetylate various transcription factors and regulatory proteins. In this paper, we review the role of HATs and HDACs in white and brown adipocyte differentiation and adipogenesis, to expand our knowledge on fat formation and adipose tissue biology.
Collapse
|
13
|
Kim MA, Kang K, Lee HJ, Kim M, Kim CY, Nho CW. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sci 2014; 101:64-72. [PMID: 24582594 DOI: 10.1016/j.lfs.2014.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/14/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
AIMS Obesity develops when energy intake chronically exceeds total energy expenditure. We sought to assess whether the flavonoid-rich fraction of crude extracts from Daphne genkwa Siebold et Zuccarini (GFF) might inhibit adipogenesis of 3T3-L1 cells. MAIN METHODS Cell viability of 3T3-L1 preadipocytes was assessed by MTT assays, and lipid accumulation was measured by Oil Red O. Adipogenesis related factors were checked by Western blot analysis. Flow cytometry was used to analyze the mitotic cell cycle during the mitotic clonal expansion phase. KEY FINDINGS Among five flavonoids isolated from GFF, only apigenin potently inhibited the differentiation of 3T3-L1 cells. Apigenin reduced CCAAT/enhancer binding protein (C/EBP) α and peroxisome proliferator-activated receptor γ levels. Apigenin-treated 3T3-L1 cells failed to undergo clonal expansion during the early phase of adipocyte differentiation. Apigenin arrested cell cycle progression at the G0/G1 phase. This effect was associated with a marked decrease in cyclin D1 and cyclin-dependent kinase 4 expression, with the concomitant and sustained expression of p27(Kip1). In addition, apigenin inhibited the DNA-binding activity of C/EBPβ in differentiating 3T3-L1 cells by down-regulating the 35kDa isoform of C/EBPβ (liver-enriched activating protein) and up-regulating the expression of two different sets of C/EBP inhibitors: C/EBP homologous protein and the phospho-liver-enriched inhibitory protein isoform of C/EBPβ. SIGNIFICANCE These findings suggest that apigenin can prevent 3T3-L1 preadipocyte differentiation by the inhibition of the mitotic clonal expansion and the adipogenesis related factors and upregulation of the expression of multiple C/EBPβ inhibitors.
Collapse
Affiliation(s)
- Mi-Ae Kim
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Kyungsu Kang
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Hee-Ju Lee
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Myungsuk Kim
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Chul Young Kim
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea.
| |
Collapse
|
14
|
Hanzu FA, Musri MM, Sánchez-Herrero A, Claret M, Esteban Y, Kaliman P, Gomis R, Párrizas M. Histone demethylase KDM1A represses inflammatory gene expression in preadipocytes. Obesity (Silver Spring) 2013; 21:E616-25. [PMID: 23595969 DOI: 10.1002/oby.20479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Persistent inflammation and impaired adipogenesis are frequent features of obesity and underlie the development of its complications. However, the factors behind adipose tissue dysfunction are not completely understood. Previously it was shown that histone demethylase KDM1A is required for adipogenesis. DESIGN AND METHODS Kdm1a expression was knocked down in 3T3-L1 preadipocytes by siRNA transfection and whole-genome expression profiling was performed by microarray hybridization. The role of NF-κβ and C/EBPβ was analyzed by incubation with the inhibitor parthenolide and by cebpb knockdown, respectively. RESULTS Knockdown of kdm1a or rcor2 in 3T3-L1 preadipocytes results in impaired differentiation and induction of inflammatory gene expression. Enhanced expression of il6 in kdm1a knocked down preadipocytes is associated with increased recruitment of C/EBPβ and the NF-κβ subunit RelA to the il6 promoter. Cebpb knockdown attenuates the induction of il6 expression in kdm1a knocked down cells, whereas simultaneous cebpb knockdown and NF-κβ inhibition abrogates it. Dietary-induced and genetic mouse models of obesity display decreased KDM1A in adipose tissue, and this correlates with increased expression of proinflammatory genes and C/EBPβ. CONCLUSION KDM1A represses the expression of inflammatory genes in preadipocytes. Dysregulated kdm1a expression in preadipocytes may thus participate in the development of obesity-associated inflammation.
Collapse
Affiliation(s)
- Felicia A Hanzu
- Diabetes and Obesity Laboratory, IDIBAPS, CIBERDEM, Barcelona, Spain; Endocrinology and Nutrition Unit, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abdou HS, Atlas E, Haché RJG. A positive regulatory domain in CCAAT/enhancer binding protein β (C/EBPΒ) is required for the glucocorticoid-mediated displacement of histone deacetylase 1 (HDAC1) from the C/ebpα promoter and maximum adipogenesis. Endocrinology 2013; 154:1454-64. [PMID: 23456364 DOI: 10.1210/en.2012-2061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids promote adipogenesis and contribute to the metabolic syndrome through a number of mechanisms. One of the effectors of glucocorticoid action is the CCAAT/enhancer binding protein β (C/EBPβ). C/EBPβ is a basic leucine-zipper transcription factor involved in diverse processes including differentiation, cellular proliferation, and inflammation. C/EBPβ transcriptional activity is regulated, in part, by its acetylation profile resulting from its dynamic interaction with either acetylases general control nonrepressed protein 5/p300/CBP associated factor (GCN5/PCAF) or deacetylase complexes (mSin3A/histone deacetylase 1 [HDAC1]). Glucocorticoid treatment of preadipocytes promotes C/EBPβ acetylation, leading to mSin3A/HDAC1 dissociation from C/EBPβ and resulting in C/ebpα promoter activation at the onset of adipogenesis, thus increasing the differentiation rate. We recently showed that the regulatory domain 1 (RD1) of C/EBPβ contains four residues (153-156) required for its interaction with HDAC1, therefore supporting RD1 proposed inhibitory role. In an attempt to further elucidate the intrinsic regulatory property of RD1, we sought to characterize the regulatory potential of the N terminus region of RD1 (residues 141-149). In this study, we show that C/EBPβΔ141-149 transcriptional activity was compromised on the C/ebpα, but not on the Pparγ, promoter. Additionally, the ability of C/EBPβΔ141-149 to induce adipogenesis in NIH 3T3 cells was compromised when compared with C/EBPβwt owing to a delayed expression of C/ebpα at the onset of differentiation. Furthermore, the data suggest that the reduced expression of C/ebpα in cells expressing C/EBPβΔ141-149 was due to a persistent recruitment of HDAC1 to the C/ebpα promoter after glucocorticoid treatment. Together, these results suggest that amino acids 141-149 of C/EBPβ act as a positive regulatory domain required for maximum transcriptional activity.
Collapse
Affiliation(s)
- Houssein-Salem Abdou
- Reproduction, Mother and Youth Health, CHUQ Research Centre, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
16
|
Esteves CL, Kelly V, Bégay V, Lillico SG, Leutz A, Seckl JR, Chapman KE. Stable conditional expression and effect of C/ebpβ-LIP in adipocytes using the pSLIK system. J Mol Endocrinol 2013; 51:91-8. [PMID: 23620165 PMCID: PMC3672996 DOI: 10.1530/jme-13-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Murine 3T3-L1 adipocytes are widely used as a cellular model of obesity. However, whereas transfection of 3T3-L1 preadipocytes is straightforward, ectopic gene expression in mature 3T3-L1 adipocytes has proved challenging. Here, we used the pSLIK vector system to generate stable doxycycline-inducible expression of the liver-enriched inhibitor protein isoform of CCAAT/enhancer binding protein β (C/ebpβ (Cebpb)) (C/EBPβ-LIP) in fully differentiated 3T3-L1 adipocytes. Because overexpression of C/ebpβ-LIP impairs adipocyte differentiation, the C/ebpβ-LIP construct was first integrated in 3T3-L1 preadipocytes but expression was induced only when adipocytes were fully differentiated. Increased C/EBPβ-LIP in mature adipocytes down-regulated C/ebpβ target genes including 11β-hydroxysteroid dehydrogenase type 1, phosphoenolpyruvate carboxykinase and fatty acid binding protein 4 but had no effect on asparagine synthetase, demonstrating that transcriptional down-regulation by C/ebpβ-LIP in 3T3-L1 adipocytes is not a general effect. Importantly, these genes were modulated in a similar manner in adipose tissue of mice with genetically increased C/ebpβ-LIP levels. The use of the pSLIK system to conditionally express transgenes in 3T3-L1 cells could be a valuable tool to dissect adipocyte physiology.
Collapse
Affiliation(s)
- Cristina L Esteves
- Endocrinology Unit, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Epigenetic regulation plays an essential role in cell differentiation, by allowing the establishment and maintenance of the gene-expression pattern of the mature cell type. Because of its importance in chronic diseases, adipogenesis is one of the best-studied differentiation processes. The hormonal and transcriptional cascades governing the differentiation of the adipocytes are well known, but the role of epigenetic mechanisms is only starting to emerge. In this review, we intend to summarize the recently described epigenetic events that participate in adipogenesis and their connections with the main factors that constitute the classical transcriptional cascade. RECENT FINDINGS The advent of high-throughput technologies has made possible the exhaustive analysis of the epigenetic phenomenons taking place during adipogenesis. The cooperative recruitment of CCAAT/enhancer-binding protein (C/EBPβ) and other early proadipogenic transcription factors to transcription factor hotspots shortly after induction of adipogenesis is required to establish a transient epigenomic state that then informs the recruitment of the later adipogenic transcription factors peroxisome proliferator-activated receptor (PPARγ) and C/EBPα to their target genes. SUMMARY Epigenetic marks and chromatin-modifying proteins contribute to adipogenesis and, through regulation of the phenotypic maintenance of the mature adipocytes, to the control of metabolism.
Collapse
Affiliation(s)
- Melina M Musri
- Department of Pulmonary Medicine, Hospital Clinic, IDIBAPS, CIBERDEM, Barcelona, Spain
| | | |
Collapse
|