1
|
Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol 2025; 42:108. [PMID: 40087196 DOI: 10.1007/s12032-025-02675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The tumor microenvironment (TME) contains tumor cells, surrounding cells, and secreted factors. It provides a favorable environment for the maintenance of cancer stem cells (CSCs), the spread of cancer cells to metastatic sites, angiogenesis, and apoptosis, as well as the growth, proliferation, invasion, and drug resistance of cancer cells. Cancer cells rely on the activation of oncogenes, inactivation of tumor suppressors, and the support of a normal stroma for their growth, proliferation, and survival, all of which are provided by the TME. The TME is characterized by the presence of various cells, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), CD8 + cytotoxic T cells (CTLs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), endothelial cells, adipocytes, and neuroendocrine (NE) cells. The high expression of inflammatory cytokines, angiogenic factors, and anti-apoptotic factors, as well as drug resistance mechanisms in the TME, contributes to the poor therapeutic efficacy of anticancer drugs and tumor progression. Hence, this review describes the mechanisms through which the TME is involved in apoptosis, angiogenesis, metastasis, and drug resistance in tumor cells.
Collapse
Affiliation(s)
- Yanhong Xiao
- Harbin Medical University Cancer Hospital, Harbin, 150006, Heilongjiang Province, China
| | - Mahan Hassani
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Li L, Yang Y, Peng M, Wang B, Zhu L, Chen C, Fan Z, Duan X, Xue R, Lv X, Cheng M, Zhao J. Molecular Subtyping and Therapeutic Targeting of IFNG-Driven Immunogenic Cell Death in Lung Adenocarcinoma. Cancer Med 2025; 14:e70678. [PMID: 39945555 PMCID: PMC11822994 DOI: 10.1002/cam4.70678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) can be triggered by various therapies to induce anti-tumor immune responses, significantly enhancing treatment effectiveness, and is widely utilized in tumor immunotherapy. METHODS LUAD data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) validated ICD-related molecular subtypes via consensus clustering. Clinical features, ICD genes, driver genes, mutations, tumor microenvironment, immune checkpoints, and drug sensitivity were compared. RT-qPCR, Western blot, immunofluorescence, ELISA, flow cytometry, and tube formation assays validated findings. RESULTS Differential expression of 33 ICD genes was observed between tumor and normal tissues. These genes were clustered into two groups via consensus clustering and validated with GEO data. Prognostic analysis indicated superior outcomes in cluster 2 across TCGA and GEO cohorts. Significant disparities in clinicopathological characteristics like stage, gender, and age were noted between subtypes. Cluster 2 exhibited heightened expression of ICD-related genes, driver genes, immune checkpoints, and immune cells. Cluster 2 also showed increased sensitivity to chemotherapy drugs. IFNG overexpression in A549 and H1299 cells induced CRT exposure, HMGB1 release, and ATP secretion, thereby promoting dendritic cell maturation and enhancing CD8+ T cell function. Additionally, IFNG boosted tumor angiogenesis via HMGB1 pathways, which could be mitigated by HMGB1 inhibition. CONCLUSION Identification of novel ICD-related molecular subtypes holds promise for guiding personalized therapies, assessing prognosis, and predicting immunotherapy efficacy in LUAD. IFNG emerges as a potential prognostic biomarker and therapeutic target, influencing both the tumor microenvironment and angiogenesis. These findings offer new insights into therapeutic strategies targeting IFNG-mediated pathways in LUAD.
Collapse
Affiliation(s)
- Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
- Cancer Center, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
- Medical SchoolHuanghe Science and Technology UniversityZhengzhouHenanChina
- Fuwai Central China Cardiovascular HospitalInternet Medical and System Applications of National Engineering LaboratoryZhengzhouHenanChina
| | - Yaqi Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
- Cancer Center, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Mengle Peng
- Department of Clinical LaboratoryHenan No. 3 Provincial People's HospitalZhengzhouHenanChina
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Biyue Wang
- Department of NephrologySeventh People's Hospital of ZhengzhouZhengzhouHenanChina
| | - Lili Zhu
- National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Chengxin Chen
- National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Zhirui Fan
- Department of Integrated Traditional and Western Medicine, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Ruyue Xue
- National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Xuefeng Lv
- Department of Clinical LaboratoryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ming Cheng
- Department of Medical Information, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
3
|
Rasouli M, Alavi M, D'Angelo A, Sobhani N, Roudi R, Safari F. Exploring the dichotomy of the mesenchymal stem cell secretome: Implications for tumor modulation via cell-signaling pathways. Int Immunopharmacol 2024; 143:113265. [PMID: 39353385 DOI: 10.1016/j.intimp.2024.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Current cancer therapeutic strategies for the treatment of cancer are often unsuccessful due to unwanted side effects and drug resistance. Therefore, the design and development of potent, new anticancer platforms, such as stem-cell treatments, have attracted much attention. Distinctive biological properties of stem cells include their capacity to secrete bioactive factors, their limited immunogenicity, and their capacity for renewing themselves. Mesenchymal stem cells (MSCs) are one of several kinds of stem cells that are conveniently extracted and are able to be cultivated in vitro utilizing various sources. The secretome of stem cells contains many trophic factors, including cytokines, chemokines, growth factors, and microRNA molecules that can either promote or inhibit the formation of tumors, based on the cell environment. In the current review, we focused on the secretome of mesenchymal stem cells. These stem cells act as a double-edged sword in the regulation of cell signal transduction pathways in that they can either suppress or promote tumors.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Alberto D'Angelo
- Oncology Department, Royal United Hospital, Bath BA1 3NG, United Kingdom
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
4
|
Asadi M, Zafari V, Sadeghi-Mohammadi S, Shanehbandi D, Mert U, Soleimani Z, Caner A, Zarredar H. The role of tumor microenvironment and self-organization in cancer progression: Key insights for therapeutic development. BIOIMPACTS : BI 2024; 15:30713. [PMID: 40256216 PMCID: PMC12008505 DOI: 10.34172/bi.30713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction The tumor microenvironment (TME) plays a pivotal role in cancer progression, influencing tumor initiation, growth, invasion, metastasis, and response to therapies. This study explores the dynamic interactions within the TME, particularly focusing on self-organization-a process by which tumor cells and their microenvironment reciprocally shape one another, leading to cancer progression and resistance. Understanding these interactions can reveal new prognostic markers and therapeutic targets within the TME, such as extracellular matrix (ECM) components, immune cells, and cytokine signaling pathways. Methods A comprehensive search method was employed to investigate the current academic literature on TME, particularly focusing on self-organization in the context of cancer progression and resistance across the PubMed, Google Scholar, and Science Direct databases. Results Recent studies suggest that therapies that disrupt TME self-organization could improve patient outcomes by defeating drug resistance and increasing the effectiveness of conventional therapy. Additionally, this research highlights the essential of understanding the biophysical properties of the TME, like cytoskeletal alterations, in the development of more effective malignancy therapy. Conclusion This review indicated that targeting the ECM and immune cells within the TME can improve therapy effectiveness. Also, by focusing on TME self-organization, we can recognize new therapeutic plans to defeat drug resistance.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Venus Zafari
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Jiang Y, Gao X, Zheng X, Lu Y, Zhang M, Yan W, Pan W, Li H, Zhang Y. Recent research progress on microRNAs from mesenchymal stem cell-derived exosomes for tumor therapy: A review. J Cancer Res Ther 2024; 20:1974-1982. [PMID: 39792406 DOI: 10.4103/jcrt.jcrt_540_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/28/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo). However, the role of MSC-Exo vesicles in tumors remains controversial. This review discusses the potential applications of microRNAs in exosomes derived from MSCs in treating tumors.
Collapse
Affiliation(s)
- Yifan Jiang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Gao
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xuezhen Zheng
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yan Lu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Minghan Zhang
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenxuan Yan
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wentao Pan
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hengli Li
- Emergency Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yueying Zhang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
7
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
8
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
9
|
Marín-Aquino LA, Mora-García MDL, Moreno-Lafont MC, García-Rocha R, Montesinos-Montesinos JJ, López-Santiago R, Sánchez-Torres LE, Torres-Pineda DB, Weiss-Steider B, Hernández-Montes J, Don-López CA, Monroy-García A. Adenosine increases PD-L1 expression in mesenchymal stromal cells derived from cervical cancer through its interaction with A 2AR/A 2BR and the production of TGF-β1. Cell Biochem Funct 2024; 42:e4010. [PMID: 38613217 DOI: 10.1002/cbf.4010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-β1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-β1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-β1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-β1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-β1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-β1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-β1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.
Collapse
Affiliation(s)
- Luis Antonio Marín-Aquino
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCyT, Ciudad de México, México
| | - María de Lourdes Mora-García
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ruben López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Laboratorio de Inmunología de los microorganismos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniela Berenice Torres-Pineda
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Christian Azucena Don-López
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Alberto Monroy-García
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| |
Collapse
|
10
|
Oliveira ML, Biggers A, Oddo VM, Yanez B, Booms E, Sharp L, Naylor K, Wolf PG, Tussing-Humphreys L. A Perspective Review on Diet Quality, Excess Adiposity, and Chronic Psychosocial Stress and Implications for Early-Onset Colorectal Cancer. J Nutr 2024; 154:1069-1079. [PMID: 38453027 PMCID: PMC11007745 DOI: 10.1016/j.tjnut.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Although the overall incidence of CRC has been decreasing over the past 40 y, early-onset colorectal cancer (EOCRC), which is defined as a CRC diagnosis in patients aged >50 y has increased. In this Perspective, we highlight and summarize the association between diet quality and excess adiposity, and EOCRC. We also explore chronic psychosocial stress (CPS), a less investigated modifiable risk factor, and EOCRC. We were able to show that a poor-quality diet, characterized by a high intake of sugary beverages and a Western diet pattern (high intake of red and processed meats, refined grains, and foods with added sugars) can promote risk factors associated with EOCRC development, such as an imbalance in the composition and function of the gut microbiome, presence of chronic inflammation, and insulin resistance. Excess adiposity, particularly obesity onset in early adulthood, is a likely contributor of EOCRC. Although the research is sparse examining CPS and CRC/EOCRC, we describe likely pathways linking CPS to tumorigenesis. Although additional research is needed to understand what factors are driving the uptick in EOCRC, managing body weight, improving diet quality, and mitigating psychosocial stress, may play an important role in reducing an individual's risk of EOCRC.
Collapse
Affiliation(s)
- Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States.
| | - Alana Biggers
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Vanessa M Oddo
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Betina Yanez
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Emily Booms
- Department of Biology, Northeastern Illinois University, Chicago, IL, United States
| | - Lisa Sharp
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, United States
| | - Keith Naylor
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Patricia G Wolf
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Wu CH, Weng TF, Li JP, Wu KH. Biology and Therapeutic Properties of Mesenchymal Stem Cells in Leukemia. Int J Mol Sci 2024; 25:2527. [PMID: 38473775 DOI: 10.3390/ijms25052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Cheng-Hsien Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Zhang H, Cai W, Xu D, Liu J, Zhao Q, Shao S. Effects of mesenchymal stem cells on Treg cells in rats with colitis. Clin Exp Immunol 2023; 214:296-303. [PMID: 37417713 PMCID: PMC10719214 DOI: 10.1093/cei/uxad072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
The aim was to investigate the therapeutic effect of bone marrow mesenchymal stem cells (BM-MSC) on dextran sulfate sodium (DSS) induced colitis in rats and its effect on regulatory T cells (Treg). A model of DSS-induced colitis was established. BM-MSC was isolated and cultured to observe the efficacy of BM-MSC on colitis, including general vital signs, weight changes, colonic length changes, colonic histopathological changes, and colonic tissue MPO activity. The expression of inflammatory factors (IFN-γ, IL-4, IL-17, TGF-β) in colonic tissues was measured by real-time PCR. The amount of CD4 + CD25 + Treg was detected by flow cytometry. Real-time PCR was used to detect Foxp3+mRNA in CD4 + CD25 + Treg, western to detect Foxp3+protein expression in CD4 + CD25 + Treg, and ELISA was used to detect IL-35 and IL-10 cytokines in CD4 + CD25 + Treg culture supernatant. Results show that intravenous injection of BM-MSC significantly improved the clinical manifestations and histopathological changes in rats with experimental DSS colitis; significantly down-regulated the expression of inflammatory factors IFN-γ, IL-4, and IL-17 and up-regulated the expression of TGF-β in colon tissues; BM-MSC also increased the number of CD4+CD25+Foxp3+Treg and enhanced the function of CD4+CD25+Foxp3+Treg in colon tissues, and up-regulated the expression of IL-35. In conclusion, BM-MSC has a certain therapeutic effect on DSS-induced colitis. It can improve the general signs of colitis rats and reduce intestinal injury and inflammatory response. The immunoregulatory effect of BM-MSC is achieved by enhancing the function of CD4+CD25+Foxp3+Treg and up-regulating the secretion of immunosuppressive inflammatory factors.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Wuhan, China
| | - Wei Cai
- Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Wuhan, China
| | - Dan Xu
- Department of Gastroenterology, The Central Hospital of Wuhan, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, The Central Hospital of Wuhan, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Su’E Shao
- Department of Gastroenterology, The Central Hospital of Wuhan, Wuhan, China
| |
Collapse
|
13
|
Delgado-Gonzalez P, Garza-Treviño EN, de la Garza Kalife DA, Quiroz Reyes A, Hernández-Tobías EA. Bioactive Compounds of Dietary Origin and Their Influence on Colorectal Cancer as Chemoprevention. Life (Basel) 2023; 13:1977. [PMID: 37895359 PMCID: PMC10608661 DOI: 10.3390/life13101977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common causes of death and the third most diagnosed cancer worldwide. The tumor microenvironment and cancer stem cells participate in colorectal tumor progression and can dictate malignancy. Nutrition status affects treatment response and the progression or recurrence of the tumor. This review summarizes the main bioactive compounds against the molecular pathways related to colorectal carcinogenesis. Moreover, we focus on the compounds with chemopreventive properties, mainly polyphenols and carotenoids, which are highly studied dietary bioactive compounds present in major types of food, like vegetables, fruits, and seeds. Their proprieties are antioxidant and gut microbiota modulation, important in the intestine because they decrease reactive oxygen species and inflammation, both principal causes of cancer. These compounds can promote apoptosis and inhibit cell growth, proliferation, and migration. Combined with oncologic treatment, a sensitization to first-line colorectal chemotherapy schemes, such as FOLFOX and FOLFIRI, is observed, making them an attractive and natural support in the oncologic treatment of CRC.
Collapse
Affiliation(s)
- Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - David A. de la Garza Kalife
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | - Adriana Quiroz Reyes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey 6440, Mexico; (E.N.G.-T.); (D.A.d.l.G.K.); (A.Q.R.)
| | | |
Collapse
|
14
|
Buss LF, de Martin GS, Martinez EF, Filgueiras IADAAP, Magnabosco JL, Alves BF, de Macedo Almeida B, Kotaka T, Teixeira ML, Ferreira JRM, da Rocha DN, Canal R, Aloise AC, Holliday LS, Pelegrine AA. Conditioned Media from Human Pulp Stem Cell Cultures Improve Bone Regeneration in Rat Calvarial Critical-Size Defects. J Funct Biomater 2023; 14:396. [PMID: 37623641 PMCID: PMC10455841 DOI: 10.3390/jfb14080396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
The aim of this study was to test whether lyophilized conditioned media from human dental pulp mesenchymal stem cell cultures promote the healing of critical-size defects created in the calvaria of rats. Prior to the surgical procedure, the medium in which dental pulp stem cells were cultured was frozen and lyophilized. After general anesthesia, an 8 mm diameter bone defect was created in the calvaria of twenty-four rats. The defects were filled with the following materials: xenograft alone (G1) or xenograft associated with lyophilized conditioned medium (G2). After 14 or 42 days, the animals were euthanized, and the specimens processed for histologic and immunohistochemical analysis. Bone formation at the center of the defect was observed only in the G2 at 42 days. At both timepoints, increased staining for VEGF, a marker for angiogenesis, was observed in G2. Consistent with this, at 14 days, G2 also had a higher number of blood vessels detected by immunostaining with an anti-CD34 antibody. In conclusion, conditioned media from human dental pulp mesenchymal stem cell cultures had a positive effect on the regenerative process in rat critical-size bone defects. Both the formation of bone and enhancement of vascularization were stimulated by the conditioned media.
Collapse
Affiliation(s)
- Leonardo Fernandes Buss
- Faculdade de Odontologia São Leopoldo Mandic, Campinas 13045-755, SP, Brazil; (L.F.B.); (G.S.d.M.); (I.A.d.A.A.P.F.); (J.L.M.); (B.F.A.); (B.d.M.A.); (T.K.)
| | - Gustavo Sigrist de Martin
- Faculdade de Odontologia São Leopoldo Mandic, Campinas 13045-755, SP, Brazil; (L.F.B.); (G.S.d.M.); (I.A.d.A.A.P.F.); (J.L.M.); (B.F.A.); (B.d.M.A.); (T.K.)
| | | | | | - José Luiz Magnabosco
- Faculdade de Odontologia São Leopoldo Mandic, Campinas 13045-755, SP, Brazil; (L.F.B.); (G.S.d.M.); (I.A.d.A.A.P.F.); (J.L.M.); (B.F.A.); (B.d.M.A.); (T.K.)
| | - Bruno Frenhan Alves
- Faculdade de Odontologia São Leopoldo Mandic, Campinas 13045-755, SP, Brazil; (L.F.B.); (G.S.d.M.); (I.A.d.A.A.P.F.); (J.L.M.); (B.F.A.); (B.d.M.A.); (T.K.)
| | - Bruno de Macedo Almeida
- Faculdade de Odontologia São Leopoldo Mandic, Campinas 13045-755, SP, Brazil; (L.F.B.); (G.S.d.M.); (I.A.d.A.A.P.F.); (J.L.M.); (B.F.A.); (B.d.M.A.); (T.K.)
| | - Tatiana Kotaka
- Faculdade de Odontologia São Leopoldo Mandic, Campinas 13045-755, SP, Brazil; (L.F.B.); (G.S.d.M.); (I.A.d.A.A.P.F.); (J.L.M.); (B.F.A.); (B.d.M.A.); (T.K.)
| | | | | | | | | | - Antonio Carlos Aloise
- Division of Oral Implantology, Faculdade São Leopoldo Mandic, Campinas 13045-755, SP, Brazil;
| | | | - André Antonio Pelegrine
- Division of Oral Implantology, Faculdade São Leopoldo Mandic, Campinas 13045-755, SP, Brazil;
| |
Collapse
|
15
|
Jiang H, Liu Y, Zhou R, Feng Y, Yan L. Circulating interleukins and risk of colorectal cancer: a Mendelian randomization study. Scand J Gastroenterol 2023; 58:1466-1473. [PMID: 37525405 DOI: 10.1080/00365521.2023.2240928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Recent studies have suggested a potential causal association between Interleukins (ILs) and Colorectal Cancer (CRC), and thus, it is important to examine the causal relationship between them using a Mendelian randomization (MR) approach. METHODS The instrumental variables were extracted for IL-1ra, IL-6, IL-6ra, IL-8, IL-16, IL-18, IL-27 from genome-wide association studies of European ancestry. Summary statistics of CRC were also retrieved. An inverse variance-weighted MR approach was implemented as the primary method to compute overall effects from multiple instruments. Additional MR approaches and sensitivity and heterogeneity pleiotropy analyses were also conducted respectively. RESULTS Our analysis suggested a causal effect between an increase of IL-8 and a reduced risk of CRC (odds ratio 0.65; 95% confidence interval, 0.43-0.98; p = 0.041) and did not provide evidence for causal effects of IL-1ra, IL-6, IL-6ra, IL-16, IL-18, IL-27. Sensitivity analyses suggested the robustness of MR results and that they were unlikely to be affected by unbalanced pleiotropy or significant heterogeneity. CONCLUSIONS This study investigated the role of ILs in the development of CRC and we found a causal effect between an increase of IL-8 and a reduced risk of CRC but not found evidence for causal effects of IL-1ra, IL-6, IL-6ra, IL-16, IL-18, IL-27. Sensitivity analyses suggested the robustness of MR results and that they were unlikely to be affected by unbalanced pleiotropy or significant heterogeneity.
Collapse
Affiliation(s)
- Haifeng Jiang
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Liu
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ru Zhou
- Department of General Surgery, RuiJin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Yan
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Stefani FR, Parolini O, Silini AR. Mesenchymal Stromal Cells: From Therapeutic Option to Therapeutic Target. Cancers (Basel) 2023; 15:cancers15061873. [PMID: 36980759 PMCID: PMC10047560 DOI: 10.3390/cancers15061873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
As our understanding of mesenchymal stromal cells (MSC) has evolved, they have come to be recognized as an integral part of the tumor tissue, and the exploitability of their intrinsic features in the field of oncology has reached a standstill [...].
Collapse
Affiliation(s)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| |
Collapse
|
17
|
Yao C, Wu S, Kong J, Sun Y, Bai Y, Zhu R, Li Z, Sun W, Zheng L. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0449. [PMID: 36647777 PMCID: PMC9843448 DOI: 10.20892/j.issn.2095-3941.2022.0449] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Angiogenesis, the process of formation of new blood vessels, is required for cancer cells to obtain nutrients and oxygen. HCC is a typical hypervascular solid tumor with an aberrant vascular network and angiogenesis that contribute to its growth, progression, invasion, and metastasis. Current anti-angiogenic therapies target mainly tyrosine kinases, vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR), and are considered effective strategies for HCC, particularly advanced HCC. However, because the survival benefits conferred by these anti-angiogenic therapies are modest, new anti-angiogenic targets must be identified. Several recent studies have determined the underlying molecular mechanisms, including pro-angiogenic factors secreted by HCC cells, the tumor microenvironment, and cancer stem cells. In this review, we summarize the roles of pro-angiogenic factors; the involvement of endothelial cells, hepatic stellate cells, tumor-associated macrophages, and tumor-associated neutrophils present in the tumor microenvironment; and the regulatory influence of cancer stem cells on angiogenesis in HCC. Furthermore, we discuss some of the clinically approved anti-angiogenic therapies and potential novel therapeutic targets for angiogenesis in HCC. A better understanding of the mechanisms underlying angiogenesis may lead to the development of more optimized anti-angiogenic treatment modalities for HCC.
Collapse
Affiliation(s)
- Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Yiwen Sun
- Department of Pathology, Peking University People’s Hospital, Peking University, Beijing 100044, China
| | - Yannan Bai
- Department of Hepatobiliary Pancreatic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Ruhang Zhu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Zhuxin Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
- Correspondence to: Wenbing Sun and Lemin Zheng, E-mail: and
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Beijing 100083, China
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100050, China
- Correspondence to: Wenbing Sun and Lemin Zheng, E-mail: and
| |
Collapse
|
18
|
Breast Tumor Cell-Stimulated Bone Marrow-Derived Mesenchymal Stem Cells Promote the Sprouting Capacity of Endothelial Cells by Promoting VEGF Expression, Mediated in Part through HIF-1α Increase. Cancers (Basel) 2022; 14:cancers14194711. [PMID: 36230633 PMCID: PMC9562024 DOI: 10.3390/cancers14194711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary ROS and JAK/Stat3 cooperatively upregulate the expression of HIF-1α in bone marrow-derived mesenchymal stem cells under normoxic conditions in response to breast tumor cells. The upregulation of HIF-1α contributes in part to the increase in VEGF expression in the bone marrow-derived mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells improve the angiogenic sprouting capacity of mature endothelial cells in a VEGF-dependent manner. Abstract Breast tumor cells recruit bone marrow-derived mesenchymal stem cells (BM-MSCs) and alter their cellular characteristics to establish a tumor microenvironment. BM-MSCs enhance tumor angiogenesis through various mechanisms. We investigated the mechanisms by which BM-MSCs promote angiogenesis in response to breast tumor. Conditioned media from MDA-MB-231 (MDA CM) and MCF7 (MCF7 CM) breast tumor cells were used to mimic breast tumor conditions. An in vitro spheroid sprouting assay using human umbilical vein endothelial cells (HUVECs) was conducted to assess the angiogenesis-stimulating potential of BM-MSCs in response to breast tumors. The ROS inhibitor N-acetylcysteine (NAC) and JAK inhibitor ruxolitinib attenuated increased HIF-1α in BM-MSCs in response to MDA CM and MCF7 CM. HIF-1α knockdown or HIF-1β only partially downregulated VEGF expression and, therefore, the sprouting capacity of HUVECs in response to conditioned media from BM-MSCs treated with MDA CM or MCF7 CM. Inactivation of the VEGF receptor using sorafenib completely inhibited the HUVECs’ sprouting. Our results suggest that increased HIF-1α expression under normoxia in BM-MSCs in response to breast tumor cells is mediated by ROS and JAK/Stat3, and that both HIF-1α-dependent and -independent mechanisms increase VEGF expression in BM-MSCs to promote the angiogenic sprouting capacity of endothelial cells in a VEGF-dependent manner.
Collapse
|
19
|
Wang S, Umrath F, Cen W, Salgado AJ, Reinert S, Alexander D. Pre-Conditioning with IFN-γ and Hypoxia Enhances the Angiogenic Potential of iPSC-Derived MSC Secretome. Cells 2022; 11:cells11060988. [PMID: 35326438 PMCID: PMC8946902 DOI: 10.3390/cells11060988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) derived mesenchymal stem cells (iMSCs) represent a promising source of progenitor cells for approaches in the field of bone regeneration. Bone formation is a multi-step process in which osteogenesis and angiogenesis are both involved. Many reports show that the secretome of mesenchymal stromal stem cells (MSCs) influences the microenvironment upon injury, promoting cytoprotection, angiogenesis, and tissue repair of the damaged area. However, the effects of iPSC-derived MSCs secretome on angiogenesis have seldom been investigated. In the present study, the angiogenic properties of IFN-γ pre-conditioned iMSC secretomes were analyzed. We detected a higher expression of the pro-angiogenic genes and proteins of iMSCs and their secretome under IFN-γ and hypoxic stimulation (IFN-H). Tube formation and wound healing assays revealed a higher angiogenic potential of HUVECs in the presence of IFN-γ conditioned iMSC secretome. Sprouting assays demonstrated that within Coll/HA scaffolds, HUVECs spheroids formed significantly more and longer sprouts in the presence of IFN-γ conditioned iMSC secretome. Through gene expression analyses, pro-angiogenic genes (FLT-1, KDR, MET, TIMP-1, HIF-1α, IL-8, and VCAM-1) in HUVECs showed a significant up-regulation and down-regulation of two anti-angiogenic genes (TIMP-4 and IGFBP-1) compared to the data obtained in the other groups. Our results demonstrate that the iMSC secretome, pre-conditioned under inflammatory and hypoxic conditions, induced the highest angiogenic properties of HUVECs. We conclude that pre-activated iMSCs enhance their efficacy and represent a suitable cell source for collagen/hydroxyapatite with angiogenic properties.
Collapse
Affiliation(s)
- Suya Wang
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Wanjing Cen
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
- Correspondence:
| |
Collapse
|
20
|
Zhou J, Li J, Zhang KY, Liu S, Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Human placental mesenchymal stromal cell therapy restores the cytokine efflux and insulin signaling in the skeletal muscle of obesity-induced type 2 diabetes rat model. Hum Cell 2022; 35:557-571. [PMID: 35091972 DOI: 10.1007/s13577-021-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/14/2021] [Indexed: 11/04/2022]
Abstract
Obesity poses a significant risk factor for the onset of metabolic syndrome with allied complications, wherein mesenchymal stem cell therapy is seen as a promising treatment for obesity-induced metabolic syndrome. In the present study, we aim to explore the beneficial effects of the human placental mesenchymal stromal cells (P-MSCs) on obesity-associated insulin resistance (IR) including inflammation. To understand this, we have analyzed the peripheral blood glucose, serum insulin levels by ELISA, and the glucose uptake capacity of skeletal muscle by a 2-NBDG assay using flow cytometry in WNIN/GR-Ob rats treated with and without P-MSCs. Also, we have studied insulin signaling and cytokine profile in the skeletal muscle by western blotting, dot blotting, and Multiplex-ELISA techniques. The skeletal muscle of WNIN/GR-Ob rats demonstrates dysregulation of cytokines, altered glucose uptake vis-a-vis insulin signaling. However, P-MSCs' treatment was effective in WNIN/GR-Ob rats as compared to its control, to restore HOMA-IR, re-establishes dysregulated cytokines and PI3K-Akt pathway in addition to enhanced Glut4 expression and glucose uptake studied in skeletal muscle. Overall, our data advocate the beneficial effects of P-MSCs to ameliorate inflammatory milieu, improve insulin sensitivity, and normalize glucose homeostasis underlining the Ob-T2D conditions, and we attribute for immunomodulatory, paracrine, autocrine, and multipotent functions of P-MSCs.
Collapse
|
22
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
23
|
Kotikalapudi N, Sampath SJP, Sukesh Narayan S, R B, Nemani H, Mungamuri SK, Venkatesan V. The promise(s) of mesenchymal stem cell therapy in averting preclinical diabetes: lessons from in vivo and in vitro model systems. Sci Rep 2021; 11:16983. [PMID: 34417511 PMCID: PMC8379204 DOI: 10.1038/s41598-021-96121-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity (Ob) poses a significant risk factor for the onset of metabolic syndrome with associated complications, wherein the Mesenchymal Stem Cell (MSC) therapy shows pre-clinical success. Here, we explore the therapeutic applications of human Placental MSCs (P-MSCs) to address Ob-associated Insulin Resistance (IR) and its complications. In the present study, we show that intramuscular injection of P-MSCs homed more towards the visceral site, restored HOMA-IR and glucose homeostasis in the WNIN/GR-Ob (Ob-T2D) rats. P-MSC therapy was effective in re-establishing the dysregulated cytokines. We report that the P-MSCs activates PI3K-Akt signaling and regulates the Glut4-dependant glucose uptake and its utilization in WNIN/GR-Ob (Ob-T2D) rats compared to its control. Our data reinstates P-MSC treatment's potent application to alleviate IR and restores peripheral blood glucose clearance evidenced in stromal vascular fraction (SVF) derived from white adipose tissue (WAT) of the WNIN/GR-Ob rats. Gaining insights, we show the activation of the PI3K-Akt pathway by P-MSCs both in vivo and in vitro (palmitate primed 3T3-L1 cells) to restore the insulin sensitivity dysregulated adipocytes. Our findings suggest a potent application of P-MSCs in pre-clinical/Ob-T2D management.
Collapse
Affiliation(s)
- Nagasuryaprasad Kotikalapudi
- Division of Cell and Molecular Biology, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Samuel Joshua Pragasam Sampath
- Division of Cell and Molecular Biology, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Sinha Sukesh Narayan
- Division of Food Safety, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Bhonde R
- Department of Regenerative Medicine, Manipal Institute of Regenerative Medicine, GKVK Post, Bellary Road, Allalasandra, Yelahanka, Bangalore, 560065, India
- Dr. D. Y. Patil Vidyapeeth, Pune, 411018, India
| | - Harishankar Nemani
- Division of Animal Facility, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Sathish Kumar Mungamuri
- Division of Food Safety, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India
| | - Vijayalakshmi Venkatesan
- Division of Cell and Molecular Biology, ICMR-National Institute of Nutrition, Jamai-Osmania P.O., Tarnaka, Hyderabad, 500007, India.
| |
Collapse
|
24
|
He L, Wang W, Shi H, Jiang C, Yao H, Zhang Y, Qian W, Lin R. THBS4/integrin α2 axis mediates BM-MSCs to promote angiogenesis in gastric cancer associated with chronic Helicobacter pylori infection. Aging (Albany NY) 2021; 13:19375-19396. [PMID: 34390328 PMCID: PMC8386559 DOI: 10.18632/aging.203334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Background: BM-MSCs contribute to Helicobacter pylori (H. pylori)-induced gastric cancer, but their mechanism is still unclear. The aim of our study was to investigate the specific role and mechanism of BM-MSCs in H. pylori-induced gastric cancer. Main methods: Mice received total bone marrow transplants and were then infected with H. pylori. BM-MSCs were extracted and transplanted into the gastric serosal layer of mice chronically infected with H. pylori. Hematoxylin and eosin staining, immunohistochemistry staining and immunofluorescence were performed to detect tumor growth and angiogenesis in mouse stomach tissues. Chicken chorioallantoic membrane assays, xenograft tumor models, and human umbilical vein endothelial cell tube formation assays were used for in vivo and in vitro angiogenesis studies. THBS4 was screened from RNA-seq analysis of gastric tissues of BM-MSCs transplanted into H. pylori-infected mice. Results: BM-MSCs can migrate to the site of chronic mucosal injury and promote tumor angiogenesis associated with chronic H. pylori infection. Migration of BM-MSCs to the site of chronic mucosal injury induced the upregulation of THBS4, which was also evident in human gastric cancer and correlated with increased blood vessel formation and worse outcome. The THBS4/integrin α2 axis promoted angiogenesis by facilitating the PI3K/AKT pathway in endothelial cells. Conclusions: Our results revealed a novel proangiogenic effect of BM-MSCs in the chronic H. pylori infection microenvironment, primarily mediated by the THBS4/integrin α2 axis, which activates the PI3K/AKT pathway in endothelial cells and eventually induces the formation of new tumor vessels.
Collapse
Affiliation(s)
- LingNan He
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - WeiJun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HuiYing Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HaiLing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - YuRui Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
He R, Han C, Li Y, Qian W, Hou X. Cancer-Preventive Role of Bone Marrow-Derived Mesenchymal Stem Cells on Colitis-Associated Colorectal Cancer: Roles of Gut Microbiota Involved. Front Cell Dev Biol 2021; 9:642948. [PMID: 34150751 PMCID: PMC8212064 DOI: 10.3389/fcell.2021.642948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) treatment showed promising results in inflammatory bowel disease in both rodent models and patients. Nevertheless, previous studies conducted conflicting results on preclinical tumor models treated with MSCs concerning their influence on tumor initiation and progression. This study is designed to demonstrate the role of bone marrow-derived MSCs and the potential mechanism in the colitis-associated colon cancer (CAC) model. METHODS Bone marrow-derived MSCs were isolated from green fluorescent protein-transgenic mice, cultured, and identified by flow cytometry. Azoxymethane and dextran sulfate sodium were administrated to establish the CAC mouse model, and MSCs were infused intraperitoneally once per week. The mice were weighed weekly, and colon length, tumor number, and average tumor size were assessed after the mice were killed. MSC localization was detected by immunofluorescence staining; tumor cell proliferation and apoptosis were measured by immunohistochemistry staining of Ki-67 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay, respectively. The colonic tumor tissues were isolated for RNA-seq, and fecal samples were collected for 16S ribosomal RNA sequencing of the microbiome. RESULTS After injection intraperitoneally, MSCs migrated to the intestine and inhibited the initiation of colitis-associated colorectal cancer. This inhibition effect was marked by less weight loss, longer colon length, and reduced tumor numbers. Moreover, MSCs reduced tumor cell proliferation and induced tumor cell apoptosis. Furthermore, MSCs could inhibit chronic inflammation assessed by RNA-sequencing and promote gut microbiome normalization detected by 16S ribosomal RNA sequencing. CONCLUSION The results proved that MSCs could migrate to the colon, inhibit chronic inflammation, and regulate gut microbiome dysbiosis to suppress the development of CAC.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Zhao J, Leng P, Xu W, Sun JL, Ni BB, Liu GW. Investigating the Multitarget Pharmacological Mechanism of Ursolic Acid Acting on Colon Cancer: A Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9980949. [PMID: 34194533 PMCID: PMC8203398 DOI: 10.1155/2021/9980949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To explore the mechanisms of ursolic acid for treating colon cancer based on network pharmacology. METHOD In this study, the potential targets of ursolic acid against colon cancer were predicted and screened through the TCMSP, SYMMAP, Drug Bank, UNI-PROT, and DISGENET databases. The protein interaction (PPI) network was constructed based on the STRING database, and graphs were drawn with the help of Cytoscape software. GO and KEGG enrichment analyses were performed on the targets by using the DAVID database for biological information annotation. RESULTS Ursolic acid has 113 targets in the treatment of colon cancer. The core targets included interleukin-6 (IL-6), mitogen-activated protein kinase 3 (MAPK3), vascular endothelial growth factor receptor (VEGFA), prostaglandin endoperoxide synthase 2 (PTGS2), caspase-3 (CASP3), mitogen-activated protein kinase 8 (MAPK8), tumor necrosis factor (TNF), cyclin D1 (CCND1), JUN, signal transducer and transcriptional activator 3 (STAT3), and other targets. The first 10 pathways related to colon cancer were screened out. The main signaling pathways included the TNF signaling pathway and the AGE-RAGE signaling pathway in diabetic complications and human colon cancer infections. CONCLUSION This study revealed that ursolic acid played a multitarget and multichannel antitumor role by inhibiting the proliferation of tumor cells, inducing apoptosis, and enhancing antiangiogenesis.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Wen Xu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Jia-Lin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Bei-Bei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Guang-Wei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| |
Collapse
|
27
|
Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature. Cancer Cell Int 2021; 21:158. [PMID: 33685452 PMCID: PMC7938588 DOI: 10.1186/s12935-021-01836-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
A crosstalk established between tumor microenvironment and tumor cells leads to contribution or inhibition of tumor progression. Mesenchymal stem cells (MSCs) are critical cells that fundamentally participate in modulation of the tumor microenvironment, and have been reported to be able to regulate and determine the final destination of tumor cell. Conflicting functions have been attributed to the activity of MSCs in the tumor microenvironment; they can confer a tumorigenic or anti-tumor potential to the tumor cells. Nonetheless, MSCs have been associated with a potential to modulate the tumor microenvironment in favouring the suppression of cancer cells, and promising results have been reported from the preclinical as well as clinical studies. Among the favourable behaviours of MSCs, are releasing mediators (like exosomes) and their natural migrative potential to tumor sites, allowing efficient drug delivering and, thereby, efficient targeting of migrating tumor cells. Additionally, angiogenesis of tumor tissue has been characterized as a key feature of tumors for growth and metastasis. Upon introduction of first anti-angiogenic therapy by a monoclonal antibody, attentions have been drawn toward manipulation of angiogenesis as an attractive strategy for cancer therapy. After that, a wide effort has been put on improving the approaches for cancer therapy through interfering with tumor angiogenesis. In this article, we attempted to have an overview on recent findings with respect to promising potential of MSCs in cancer therapy and had emphasis on the implementing MSCs to improve them against the suppression of angiogenesis in tumor tissue, hence, impeding the tumor progression.
Collapse
|
28
|
The Expression Analysis of Intestinal Cancer Stem Cell Marker Lgr5 in Colorectal Cancer Patients and the Correlation with Histopathological Markers. J Gastrointest Cancer 2021; 51:591-599. [PMID: 31422541 DOI: 10.1007/s12029-019-00295-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cancer stem cells (CSCs) have frequently been utilized in the cell characterization and identified responsible for tumor development, metastasis, recurrence, and chemoresistance. CSC surface markers function in cancer cell signaling and are indicated as potential biomarkers for cancer diagnosis and prognosis. As well, dysregulation of cancer-related signaling pathways could promote CSC development and progression. Our aim was to evaluate the expression of colorectal CSC markers and their correlation with cancer proliferation and angiogenesis. METHODS In this case-control study, total RNA was extracted from a total of 74 colorectal tumors and 74 adjacent normal tissue biopsies. Then, using a quantitative real-time PCR, the relative expression levels of Lgr5 and Lrig1 were measured in all malignant and healthy samples. Also, immunohistochemical (IHC) staining of tumor tissues was performed for Ki-67 (proliferation) and CD34 (angiogenesis) markers, and the immunoexpression staining scores were obtained. The diagnostic value of the genes was evaluated using receiver operating characteristic (ROC) curve. Possible correlation between CSC markers and immunohistochemical markers in CRC was analyzed by Pearson's correlation test and linear regression. RESULTS The expression level of Lgr5 in tumor samples showed a significant increase compared with normal samples (p < 0.001) with a fold change of 2.54 (± 0.182). However, there was no significant difference in the relative expression of Lrig1 gene in tissue samples of healthy subjects and patients. The analysis of the ROC showed an AUC of 0.92 for Lgr5 and sensitivity 80% and specificity 96%. Further analysis revealed a significant correlation between mRNA levels of Lgr5 and immunoexpression of Ki-67 (r2 = 0.680, p < 0.001). CONCLUSION The high expression levels of Lgr5 found in tumor tissues were correlated with histological parameters, indicating a significant role in CRC development and diagnosis.
Collapse
|
29
|
Wu X, Zhang S, Lai J, Lu H, Sun Y, Guan W. Therapeutic Potential of Bama Pig Adipose-Derived Mesenchymal Stem Cells for the Treatment of Carbon Tetrachloride-Induced Liver Fibrosis. EXP CLIN TRANSPLANT 2020; 18:823-831. [PMID: 33349209 DOI: 10.6002/ect.2020.0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Liver fibrosis is inevitable in the healing process of liver injury. Liver fibrosis will develop into liver cirrhosis unless the damaging factors are removed. This study investigated the potential therapy of Bama pig adipose-derived mesenchymal stem cells in a carbon tetrachloride-induced liver fibrosis Institute of Cancer Research strain mice model. MATERIALS AND METHODS Adipose-derived mesenchymal stem cells were injected intravenously into the tails of mice of the Institute of Cancer Research strain that had been treated with carbon tetrachloride for 4 weeks. Survival rate, migration, and proliferation of adipose-derived mesenchymal stem cells in the liver were observed by histochemistry, fluorescent labeling, and serological detection. RESULTS At 1, 2, and 3 weeks after adipose-derived mesenchymal stem cell injection, liver fibrosis was significantly ameliorated. The injected adipose-derived mesenchymal stem cells had hepatic differentiation potential in vivo, and the survival rate of adipose-derived mesenchymal stem cells declined over time. CONCLUSIONS The findings in this study confirmed that adipose-derived mesenchymal stem cells derived from the Bama pig can be used in the treatment of liver fibrosis, and the grafted adipose-derived mesenchy-mal stem cells can migrate, survive, and differentiate into hepatic cells in vivo.
Collapse
Affiliation(s)
- Xinran Wu
- From the Sport and Exercise Sciences Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Shuang Zhang
- From the Scientific Experimental Research Center, Harbin Sport University, Nangang District, Harbin, Heilongjiang Province, China
| | | | | | | | | |
Collapse
|
30
|
Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J 2020; 35:e21234. [PMID: 33337557 DOI: 10.1096/fj.202002232r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidences highlight importance of epigenetic regulation and their integration with transcriptional and cell signaling machinery in determining tissue resident adult pluripotent mesenchymal stem/stromal cell (MSC) activity, lineage commitment, and multicellular development. Histone modifying enzymes and large multi-subunit chromatin remodeling complexes and their cell type-specific plasticity remain the central defining features of gene regulation and establishment of tissue identity. Modulation of transcription factor expression gradient ex vivo and concomitant flexibility of higher order chromatin architecture in response to signaling cues are exciting approaches to regulate MSC activity and tissue rejuvenation. Being an important constituent of the adult bone marrow microenvironment/niche, pathophysiological perturbation in MSC homeostasis also causes impaired hematopoietic stem/progenitor cell function in a non-cell autonomous mechanism. In addition, pluripotent MSCs can function as immune regulatory cells, and they reside at the crossroad of innate and adaptive immune response pathways. Research in the past few years suggest that MSCs/stromal fibroblasts significantly contribute to the establishment of immunosuppressive microenvironment in shaping antitumor immunity. Therefore, it is important to understand mesenchymal stromal epigenome and transcriptional regulation to leverage its applications in regenerative medicine, epigenetic memory-guided trained immunity, immune-metabolic rewiring, and precision immune reprogramming. In this review, we highlight the latest developments and prospects in chromatin biology in determining MSC function in the context of lineage commitment and immunomodulation.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Sayantani Sinha
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Amitava Sengupta
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| |
Collapse
|
31
|
Human Bone Marrow Mesenchymal Stem/Stromal Cells Exposed to an Inflammatory Environment Increase the Expression of ICAM-1 and Release Microvesicles Enriched in This Adhesive Molecule: Analysis of the Participation of TNF- α and IFN- γ. J Immunol Res 2020; 2020:8839625. [PMID: 33335929 PMCID: PMC7723491 DOI: 10.1155/2020/8839625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BM-MSCs) have immunoregulatory capacity; therefore, they have been used in different clinical protocols in which it is necessary to decrease the immune response. This capacity is mainly regulated by TNF-α and IFN-γ, and it has been observed that cell-cell contact, mainly mediated by ICAM-1, is important for MSCs to carry out efficient immunoregulation. Therefore, in the present work, we analyzed the effect of TNF-α alone or in combination with IFN-γ on the expression of ICAM-1. Besides, given the importance of cell contact in the immunoregulatory function of MSCs, we analyzed whether these cells release ICAM-1+ microvesicles (MVs). Our results show for the first time that TNF-α is capable of increasing the early expression of ICAM-1 in human BM-MSCs. Also, we observed that TNF-α and IFN-γ have a synergistic effect on the increase in the expression of ICAM-1. Furthermore, we found that BM-MSCs exposed to an inflammatory environment release MVs enriched in ICAM-1 (MVs-ICAM-1high). The knowledge generated in this study will contribute to the improvement of in vitro conditioning protocols that favor the therapeutic effect of these cells or their products.
Collapse
|
32
|
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, Liao Q, Xiang B, Zhou M, Guo C, Zeng Z, Li G, Li X, Xiong W. The role of microenvironment in tumor angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:204. [PMID: 32993787 PMCID: PMC7526376 DOI: 10.1186/s13046-020-01709-5] [Citation(s) in RCA: 420] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Tumor angiogenesis is necessary for the continued survival and development of tumor cells, and plays an important role in their growth, invasion, and metastasis. The tumor microenvironment—composed of tumor cells, surrounding cells, and secreted cytokines—provides a conducive environment for the growth and survival of tumors. Different components of the tumor microenvironment can regulate tumor development. In this review, we have discussed the regulatory role of the microenvironment in tumor angiogenesis. High expression of angiogenic factors and inflammatory cytokines in the tumor microenvironment, as well as hypoxia, are presumed to be the reasons for poor therapeutic efficacy of current anti-angiogenic drugs. A combination of anti-angiogenic drugs and antitumor inflammatory drugs or hypoxia inhibitors might improve the therapeutic outcome.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Jie Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Xiangying Deng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China.
| |
Collapse
|
33
|
Ungaro F, D’Alessio S, Danese S. The Role of Pro-Resolving Lipid Mediators in Colorectal Cancer-Associated Inflammation: Implications for Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12082060. [PMID: 32722560 PMCID: PMC7463689 DOI: 10.3390/cancers12082060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a recognized hallmark of cancer that contributes to the development and progression of colorectal cancer (CRC). Anti-inflammatory drugs currently used for the treatment of CRC show many adverse side effects that prompted researchers to propose the polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) as promoters of resolution of cancer-associated inflammation. SPMs were found to inhibit the CRC-associated pro-inflammatory milieu via specific G-coupled protein receptors, although clinical data are still lacking. This review aims to summarize the state-of-the-art in this field, ultimately providing insights for the development of innovative anti-CRC therapies that promote the endogenous lipid-mediated resolution of CRC-associated inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
- Correspondence:
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| |
Collapse
|
34
|
Cuthbert RJ, Jones E, Sanjurjo-Rodríguez C, Lotfy A, Ganguly P, Churchman SM, Kastana P, Tan HB, McGonagle D, Papadimitriou E, Giannoudis PV. Regulation of Angiogenesis Discriminates Tissue Resident MSCs from Effective and Defective Osteogenic Environments. J Clin Med 2020; 9:jcm9061628. [PMID: 32481579 PMCID: PMC7355658 DOI: 10.3390/jcm9061628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The biological mechanisms that contribute to atrophic long bone non-union are poorly understood. Multipotential mesenchymal stromal cells (MSCs) are key contributors to bone formation and are recognised as important mediators of blood vessel formation. This study examines the role of MSCs in tissue formation at the site of atrophic non-union. Materials and Methods: Tissue and MSCs from non-union sites (n = 20) and induced periosteal (IP) membrane formed following the Masquelet bone reconstruction technique (n = 15) or bone marrow (n = 8) were compared. MSC content, differentiation, and influence on angiogenesis were measured in vitro. Cell content and vasculature measurements were performed by flow cytometry and histology, and gene expression was measured by quantitative polymerase chain reaction (qPCR). Results: MSCs from non-union sites had comparable differentiation potential to bone marrow MSCs. Compared with induced periosteum, non-union tissue contained similar proportion of colony-forming cells, but a greater proportion of pericytes (p = 0.036), and endothelial cells (p = 0.016) and blood vessels were more numerous (p = 0.001) with smaller luminal diameter (p = 0.046). MSCs showed marked differences in angiogenic transcripts depending on the source, and those from induced periosteum, but not non-union tissue, inhibited early stages of in vitro angiogenesis. Conclusions: In vitro, non-union site derived MSCs have no impairment of differentiation capacity, but they differ from IP-derived MSCs in mediating angiogenesis. Local MSCs may thus be strongly implicated in the formation of the immature vascular network at the non-union site. Attention should be given to their angiogenic support profile when selecting MSCs for regenerative therapy.
Collapse
Affiliation(s)
- R. J. Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - C. Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña 15001, Spain
| | - A. Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - P. Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - S. M. Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - P. Kastana
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - H. B. Tan
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - D. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Papadimitriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - P. V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds LS7 4SA, UK
- Correspondence: ; Tel.: +44-113-392-2750; Fax: +44-113-392-3290
| |
Collapse
|
35
|
Merckx G, Tay H, Lo Monaco M, van Zandvoort M, De Spiegelaere W, Lambrichts I, Bronckaers A. Chorioallantoic Membrane Assay as Model for Angiogenesis in Tissue Engineering: Focus on Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:519-539. [PMID: 32220219 DOI: 10.1089/ten.teb.2020.0048] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering aims to structurally and functionally regenerate damaged tissues, which requires the formation of new blood vessels that supply oxygen and nutrients by the process of angiogenesis. Stem cells are a promising tool in regenerative medicine due to their combined differentiation and paracrine angiogenic capacities. The study of their proangiogenic properties and associated potential for tissue regeneration requires complex in vivo models comprising all steps of the angiogenic process. The highly vascularized extraembryonic chorioallantoic membrane (CAM) of fertilized chicken eggs offers a simple, easy accessible, and cheap angiogenic screening tool compared to other animal models. Although the CAM assay was initially primarily performed for evaluation of tumor growth and metastasis, stem cell studies using this model are increasing. In this review, a detailed summary of angiogenic observations of different mesenchymal, cardiac, and endothelial stem cell types and derivatives in the CAM model is presented. Moreover, we focus on the variation in experimental setup, including the benefits and limitations of in ovo and ex ovo protocols, diverse biological and synthetic scaffolds, imaging techniques, and outcome measures of neovascularization. Finally, advantages and disadvantages of the CAM assay as a model for angiogenesis in tissue engineering in comparison with alternative in vivo animal models are described. Impact statement The chorioallantoic membrane (CAM) assay is an easy and cheap screening tool for the angiogenic properties of stem cells and their associated potential in the tissue engineering field. This review offers an overview of all published angiogenic studies of stem cells using this model, with emphasis on the variation in used experimental timeline, culture protocol (in ovo vs. ex ovo), stem cell type (derivatives), scaffolds, and outcome measures of vascularization. The purpose of this overview is to aid tissue engineering researchers to determine the ideal CAM experimental setup based on their specific study goals.
Collapse
Affiliation(s)
- Greet Merckx
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Hanna Tay
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Melissa Lo Monaco
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.,Department of Veterinary Medicine, Faculty of Sciences, Integrated Veterinary Research Unit-Namur Research Institute for Life Science (IVRU-NARILIS), University of Namur, Namur, Belgium
| | - Marc van Zandvoort
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases CARIM and School for Oncology and Development GROW, Maastricht University, Maastricht, the Netherlands
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
36
|
Li JN, Li W, Cao LQ, Liu N, Zhang K. Efficacy of mesenchymal stem cells in the treatment of gastrointestinal malignancies. World J Gastrointest Oncol 2020; 12:365-382. [PMID: 32368316 PMCID: PMC7191336 DOI: 10.4251/wjgo.v12.i4.365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), which are a kind of stem cell, possess an immune privileged nature, tumour homing features, and multi-lineage differentiation ability. MSCs have been studied in many fields, such as tissue engineering, nervous system diseases, and cancer treatment. In recent years, an increasing number of researchers have focused on the effects of MSCs on various kinds of tumours. However, the concrete anticancer efficacy of MSCs is still controversial. Gastrointestinal (GI) malignancies are the major causes of cancer-related death worldwide. The interactions of MSCs and GI cancer cells in specific conditions have attracted increasing attention. In this review, we introduce the characteristics of MSCs and analyse the effects of MSCs on GI malignancies, including gastric cancer, hepatoma, pancreatic cancer, and colorectal cancer. In addition, we also provide our perspectives on why MSCs may play different roles in GI malignancies and further research directions to increase the treatment efficacy of MSCs on GI malignancies.
Collapse
Affiliation(s)
- Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Lan-Qing Cao
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Ning Liu
- Department of Central Laboratory, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
37
|
Lizárraga-Verdugo E, Avendaño-Félix M, Bermúdez M, Ramos-Payán R, Pérez-Plasencia C, Aguilar-Medina M. Cancer Stem Cells and Its Role in Angiogenesis and Vasculogenic Mimicry in Gastrointestinal Cancers. Front Oncol 2020; 10:413. [PMID: 32296643 PMCID: PMC7136521 DOI: 10.3389/fonc.2020.00413] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are able to promote initiation, survival and maintenance of tumor growth and have been involved in gastrointestinal cancers (GICs) such as esophageal, gastric and colorectal. It is well known that blood supply facilitates cancer progression, recurrence, and metastasis. In this regard, tumor-induced angiogenesis begins with expression of pro-angiogenic molecules such as vascular endothelial growth factor (VEGF), which in turn lead to neovascularization and thus to tumor growth. Another pattern of blood supply is called vasculogenic mimicry (VM). It is a reminiscent of the embryonic vascular network and is carried out by CSCs that have the capability of transdifferentiate and form vascular-tube structures in absence of endothelial cells. In this review, we discuss the role of CSCs in angiogenesis and VM, since these mechanisms represent a source of tumor nutrition, oxygenation, metabolic interchange and facilitate metastasis. Identification of CSCs mechanisms involved in angiogenesis and VM could help to address therapeutics for GICs.
Collapse
Affiliation(s)
- Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Melisa Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | | | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
38
|
The Achievements and Challenges of Mesenchymal Stem Cell-Based Therapy in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Stem Cells Int 2020; 2020:7819824. [PMID: 32256612 PMCID: PMC7104387 DOI: 10.1155/2020/7819824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
Approximately 18.1 × 106 new cases of cancer were recorded globally in 2018, out of which 9.6 million died. It is known that people who have Inflammatory Bowel Disease (IBD) turn to be prone to increased risks of developing colorectal cancer (CRC), which has global incident and mortality rates of 10.2% and 9.2%, respectively. Over the years, conventional treatments of IBD and its associated CRC have been noted to provide scarce desired results and often with severe complications. The introduction of biological agents as a better therapeutic approach has witnessed a great deal of success in both experimental and clinical models. With regard to mesenchymal stem cell (MSC) therapy, the ability of these cells to actively proliferate, undergo plastic differentiation, trigger strong immune regulation, exhibit low immunogenicity, and express abundant trophic factors has ensured their success in regenerative medicine and immune intervention therapies. Notwithstanding, MSC-based therapy is still confronted with some challenges including the likelihood of promoting tumor growth and metastasis, and possible overestimated therapeutic potentials. We review the success story of MSC-based therapy in IBD and its associated CRC as documented in experimental models and clinical trials, examining some of the challenges encountered and possible ways forward to producing an optimum MSC therapeutic imparts.
Collapse
|
39
|
Merckx G, Hosseinkhani B, Kuypers S, Deville S, Irobi J, Nelissen I, Michiels L, Lambrichts I, Bronckaers A. Angiogenic Effects of Human Dental Pulp and Bone Marrow-Derived Mesenchymal Stromal Cells and their Extracellular Vesicles. Cells 2020; 9:cells9020312. [PMID: 32012900 PMCID: PMC7072370 DOI: 10.3390/cells9020312] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Blood vessel formation or angiogenesis is a key process for successful tooth regeneration. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) possess paracrine proangiogenic properties, which are, at least partially, induced by their extracellular vesicles (EVs). However, the isolation of BM-MSCs is associated with several drawbacks, which could be overcome by MSC-like cells of the teeth, called dental pulp stromal cells (DPSCs). This study aims to compare the angiogenic content and functions of DPSC and BM-MSC EVs and conditioned medium (CM). The angiogenic protein profile of DPSC- and BM-MSC-derived EVs, CM and EV-depleted CM was screened by an antibody array and confirmed by ELISA. Functional angiogenic effects were tested in transwell migration and chicken chorioallantoic membrane assays. All secretion fractions contained several pro- and anti-angiogenic proteins and induced in vitro endothelial cell motility. This chemotactic potential was higher for (EV-depleted) CM, compared to EVs with a stronger effect for BM-MSCs. Finally, BM-MSC CM, but not DPSC CM, nor EVs, increased in ovo angiogenesis. In conclusion, we showed that DPSCs are less potent in relation to endothelial cell chemotaxis and in ovo neovascularization, compared to BM-MSCs, which emphasizes the importance of choice of cell type and secretion fraction for stem cell-based regenerative therapies in inducing angiogenesis.
Collapse
Affiliation(s)
- Greet Merckx
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Baharak Hosseinkhani
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Sören Kuypers
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Sarah Deville
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Joy Irobi
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Luc Michiels
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Ivo Lambrichts
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- UHasselt - Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
- Correspondence: ; Tel.: +32-(0)-11-26-92-23
| |
Collapse
|
40
|
Galland S, Stamenkovic I. Mesenchymal stromal cells in cancer: a review of their immunomodulatory functions and dual effects on tumor progression. J Pathol 2019; 250:555-572. [PMID: 31608444 PMCID: PMC7217065 DOI: 10.1002/path.5357] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem or stromal cells (MSCs) are pluripotent cells implicated in a broad range of physiological events, including organogenesis and maintenance of tissue homeostasis as well as tissue regeneration and repair. Because their current definition is somewhat loose – based primarily on their ability to differentiate into a variety of mesenchymal tissues, adhere to plastic, and express, or lack, a handful of cell surface markers – MSCs likely encompass several subpopulations, which may have diverse properties. Their diversity may explain, at least in part, the pleiotropic functions that they display in different physiological and pathological settings. In the context of tissue injury, MSCs can respectively promote and attenuate inflammation during the early and late phases of tissue repair. They may thereby act as sensors of the inflammatory response and secrete mediators that boost or temper the response as required by the stage of the reparatory and regenerative process. MSCs are also implicated in regulating tumor development, in which they are increasingly recognized to play a complex role. Thus, MSCs can both promote and constrain tumor progression by directly affecting tumor cells via secreted mediators and cell–cell interactions and by modulating the innate and adaptive immune response. This review summarizes our current understanding of MSC involvement in tumor development and highlights the mechanistic underpinnings of their implication in tumor growth and progression. © 2020 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sabine Galland
- Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| |
Collapse
|
41
|
de Melo BAG, França CG, Dávila JL, Batista NA, Caliari-Oliveira C, d'Ávila MA, Luzo ÂCM, Lana JFSD, Santana MHA. Hyaluronic acid and fibrin from L-PRP form semi-IPNs with tunable properties suitable for use in regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110547. [PMID: 32228935 DOI: 10.1016/j.msec.2019.110547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
Autologous leukocyte- and platelet-rich plasma (L-PRP) combined with hyaluronic acid (HA) has been widely used in local applications for cartilage and bone regeneration. The association between L-PRP and HA confers structural and rheological changes that differ among individual biomaterials but has not been investigated. Therefore, the standardization and characterization of L-PRP-HA are important to consider when comparing performance results to improve future clinical applications. To this end, we prepared semi-interpenetrating polymer networks (semi-IPNs) of L-PRP and HA and characterized their polymerization kinetics, morphology, swelling ratio, stability and rheological behavior, which we found to be tunable according to the HA molar mass (MM). Mesenchymal stem cells derived from human adipose tissue (h-AdMSCs) seeded in the semi-IPNs had superior viability and chondrogenesis and osteogenesis capabilities compared to the viability and capabilities of fibrin. We have demonstrated that the preparation of the semi-IPNs under controlled mixing ensured the formation of cell-friendly hydrogels rich in soluble factors and with tunable properties according to the HA MM, rendering them suitable for clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Bruna Alice Gomes de Melo
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil
| | - Carla Giometti França
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil
| | - José Luis Dávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, 13083-860 Campinas, SP, Brazil
| | - Nilza Alzira Batista
- Orthopaedic Biomaterials Laboratory, Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, SP, Brazil
| | | | - Marcos Akira d'Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, 13083-860 Campinas, SP, Brazil
| | | | | | - Maria Helena Andrade Santana
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
42
|
Ben-Baruch A. Partners in crime: TNFα-based networks promoting cancer progression. Cancer Immunol Immunother 2019; 69:263-273. [PMID: 31820042 DOI: 10.1007/s00262-019-02435-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
Current therapeutic approaches in malignancy are often based on combination therapies, reflecting present understanding of the way different players act together in cancer. The cooperative activity of several elements can potentiate the pro-metastatic functions of the cancer cells and of the tumor microenvironment (TME), together leading to a more aggressive disease phenotype. The design of improved therapeutic modalities requires better identification of networks that act at specific cancer-related settings, and of the molecular mechanisms involved. Such studies will indicate if therapies that co-target several factors or their receptors, simultaneously, could apply. Also, by delineating the intracellular pathways that are activated under such cooperative activities, it will be possible to determine whether to inhibit one specific molecular route that is shared by the different partners, or alternatively, design modalities that jointly target intracellular components acting in concert. This Focused Research Review illuminates the therapeutic relevance of this research field by describing our published findings in breast cancer-related publications, which identified networks that are established by the pro-inflammatory/pro-metastatic cytokine TNFα. It describes the additive/synergistic activities of TNFα with other soluble factors residing at the TME (e.g., IL-1β, TGFβ1, estrogen, EGF), with intracellular components such as the Ras oncogene, and with the tumor-stroma contexture through the activation of molecular cascades (Notch). The roles of the p65 (NF-κB) pathway-acting alone or in intricate relationships with other intracellular mechanisms-are described, the "TNFα-based network" is discussed as a general paradigm in malignancy and its clinical implications in cancer therapy are addressed.
Collapse
Affiliation(s)
- Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
43
|
The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. JOURNAL OF ONCOLOGY 2019; 2019:6240505. [PMID: 31885581 PMCID: PMC6893275 DOI: 10.1155/2019/6240505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal cancers are still responsible for high numbers of cancer-related deaths despite advances in therapy. Tumor-associated cells play a key role in tumor biology, by supporting or halting tumor development through the production of extracellular matrix, growth factors, cytokines, and extracellular vesicles. Here, we review the roles of these tumor-associated cells in the initiation, angiogenesis, immune modulation, and resistance to therapy of gastrointestinal cancers. We also discuss novel diagnostic and therapeutic strategies directed at tumor-associated cells and their potential benefits for the survival of these patients.
Collapse
|
44
|
Hu S, Yuan J, Xu J, Li X, Zhang G, Ma Q, Zhang B, Hu T, Song G. TNF-α and IFN-γ synergistically inhibit the repairing ability of mesenchymal stem cells on mice colitis and colon cancer. Am J Transl Res 2019; 11:6207-6220. [PMID: 31632588 PMCID: PMC6789221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) can be efficiently recruited to wound, inflammatory and tumor sites to repair and regenerate tissue. However, its role in colitis and colitis associated colon cancer is still controversial. This study was designed to evaluate the role and mechanisms of inflammatory cytokines-activated-MSCs in mice colitis and colon cancer. METHODS We selected two well-characterized pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), to expand the inflammatory microenvironment of MSCs. The severity of colitis and colon cancer was evaluated by measuring colon length, Myeloperoxidase (MPO) activity, Hematoxylin-eosin staining, Western Blot, Immunohistochemistry and Immunofluorescence. These techniques were also performed to analyze the mechanisms of inflammatory cytokines-activated-MSCs in mice colitis and colon cancer. Real-time PCR and Enzyme-linked Immunosorbent Assay (ELISA) were used to measure the secretion of pro-inflammatory factors. RESULTS We found that the incubation of MSCs with TNF-α and IFN-γ aggravates colitis, where high levels of pro-inflammatory factors, such as interleukin (IL)-17, IL-8, IL-12, IL-1β, transforming growth factor (TGF)-β, TNF-α and IFN-γ, were secreted. Furthermore, this phenomenon was associated with the activation of the nuclear factor-kappa-B (NF-κB)/Signal transducer and activator of transcription three (STAT3) pathway. In addition, our study demonstrated that TNF-α and IFN-γ pretreated MSCs synergistically exacerbated mice colon cancer, which was closely associated with angiogenesis. CONCLUSIONS Taken together, these results indicate that TNF-α and IFN-γ pretreatment effectively inhibited the repair ability of MSCs and accelerated inflammation and tumor progression involving NF-κB/STAT3 pathway and angiogenesis-related factors.
Collapse
Affiliation(s)
- Shaoping Hu
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
- Zhangzhou Health Vocational CollegeZhangzhou 363000, China
| | - Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Jiajia Xu
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Bing Zhang
- Department of Basic Medicine, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen UniversityXiamen 361102, China
| |
Collapse
|
45
|
Javan MR, Khosrojerdi A, Moazzeni SM. New Insights Into Implementation of Mesenchymal Stem Cells in Cancer Therapy: Prospects for Anti-angiogenesis Treatment. Front Oncol 2019; 9:840. [PMID: 31555593 PMCID: PMC6722482 DOI: 10.3389/fonc.2019.00840] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment interacts with tumor cells, establishing an atmosphere to contribute or suppress the tumor development. Among the cells which play a role in the tumor microenvironment, mesenchymal stem cells (MSCs) have been demonstrated to possess the ability to orchestrate the fate of tumor cells, drawing the attention to the field. MSCs have been considered as cells with double-bladed effects, implicating either tumorigenic or anti-tumor activity. On the other side, the promising potential of MSCs in treating human cancer cells has been observed from the clinical studies. Among the beneficial characteristics of MSCs is the natural tumor-trophic migration ability, providing facility for drug delivery and, therefore, targeted treatment to detach tumor and metastatic cells. Moreover, these cells have been the target of engineering approaches, due to their easily implemented traits, in order to obtain the desired expression of anti-angiogenic, anti-proliferative, and pro-apoptotic properties, according to the tumor type. Tumor angiogenesis is the key characteristic of tumor progression and metastasis. Manipulation of angiogenesis has become an attractive approach for cancer therapy since the introduction of the first angiogenesis inhibitor, namely bevacizumab, for metastatic colorectal cancer therapy. This review tries to conclude the approaches, with focus on anti-angiogenesis approach, in implementing the MSCs to combat against tumor cell progression.
Collapse
Affiliation(s)
- Mohammad Reza Javan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
46
|
Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102034. [PMID: 31207314 DOI: 10.1016/j.nano.2019.102034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is predicted to be the second leading cause of cancer-related death in United States in 2019. Immunotherapies such as checkpoint inhibitors have proven efficacy in patients with high level of microsatellite instability and refractory to routine chemotherapy. Despite this, immunotherapy-based treatment is seriously limited by cancer immunogenicity which has evolved to evade immune surveillance in many circumstances. Efforts are made by researchers using nanoparticles (NPs) to override cancer-mediated immunosuppression, induce immune response against cancer cells or even generate memory immune cells for long-term disease control. These engineered NPs offer great opportunities in delivering cancer immunotherapy due to their unique properties, such as a high drug/antigen loading capacity, adjustable particle size, and versatile surface modification. In this review, we will highlight recent researches on the initiation and development of CRC, the immune microenvironment of CRC, and recent trends in engineering novel NPs-based immunotherapies in the treatment of CRC.
Collapse
Affiliation(s)
- Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China..
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Obesity, Insulin Resistance, and Colorectal Cancer: Could miRNA Dysregulation Play A Role? Int J Mol Sci 2019; 20:ijms20122922. [PMID: 31207998 PMCID: PMC6628223 DOI: 10.3390/ijms20122922] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with insulin resistance and low-grade inflammation. Insulin resistance is a risk factor for cancer. A recent chapter in epigenetics is represented by microRNAs (miRNAs), which post-transcriptionally regulate gene expression. Dysregulated miRNA profiles have been associated with diseases including obesity and cancer. Herein we report dysregulated miRNAs in obesity both in animal models and in humans, and we also document dysregulated miRNAs in colorectal cancer (CRC), as example of an obesity-related cancer. Some of the described miRNAs are found to be similarly dysregulated both in obesity, insulin resistance (IR), and CRC. Thus, we present miRNAs as a potential molecular link between obesity and CRC onset and development, giving a new perspective on the role of miRNAs in obesity-associated cancers.
Collapse
|
48
|
Zhao J, Wang J, Dang J, Zhu W, Chen Y, Zhang X, Xie J, Hu B, Huang F, Sun B, Bellanti JA, Zheng SG. A preclinical study-systemic evaluation of safety on mesenchymal stem cells derived from human gingiva tissue. Stem Cell Res Ther 2019; 10:165. [PMID: 31196163 PMCID: PMC6567625 DOI: 10.1186/s13287-019-1262-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mounting evidence has shown that a novel subset of mesenchymal stem cells (MSCs) derived from human gingiva referred to as gingival mesenchymal stem cells (GMSCs) displays a greater immunotherapeutic potential and regenerative repair expression than MSCs obtained from other tissues. However, the safety of the use of transplanted GMSCs in humans remains unclear. METHODS In this study, we evaluated the safety of GMSCs transplanted into mouse, rat, rabbit, beagle dog, and monkey as well as two animal models of autoimmune diseases. RESULTS In short- and long-term toxicity tests, infused GMSCs had no remarkable adverse effects on hematologic and biochemical indexes, particularly on the major organs such as heart, liver, spleen, and kidney in recipient animals. It was also shown that GMSCs were well tolerated in other assays including hemolysis, vascular, and muscular stimulation, as well as systemic anaphylaxis and passive skin Arthus reaction in animal models. GSMC infusion did not cause any notable side effects on animal models of either autoimmune arthritis or lupus. Significantly, GMSCs most likely play no role in genotoxicity and tumorigenesis. The biological features remained stable for an extended period after cell transfer. CONCLUSIONS GMSCs are safe in various animal models of autoimmunity, even during active disease episodes, especially in monkeys. This study paves a solid road for future clinical trials of GMSCs in patients with autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, USA
| | - Junlong Dang
- Division of Rheumatology, Department of Medicine, Milton S. Hershey Medical Center, Hershey, USA
| | - Wangyu Zhu
- Center of Immunology, Zhoushan City Hospital at Wenzhou Medical University, Wenzhou, China
| | - Yaqiong Chen
- Department of Laboratory Medicine, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Ximei Zhang
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, USA
| | - Junliang Xie
- Huize Biotech, LLC and Huifu Biotech, LLC, Zhoushan, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Feng Huang
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Song Guo Zheng
- Division of Immunology and Rheumatology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, USA.
| |
Collapse
|
49
|
Abstract
Mesenchymal stem cells (MSCs) are multipotent tissue stem cells that differentiate into a number of mesodermal tissue types, including osteoblasts, adipocytes, chondrocytes and myofibroblasts. MSCs were originally identified in the bone marrow (BM) of humans and other mammals, but recent studies have shown that they are multilineage progenitors in various adult organs and tissues. MSCs that localize at perivascular sites function to rapidly respond to external stimuli and coordinate with the vascular and immune systems to accomplish the wound healing process. Cancer, considered as wounds that never heal, is also accompanied by changes in MSCs that parallels the wound healing response. MSCs are now recognized as key players at distinct steps of tumorigenesis. In this review, we provide an overview of the function of MSCs in wound healing and cancer progression with the goal of providing insight into the development of novel MSC-manipulating strategies for clinical cancer treatment.
Collapse
|
50
|
Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019; 33:597-611. [PMID: 30705410 PMCID: PMC6756083 DOI: 10.1038/s41375-018-0373-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for being multi-potent. However, they also possess anticancer properties, which has prompted efforts to adapt MSCs for anticancer therapies. However, MSCs have also been widely implicated in pathways that contribute to tumor growth. Numerous studies have been conducted to adapt MSCs for further clinical use; however, the results have been inconclusive, possibly due to the heterogeneity of MSC populations. Moreover, the conflicting roles of MSCs in tumor inhibition and tumor growth impede their adaptation for anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in hematologic malignancies are not as well established as they are for solid malignancies, and data comparing them are still limited. Herein the effect of MSCs on hematologic malignancies, such as leukemia and lymphoma, their mechanisms, sources of MSCs, and their effects on different types of cancer, have been discussed. This review describes how MSCs preserve both antitumorigenic and protumorigenic effects, as they tend to not only inhibit tumor growth by suppressing tumor cell proliferation but also promote tumor growth by suppressing tumor cell apoptosis. Thus clinical studies trying to adapt MSCs for anticancer therapies should consider that MSCs could actually promote hematologic cancer progression. It is necessary to take extreme care while developing MSC-based cell therapies in order to boost anticancer properties while eliminating tumor-favoring effects. This review emphasizes that research on the therapeutic applications of MSCs must consider that they exert both antitumorigenic and protumorigenic effects on hematologic malignancies.
Collapse
|