1
|
Jin H, Zhang W, Liu H, Bao Y. Genome-wide identification and characteristic analysis of ETS gene family in blood clam Tegillarca granosa. BMC Genomics 2023; 24:700. [PMID: 37990147 PMCID: PMC10664356 DOI: 10.1186/s12864-023-09731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND ETS transcription factors, known as the E26 transformation-specific factors, assume a critical role in the regulation of various vital biological processes in animals, including cell differentiation, the cell cycle, and cell apoptosis. However, their characterization in mollusks is currently lacking. RESULTS The current study focused on a comprehensive analysis of the ETS genes in blood clam Tegillarca granosa and other mollusk genomes. Our phylogenetic analysis revealed the absence of the SPI and ETV subfamilies in mollusks compared to humans. Additionally, several ETS genes in mollusks were found to lack the PNT domain, potentially resulting in a diminished ability of ETS proteins to bind target genes. Interestingly, the bivalve ETS1 genes exhibited significantly high expression levels during the multicellular proliferation stage and in gill tissues. Furthermore, qRT-PCR results showed that Tg-ETS-14 (ETS1) is upregulated in the high total hemocyte counts (THC) population of T. granosa, suggesting it plays a significant role in stimulating hemocyte proliferation. CONCLUSION Our study significantly contributes to the comprehension of the evolutionary aspects concerning the ETS gene family, while also providing valuable insights into its role in fostering hemocyte proliferation across mollusks.
Collapse
Affiliation(s)
- Hongyu Jin
- School of Marine Sciences, Ningbo University, Ningbo, 315000, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315000, China
| | - Hongxing Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China.
| |
Collapse
|
2
|
Postiglione AE, Adams LL, Ekhator ES, Odelade AE, Patwardhan S, Chaudhari M, Pardue AS, Kumari A, LeFever WA, Tornow OP, Kaoud TS, Neiswinger J, Jeong JS, Parsonage D, Nelson KJ, Kc DB, Furdui CM, Zhu H, Wommack AJ, Dalby KN, Dong M, Poole LB, Keyes JD, Newman RH. Hydrogen peroxide-dependent oxidation of ERK2 within its D-recruitment site alters its substrate selection. iScience 2023; 26:107817. [PMID: 37744034 PMCID: PMC10514464 DOI: 10.1016/j.isci.2023.107817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/11/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are dysregulated in many pervasive diseases. Recently, we discovered that ERK1/2 is oxidized by signal-generated hydrogen peroxide in various cell types. Since the putative sites of oxidation lie within or near ERK1/2's ligand-binding surfaces, we investigated how oxidation of ERK2 regulates interactions with the model substrates Sub-D and Sub-F. These studies revealed that ERK2 undergoes sulfenylation at C159 on its D-recruitment site surface and that this modification modulates ERK2 activity differentially between substrates. Integrated biochemical, computational, and mutational analyses suggest a plausible mechanism for peroxide-dependent changes in ERK2-substrate interactions. Interestingly, oxidation decreased ERK2's affinity for some D-site ligands while increasing its affinity for others. Finally, oxidation by signal-generated peroxide enhanced ERK1/2's ability to phosphorylate ribosomal S6 kinase A1 (RSK1) in HeLa cells. Together, these studies lay the foundation for examining crosstalk between redox- and phosphorylation-dependent signaling at the level of kinase-substrate selection.
Collapse
Affiliation(s)
- Anthony E. Postiglione
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Laquaundra L. Adams
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anuoluwapo E. Odelade
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Supriya Patwardhan
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Meenal Chaudhari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Mathematics and Computer Science, University of Virginia at Wise, Wise, VA 24293, USA
| | - Avery S. Pardue
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anjali Kumari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - William A. LeFever
- Department of Chemistry, High Point University, High Point, NC 27268, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Olivia P. Tornow
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Tamer S. Kaoud
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Johnathan Neiswinger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biology, Belhaven University, Jackson, MS 39202, USA
| | - Jun Seop Jeong
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kimberly J. Nelson
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dukka B. Kc
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeremiah D. Keyes
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biology, Penn State University Behrend, Erie, PA 16563, USA
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Sammons RM, Cho EJ, Dalby KN. Identification and biochemical characterization of small molecule inhibitors of ERK2 that target the D-recruitment site. Methods Enzymol 2023; 690:445-499. [PMID: 37858538 PMCID: PMC10950554 DOI: 10.1016/bs.mie.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Extracellular signal-regulated kinase (ERK) is the culmination of a mitogen-activated protein kinase cascade that regulates cellular processes like proliferation, migration, and survival. Consequently, abnormal ERK signaling often plays a role in the tumorigenesis and metastasis of numerous cancers. ERK inhibition is a sought-after treatment for cancers, especially since clinically approved drugs that target signaling upstream of ERK often induce acquired resistance. Furthermore, the ERK2 isoform may have a differential role in various cancers from the other canonical isoform, ERK1. We demonstrate that small molecules can inhibit ERK2 catalytic and noncatalytic functions by binding to the D-recruitment site (DRS), a protein-protein interaction site distal to the enzyme active site. Using a fluorescence anisotropy-based high-throughput screening, we identify compounds that bind to the DRS and exhibit dose-dependent inhibition of ERK2 activity and ERK2 phosphorylation. We characterize the dose-dependent potency of ERK2 inhibitors using fluorescence anisotropy-based binding assays, fluorescence-based ERK2 substrate phosphorylation assays, and in vitro ERK2 activation assays. In our example, the binding of a DRS inhibitor can be prevented by mutating the DRS residue Cys-159 to serine, indicating that this residue is essential for the interaction. Resulting inhibitors from this process can be assessed in cellular and in vivo experiments for inhibition of ERK signaling and can be evaluated as potential cancer drugs.
Collapse
Affiliation(s)
- R M Sammons
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX, United States
| | - E J Cho
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX, United States
| | - K N Dalby
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX, United States; Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
4
|
Lopez J, Bonsor DA, Sale MJ, Urisman A, Mehalko JL, Cabanski-Dunning M, Castel P, Simanshu DK, McCormick F. The Ribosomal S6 Kinase 2 (RSK2)-SPRED2 complex regulates phosphorylation of RSK substrates and MAPK signaling. J Biol Chem 2023:104789. [PMID: 37149146 DOI: 10.1016/j.jbc.2023.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-MAPK pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been fully elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes, thus we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, here we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2, but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates interaction between amino acids 123-201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. Additionally, we found that formation of this interaction is regulated by MAPK signaling events. We also find that that this interaction between SPRED2 and RSK2 has functional consequences, whereby knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. Lastly, we report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Overall, our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.
Collapse
Affiliation(s)
- Jocelyne Lopez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jennifer L Mehalko
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702, United States
| | - Miranda Cabanski-Dunning
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University, 450 E 29(th) Street, New York, NY 10016, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Wang Y, Hanrahan G, Azar FA, Mittermaier A. Binding interactions in a kinase active site modulate background ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140720. [PMID: 34597835 DOI: 10.1016/j.bbapap.2021.140720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Kinases play central roles in many cellular processes, transferring the terminal phosphate groups of nucleoside triphosphates (NTPs) onto substrates. In the absence of substrates, kinases can also hydrolyse NTPs producing NDPs and inorganic phosphate. Hydrolysis is usually much less efficient than the native phosphoryl transfer reaction. This may be related to the fact that NTP hydrolysis is metabolically unfavorable as it unproductively consumes the cell's energy stores. It has been suggested that substrate interactions could drive changes in NTP binding pocket, activating catalysis only when substrates are present. Structural data show substrate-induced conformational rearrangements, however there is a lack of corresponding functional information. To better understand this phenomenon, we developed a suite of isothermal titration calorimetry (ITC) kinetics methods to characterize ATP hydrolysis by the antibiotic resistance enzyme aminoglycoside-3'-phosphotransferase-IIIa (APH(3')-IIIa). We measured Km, kcat, and product inhibition constants and single-turnover kinetics in the presence and absence of non-substrate aminoglycosides (nsAmgs) that are structurally similar to the native substrates. We found that the presence of an nsAmg increased the chemical step of cleaving the ATP γ-phosphate by at least 10- to 20-fold under single-turnover conditions, supporting the existence of interactions that link substrate binding to substantially enhanced catalytic rates. Our detailed kinetic data on the association and dissociation rates of nsAmgs and ADP shed light on the biophysical processes underlying the enzyme's Theorell-Chance reaction mechanism. Furthermore, they provide clues on how to design small-molecule effectors that could trigger efficient ATP hydrolysis and generate selective pressure against bacteria harboring the APH(3')-IIIa.
Collapse
Affiliation(s)
- Yun Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Grace Hanrahan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Frederic Abou Azar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Anthony Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
6
|
Perry-Hauser NA, Hopkins JB, Zhuo Y, Zheng C, Perez I, Schultz KM, Vishnivetskiy SA, Kaya AI, Sharma P, Dalby KN, Chung KY, Klug CS, Gurevich VV, Iverson TM. The two non-visual arrestins engage ERK2 differently. J Mol Biol 2022; 434:167465. [PMID: 35077767 PMCID: PMC8977243 DOI: 10.1016/j.jmb.2022.167465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Arrestin binding to active phosphorylated G protein-coupled receptors terminates G protein coupling and initiates another wave of signaling. Among the effectors that bind directly to receptor-associated arrestins are extracellular signal-regulated kinases 1/2 (ERK1/2), which promote cellular proliferation and survival. Arrestins may also engage ERK1/2 in isolation in a pre- or post-signaling complex that is likely in equilibrium with the full signal initiation complex. Molecular details of these binary complexes remain unknown. Here, we investigate the molecular mechanisms whereby arrestin-2 and arrestin-3 (a.k.a. β-arrestin1 and β-arrestin2, respectively) engage ERK1/2 in pairwise interactions. We find that purified arrestin-3 binds ERK2 more avidly than arrestin-2. A combination of biophysical techniques and peptide array analysis demonstrates that the molecular basis in this difference of binding strength is that the two non-visual arrestins bind ERK2 via different parts of the molecule. We propose a structural model of the ERK2-arrestin-3 complex in solution using size-exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). This binary complex exhibits conformational heterogeneity. We speculate that this drives the equilibrium either toward the full signaling complex with receptor-bound arrestin at the membrane or toward full dissociation in the cytoplasm. As ERK1/2 regulates cell migration, proliferation, and survival, understanding complexes that relate to its activation could be exploited to control cell fate.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States. https://twitter.com/EmilyBroadis
| | - Jesse B Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, United States; Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Kevin N Dalby
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, United States
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, United States; Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, United States.
| |
Collapse
|
7
|
Yao Z, Aboualizadeh F, Kroll J, Akula I, Snider J, Lyakisheva A, Tang P, Kotlyar M, Jurisica I, Boxem M, Stagljar I. Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Nat Commun 2020; 11:2440. [PMID: 32415080 PMCID: PMC7229206 DOI: 10.1038/s41467-020-16299-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Here, to overcome many limitations accompanying current available methods to detect protein-protein interactions (PPIs), we develop a live cell method called Split Intein-Mediated Protein Ligation (SIMPL). In this approach, bait and prey proteins are respectively fused to an intein N-terminal fragment (IN) and C-terminal fragment (IC) derived from a re-engineered split intein GP41-1. The bait/prey binding reconstitutes the intein, which splices the bait and prey peptides into a single intact protein that can be detected by regular protein detection methods such as Western blot analysis and ELISA, serving as readouts of PPIs. The method is robust and can be applied not only in mammalian cell lines but in animal models such as C. elegans. SIMPL demonstrates high sensitivity and specificity, and enables exploration of PPIs in different cellular compartments and tracking of kinetic interactions. Additionally, we establish a SIMPL ELISA platform that enables high-throughput screening of PPIs and their inhibitors. Protein-protein interactions are fundamental to the regulation of protein activity and cellular phyisology. Here the authors present Split Intein-Mediated Protein Ligation, which uses bait and prey proteins fused to intein fragments to generate single intact proteins upon interaction.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Jason Kroll
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Indira Akula
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Priscilla Tang
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia.
| |
Collapse
|
8
|
Misiura MM, Kolomeisky AB. Role of Intrinsically Disordered Regions in Acceleration of Protein–Protein Association. J Phys Chem B 2019; 124:20-27. [DOI: 10.1021/acs.jpcb.9b08793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Sammons RM, Perry NA, Li Y, Cho EJ, Piserchio A, Zamora-Olivares DP, Ghose R, Kaoud TS, Debevec G, Bartholomeusz C, Gurevich VV, Iverson TM, Giulianotti M, Houghten RA, Dalby KN. A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation. ACS Chem Biol 2019; 14:1183-1194. [PMID: 31058487 DOI: 10.1021/acschembio.9b00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular signal-regulated kinases (ERK1/2) are mitogen-activated protein kinases (MAPKs) that play a pro-tumorigenic role in numerous cancers. ERK1/2 possess two protein-docking sites that are distinct from the active site: the D-recruitment site (DRS) and the F-recruitment site. These docking sites facilitate substrate recognition, intracellular localization, signaling specificity, and protein complex assembly. Targeting these sites on ERK in a therapeutic context may overcome many problems associated with traditional ATP-competitive inhibitors. Here, we identified a new class of inhibitors that target the ERK DRS by screening a synthetic combinatorial library of more than 30 million compounds. The screen detects the competitive displacement of a fluorescent peptide from the DRS of ERK2. The top molecular scaffold from the screen was optimized for structure-activity relationship by positional scanning of different functional groups. This resulted in 10 compounds with similar binding affinities and a shared core structure consisting of a tertiary amine hub with three functionalized cyclic guanidino branches. Compound 2507-1 inhibited ERK2 from phosphorylating a DRS-targeting substrate and prevented the phosphorylation of ERK2 by a constitutively active MEK1 (MAPK/ERK kinase 1) mutant. Interaction between an analogue, 2507-8, and the ERK2 DRS was confirmed by nuclear magnetic resonance and X-ray crystallography. 2507-8 forms critical interactions at the common docking domain residue Asp319 via an arginine-like moiety that is shared by all 10 hits, suggesting a common binding mode. The structural and biochemical insights reported here provide the basis for developing new ERK inhibitors that are not ATP-competitive but instead function by disrupting critical protein-protein interactions.
Collapse
Affiliation(s)
| | | | - Yangmei Li
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
- Department of Drug Discovery & Biomedical Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | | | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Tamer S. Kaoud
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | | | | | | | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | | |
Collapse
|
10
|
Structural and Dynamic Features of F-recruitment Site Driven Substrate Phosphorylation by ERK2. Sci Rep 2015; 5:11127. [PMID: 26054059 PMCID: PMC4459106 DOI: 10.1038/srep11127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS.
Collapse
|
11
|
Warthaka M, Adelmann CH, Kaoud TS, Edupuganti R, Yan C, Johnson WH, Ferguson S, Tavares CD, Pence LJ, Anslyn EV, Ren P, Tsai KY, Dalby KN. Quantification of a Pharmacodynamic ERK End Point in Melanoma Cell Lysates: Toward Personalized Precision Medicine. ACS Med Chem Lett 2015; 6:47-52. [PMID: 25589929 DOI: 10.1021/ml500198b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/17/2014] [Indexed: 01/26/2023] Open
Abstract
Protein kinases are mutated or otherwise rendered constitutively active in numerous cancers where they are attractive therapeutic targets with well over a dozen kinase inhibitors now being used in therapy. While fluorescent sensors have capacity to measure changes in kinase activity, surprisingly they have not been utilized for biomarker studies. A first-generation peptide sensor for ERK based on the Sox fluorophore is described. This sensor called ERK-sensor-D1 possesses high activity toward ERK and more than 10-fold discrimination over other MAPKs. The sensor can rapidly quantify ERK activity in cell lysates and monitor ERK pathway engagement by BRAF and MEK inhibitors in cultured melanoma cell lines. The dynamic range of the sensor assay allows ERK activities that have potential for profound clinical consequences to be rapidly distinguished.
Collapse
Affiliation(s)
| | - Charles H. Adelmann
- Department
of Immunology and Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Tamer S. Kaoud
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | | | | | | | | | | | - Lindy J. Pence
- Department
of Immunology and Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | - Kenneth Y. Tsai
- Department
of Immunology and Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | |
Collapse
|
12
|
Zamora-Olivares D, Kaoud TS, Dalby KN, Anslyn EV. In-situ generation of differential sensors that fingerprint kinases and the cellular response to their expression. J Am Chem Soc 2013; 135:14814-20. [PMID: 23991633 DOI: 10.1021/ja407397z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitogen-activated protein (MAP) kinases are responsible for many cellular functions, and their malfunction manifests itself in several human diseases. Usually, monitoring the phosphorylation states of MAP kinases in vitro requires the preparation and purification of the proteins or Western blotting. Herein, we report an array sensing approach for the differentiation of MAP kinases and their phosphorylated counterparts in vitro. This technique utilizes a library of differential receptors created in situ containing peptides known for affinity to MAP kinases, and a Zn(II)-dipicolylamine complex that binds phosphate groups on proteins. An indicator-displacement assay signals the binding of the individual receptors to the kinases, while chemometrics is used to create a fingerprint for the kinases and their state of activity. For example, linear discriminant analysis correctly identified kinase activity with a classification accuracy of 97.5% in vitro, while the cellular response to kinase expression was classified with 100% accuracy.
Collapse
Affiliation(s)
- Diana Zamora-Olivares
- Department of Chemistry and Biochemistry and ‡Division of Medicinal Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
13
|
Dastidar SG, Lane DP, Verma CS. Why is F19Ap53 unable to bind MDM2? Simulations suggest crack propagation modulates binding. Cell Cycle 2012; 11:2239-47. [PMID: 22617389 DOI: 10.4161/cc.20333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Why doesn't the F19A mutant of p53 bind to MDM2? Binding thermodynamics have suggested that the loss of packing interactions upon mutating Phe into Ala sidechain results in destabilizing the binding free energy between p53 and MDM2. Does this mutation also modulate the initial recognition between p53 and MDM2? We look at atomistic computer simulations of the process of the initial encounter between wild type p53 peptide and its F19A mutant with the N-terminal domain of MDM2. These simulations show that binding is characterized by a complex multistep process. It starts with the capture of F19 of wild type p53 by certain residues in the MDM2 binding pocket. This initial step anchors the peptide onto the surface of MDM2, and with the consequent reduction in the search space of the peptide, the peptide docks into the partially occluded surface of MDM2. This is similar to a crack forming in an otherwise occluded hydrophobic cavity in MDM2, and the peptide, docked through F19, modulates the propagation of this crack, which subsequently results in the stepwise docking of the rest of the peptide through insertions of W23 and L26. The lack of the bulky sidechain of F in the F19A mutant results in the absence of the initial "grasp" complex, and hence the mutant peptide diffuses randomly on the surface of MDM2 without binding. This is the first such demonstration of the possibility that a "kinetic" effect may partly underlie the destabilized thermodynamics of binding of F19A and is a feature that appears to be conserved in evolution. The observations by Wallace et al. (Mol Cell 2006; 23:251-63) that despite the inability of F19A to bind at the N-terminal domain of MDM2, it gets ubiquitinated, can now be partly understood based on a mechanism whereby the occupation of the binding pocket by ligands/peptides induces, via crack propagation and the dynamics of gatekeeper Y100, the ubiquitination signal for interactions between the acidic domain of MDM2 and the DNA binding domain of p53.
Collapse
|
14
|
ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66:105-43. [PMID: 22569528 DOI: 10.1016/j.phrs.2012.04.005] [Citation(s) in RCA: 1160] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
Collapse
|
15
|
Lee S, Warthaka M, Yan C, Kaoud TS, Ren P, Dalby KN. Examining docking interactions on ERK2 with modular peptide substrates. Biochemistry 2011; 50:9500-10. [PMID: 21955038 DOI: 10.1021/bi201103b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ERK2 primarily recognizes substrates through two recruitment sites, which lie outside the active site cleft of the kinase. These recruitment sites bind modular-docking sequences called docking sites and are potentially attractive sites for the development of non-ATP competitive inhibitors. The D-recruitment site (DRS) and the F-recruitment site (FRS) bind D-sites and F-sites, respectively. For example, peptides that target the FRS have been proposed to inhibit all ERK2 activity (Galanis, A., Yang, S. H., and Sharrocks, A. D. (2001) J. Biol. Chem. 276, 965-973); however, it has not been established whether this inhibition is steric or allosteric in origin. To facilitate inhibitor design and to examine potential coupling of recruitment sites to other ligand recognition sites within ERK2, energetic coupling within ERK2 was investigated using two new modular peptide substrates for ERK2. Modeling shows that one peptide (Sub-D) recognizes the DRS, while the other peptide (Sub-F) binds the FRS. A steady-state kinetic analysis reveals little evidence of thermodynamic linkage between the peptide substrate and ATP. Both peptides are phosphorylated through a random-order sequential mechanism with a k(cat)/K(m) comparable to Ets-1, a bona fide ERK2 substrate. Occupancy of the FRS with a peptide containing a modular docking sequence has no effect on the intrinsic ability of ERK2 to phosphorylate Sub-D. Occupancy of the DRS with a peptide containing a modular docking sequence has a slight effect (1.3 ± 0.1-fold increase in k(cat)) on the intrinsic ability of ERK2 to phosphorylate Sub-F. These data suggest that while docking interactions at the DRS and the FRS are energetically uncoupled, the DRS can exhibit weak communication to the active site. In addition, they suggest that peptides bound to the FRS inhibit the phosphorylation of protein substrates through a steric mechanism. The modeling and kinetic data suggest that the recruitment of ERK2 to cellular locations via its DRS may facilitate the formation of F-site selective ERK2 signaling complexes, while recruitment via the FRS will likely inhibit ERK2 through a steric mechanism of inhibition. Such recruitment may serve as an additional level of ERK2 regulation.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712, United States
| | | | | | | | | | | |
Collapse
|
16
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
17
|
Lee S, Warthaka M, Yan C, Kaoud TS, Piserchio A, Ghose R, Ren P, Dalby KN. A model of a MAPK•substrate complex in an active conformation: a computational and experimental approach. PLoS One 2011; 6:e18594. [PMID: 21494553 PMCID: PMC3073974 DOI: 10.1371/journal.pone.0018594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/04/2011] [Indexed: 01/24/2023] Open
Abstract
The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)2-3-X2-6-ΦA-X-ΦB, where Φ is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets) make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling, a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus 7RK-X2-ΦA-X-ΦB13. This results in a 2-fold increase in kcat/Km for the phosphorylation of Ets by ERK2. Similarly, the substitution of the N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves kcat/Km by two-fold compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease in kcat/Km, with little apparent change in kcat. A peptide that binds to the DRS of ERK2 affects Km, but not kcat. Our kinetic analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state ERK2•Ets•MgATP complex and intermediates of the enzymatic reaction.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Medicinal Chemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Mangalika Warthaka
- Division of Medicinal Chemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Chunli Yan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Tamer S. Kaoud
- Division of Medicinal Chemistry, University of Texas at Austin, Austin, Texas, United States of America
- Graduate Program in Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Andrea Piserchio
- Department of Chemistry, The City College of New York, New York, New York, United States of America
| | - Ranajeet Ghose
- Department of Chemistry, The City College of New York, New York, New York, United States of America
- The Graduate Center of The City University of New York, New York, New York, United States of America
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Graduate Program in Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (KND); (PR)
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, University of Texas at Austin, Austin, Texas, United States of America
- Graduate Program in Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
- Graduate Program in Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Graduate Program in Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (KND); (PR)
| |
Collapse
|
18
|
Krissinel E. Macromolecular complexes in crystals and solutions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:376-85. [PMID: 21460456 PMCID: PMC3069753 DOI: 10.1107/s0907444911007232] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 02/25/2011] [Indexed: 11/10/2022]
Abstract
This paper presents a discussion of existing methods for the analysis of macromolecular interactions and complexes in crystal packing. Typical situations and conditions where wrong answers may be obtained in the course of ordinary procedures are presented and discussed. The more general question of what the relationship is between natural (in-solvent) and crystallized assemblies is discussed and researched. A computational analysis suggests that weak interactions with K(d) ≥ 100 µM have a considerable chance of being lost during the course of crystallization. In such instances, crystal packing misrepresents macromolecular complexes and interactions. For as many as 20% of protein dimers in the PDB the likelihood of misrepresentation is estimated to be higher than 50%. Given that weak macromolecular interactions play an important role in many biochemical processes, these results suggest that a complementary noncrystallographic study should be always conducted when inferring structural aspects of weakly bound complexes.
Collapse
Affiliation(s)
- Evgeny Krissinel
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, England.
| |
Collapse
|
19
|
Callaway K, Waas WF, Rainey MA, Ren P, Dalby KN. Phosphorylation of the transcription factor Ets-1 by ERK2: rapid dissociation of ADP and phospho-Ets-1. Biochemistry 2010; 49:3619-30. [PMID: 20361728 DOI: 10.1021/bi100199q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ERK2, a major effector of the BRAF oncogene, is a promiscuous protein kinase that has a strong preference for phosphorylating substrates on Ser-Pro or Thr-Pro motifs. As part of a program to understand the fundamental basis for ERK2 substrate recognition and catalysis, we have studied the mechanism by which ERK2 phosphorylates the transcription factor Ets-1 at Thr-38. A feature of the mechanism in the forward direction is a partially rate-limiting product release step (koff = 59 +/- 6 s(-1)), which is significant because to approach maximum efficiency substrates for ERK2 may evolve to ensure that ADP dissociation is rate-limiting. To improve our understanding of the mechanism of product release, the binding of the products to ERK2 was assessed and the reaction was examined in the reverse direction. These studies demonstrated that phospho-Ets-1 (p-Ets) binds >20-fold more tightly to ERK2 than ADP (Kd = 7.3 and 165 microM, respectively) and revealed that the products exhibit little interaction energetically while bound to ERK2 and that they can dissociate ERK2 in a random order. The overall equilibrium for the reaction in solution (Keq = 250 M(-1)) was found to be similar to that with the substrate bound to the enzyme (Kint = 525 M(-1)). To determine what limits koff, several pre-steady-state experiments were performed. A catalytic trapping approach furnished a rate constant (k-ADPa) of 61 +/- 12 s(-1) for the dissociation of ADP from the abortive ternary complex, ERK2.Ets.ADP. To examine p-Ets dissociation, the binding of a fluorescent derivative (p-Ets-F), which binds ERK2 with an affinity similar to that of p-Ets, was examined by stopped-flow kinetics. Using this approach, p-Ets-F was found to bind through a single-step mechanism, with the following parameters: k-p-Ets-F = 121 +/- 3.8 s(-1), and kp-Ets-F = (9.4 +/- 0.3) X 10(6) M(-1) s(-1). Similar results were found in the presence of a saturating ADP concentration. These data suggest that koff may be limited by the dissociation of both products and are consistent with the notion that Ets-1 has evolved to be an efficient substrate for ERK2, where ADP release is, at least, partially rate-limiting. A molecular mechanics model of the complex formed between ERK2 and residues 28-138 of Ets-1 provides insight into the role of substrate docking interactions.
Collapse
Affiliation(s)
- Kari Callaway
- Division of Medicinal Chemistry, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
20
|
Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP. Proc Natl Acad Sci U S A 2010; 107:10026-31. [PMID: 20534573 DOI: 10.1073/pnas.0915137107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ras/MAPK signaling is often aberrantly activated in human cancers. The downstream effectors are transcription factors, including those encoded by the ETS gene family. Using cell-based assays and biophysical measurements, we have determined the mechanism by which Ras/MAPK signaling affects the function of Ets1 via phosphorylation of Thr38 and Ser41. These ERK2 phosphoacceptors lie within the unstructured N-terminal region of Ets1, immediately adjacent to the PNT domain. NMR spectroscopic analyses demonstrated that the PNT domain is a four-helix bundle (H2-H5), resembling the SAM domain, appended with two additional helices (H0-H1). Phosphorylation shifted a conformational equilibrium, displacing the dynamic helix H0 from the core bundle. The affinity of Ets1 for the TAZ1 (or CH1) domain of the coactivator CBP was enhanced 34-fold by phosphorylation, and this binding was sensitive to ionic strength. NMR-monitored titration experiments mapped the interaction surfaces of the TAZ1 domain and Ets1, the latter encompassing both the phosphoacceptors and PNT domain. Charge complementarity of these surfaces indicate that electrostatic forces act in concert with a conformational equilibrium to mediate phosphorylation effects. We conclude that the dynamic helical elements of Ets1, appended to a conserved structural core, constitute a phospho-switch that directs Ras/MAPK signaling to downstream changes in gene expression. This detailed structural and mechanistic information will guide strategies for targeting ETS proteins in human disease.
Collapse
|
21
|
|
22
|
McIntosh LP, Kang HS, Okon M, Nelson ML, Graves BJ, Brutscher B. Detection and assignment of phosphoserine and phosphothreonine residues by (13)C- (31)P spin-echo difference NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2009; 43:31-37. [PMID: 19002654 DOI: 10.1007/s10858-008-9287-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/16/2008] [Indexed: 05/27/2023]
Abstract
A simple NMR method is presented for the identification and assignment of phosphorylated serine and threonine residues in (13)C- or (13)C/(15)N-labeled proteins. By exploiting modest (~5 Hz) 2- and 3-bond (13)C-(31)P scalar couplings, the aliphatic (1)H-(13)C signals from phosphoserines and phosphothreonines can be detected selectively in a (31)P spin-echo difference constant time (1)H-(13)C HSQC spectrum. Inclusion of the same (31)P spin-echo element within the (13)C frequency editing period of an intraHNCA or HN(CO)CA experiment allows identification of the amide (1)H(N) and (15)N signals of residues (i) for which( 13)C(alpha)(i) or ( 13)C(alpha)(i - 1), respectively, are coupled to a phosphate. Furthermore, (31)P resonance assignments can be obtained by applying selective low power cw (31)P decoupling during the spin-echo period. The approach is demonstrated using a PNT domain containing fragment of the transcription factor Ets-1, phosphorylated in vitro at Thr38 and Ser41 with the MAP kinase ERK2.
Collapse
Affiliation(s)
- Lawrence P McIntosh
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. THE PLANT CELL 2007; 19:3961-73. [PMID: 18065692 PMCID: PMC2217645 DOI: 10.1105/tpc.106.049999] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 05/19/2023]
Abstract
Many flowering plants possess systems of self-incompatibility (SI) to prevent inbreeding. In Brassica, SI recognition is controlled by the multiallelic gene complex (S-haplotypes) at the S-locus, which encodes both the male determinant S-locus protein 11 (SP11/SCR) and the female determinant S-receptor kinase (SRK). Upon self-pollination, the S-haplotype-specific interaction between the pollen-borne SP11 and the cognate stigmatic SRK receptor induces SI signaling in the stigmatic papilla cell and results in rejection of the self-pollen. Our genetic analysis of a self-compatible mutant revealed the involvement of a cytoplasmic protein kinase, M-locus protein kinase (MLPK), in the SI signaling, but its exact physiological function remains unknown. In this study, we identified two different MLPK transcripts, MLPKf1 and MLPKf2, which are produced using alternative transcriptional initiation sites and encode two isoforms that differ only at the N termini. While MLPKf1 and MLPKf2 exhibited distinct expression profiles, both were expressed in papilla cells. MLPKf1 localizes to the plasma membrane through its N-terminal myristoylation motif, while MLPKf2 localizes to the plasma membrane through its N-terminal hydrophobic region. Although both MLPKf1 and MLPKf2 could independently complement the mlpk/mlpk mutation, their mutant forms that lack the plasma membrane localization motifs failed to complement the mutation. Furthermore, a bimolecular fluorescence complementation assay revealed direct interactions between SRK and the MLPK isoforms in planta. These results suggest that MLPK isoforms localize to the papilla cell membrane and interact directly with SRK to transduce SI signaling.
Collapse
Affiliation(s)
- Mitsuru Kakita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang ZX, Wu JW. The complete pathway for ERK2-catalyzed reaction. Evidence for an iso random Bi Bi mechanism. J Biol Chem 2007; 282:27678-84. [PMID: 17652083 DOI: 10.1074/jbc.m703161200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, the enzymatic mechanism of ERK2 is re-examined by a combination of steady-state kinetic studies in the absence and presence of viscosogenic agents. Kinetic studies carried out in various concentrations of sucrose revealed that both k(cat) and k(cat)/K(m) for either ATP or EtsDelta138 were highly sensitive to solvent viscosity, suggesting that the rapid equilibrium assumption is not valid for the phosphorylation of protein substrate by ERK2. Furthermore, the kinetic analysis with the minimal random Bi Bi reaction mechanism is shown to be inconsistent with the principle of the detailed balance. This inconsistent calculation strongly suggests that there is isomerization of the enzyme-substrate ternary complex. The viscosity-dependent steady-state kinetic data are combined to establish a kinetic mechanism for the ERK2-catalyzed reaction that predicts initial reaction velocities under varying concentrations of ATP and substrate. These results complement previous structure-function studies of mitogen-activated protein kinases and provide important insight for mechanistic interpretation of the kinase functions.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
25
|
Abramczyk O, Rainey MA, Barnes R, Martin L, Dalby KN. Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding. Biochemistry 2007; 46:9174-86. [PMID: 17658891 PMCID: PMC2897722 DOI: 10.1021/bi7002058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many substrates of ERK2 contain a D-site, a sequence recognized by ERK2 that is used to promote catalysis. Despite lacking a canonical D-site, the substrate Ets-1 is displaced from ERK2 by peptides containing one. This suggests that Ets-1 may contain a novel or cryptic D-site. To investigate this possibility a protein footprinting strategy was developed to elucidate ERK2-ligand interactions. Using this approach, single cysteine reporters were placed in the D-recruitment site (DRS) of ERK2 and the resulting ERK2 proteins subjected to alkylation by iodoacetamide. The ability of residues 1-138 of Ets-1 to protect the cysteines from alkylation was determined. The pattern of protection observed is consistent with Ets-1 occupying a hydrophobic binding site within the DRS of ERK2. Significantly, a peptide derived from the D-site of Elk-1, which is known to bind the DRS, exhibits a similar pattern of cysteine protection. This analysis expands the repertoire of the DRS on ERK2 and suggests that other targeting sequences remain to be identified. Furthermore, cysteine-footprinting is presented as a useful way to interrogate protein-ligand interactions at the resolution of a single amino acid.
Collapse
Affiliation(s)
- Olga Abramczyk
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712
| | - Mark A. Rainey
- Graduate Program in Molecular Biology, University of Texas at Austin, Texas 78712
| | - Richard Barnes
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712
| | - Lance Martin
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, University of Texas at Austin, Texas 78712
- Graduate Program in Molecular Biology, University of Texas at Austin, Texas 78712
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712
- Corresponding author. Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, TX 78712. Tel: 512-4719267. Fax: 512-2322606.
| |
Collapse
|
26
|
Brahma A, Dalby KN. Regulation of protein phosphorylation within the MKK1-ERK2 complex by MP1 and the MP1*P14 heterodimer. Arch Biochem Biophys 2007; 460:85-91. [PMID: 17254543 PMCID: PMC2853909 DOI: 10.1016/j.abb.2006.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 11/30/2022]
Abstract
MEK partner 1 (MP1) and P14 are small proteins that modulate the Raf-MKK1/2-ERK1/2 pathway. To examine the biochemical basis for their function a fluorescent form of MP1 was prepared by labeling Cys-74 with fluorescein. Using this protein it was shown that MP1 binds unactivated ERK1, ERK2 and a constitutively active form of MKK1 (MKK1G7B) with dissociation constants of 9.7+/-1.6, 3.3+/-0.6 and 2.2+/-0.5 microM, respectively. MP1 inhibits the ability of activated ERK2 to phosphorylate the transcription factor Ets-1. Both MP1 and the MP1*P14 complex inhibit the ability of activated ERK2 to phosphorylate MKK1G7B, thus impeding feedback inhibition. In contrast, MP1 and the P14*MP1 complex enhance the ability of MKK1G7B to phosphorylate ERK2, when ERK2 is present at a low concentration, but not when it is present at a high concentration. Thus, MP1 and the MP1*P14 complex have the potential to differentially modulate activating and inhibiting signals in the Raf-MKK1/2-ERK1/2 pathway.
Collapse
Affiliation(s)
- Amrita Brahma
- Division of Medicinal Chemistry, University of Texas, Austin, TX 78712-0252
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, University of Texas, Austin, TX 78712-0252
- Graduate Program in Biochemistry, University of Texas, Austin, TX 78712-0252
- Graduate Program in Molecular Biology, University of Texas, Austin, TX 78712-0252
- Center for Molecular and Cellular Toxicology, University of Texas, Austin, TX 78712-0252
- Corresponding author: Kevin N. Dalby, Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, 78712, USA. Tel. 512-4719267. Fax. 512-2322606, E mail:
| |
Collapse
|
27
|
Abstract
PDK1 catalyzes phosphorylation of Thr in the conserved activation loop region of a number of its downstream AGC kinase family members. In addition to the consensus sequence at the site of phosphorylation, a number of PDK1 substrates contain a PIF sequence (PDK1-interacting fragment), which binds and activates the kinase domain of PDK1 (PDK1(deltaPH)). To gain further insight to PIF-dependent catalysis, steady-state kinetic and inhibition studies were performed for His6-PDK1(deltaPH)-catalyzed phosphorylation of PDK1-Tide (Tide), which contains an extended "PIF" sequence C-terminal to the consensus sequence for PDK1 phosphorylation. In two-substrate kinetics, a large degree of negative binding synergism was observed to occur on formation of the active ternary complex (alphaKd(ATP) = 40 microM and alphaKd(Tide) = 80 microM) from individual transitory binary complexes (Kd(ATP) = 0.6 microM and Kd(Tide) = 1 microM). On varying ATP concentrations, the ADP product and the (T/E)-PDK1-Tide product analog (p'Tide) behaved as competitive and noncompetitive inhibitors, respectively; on varying Tide concentrations, ADP and p'Tide behaved as noncompetitive and competitive inhibitors, respectively. Also, negative binding synergism was associated with formation of dead-end inhibited ternary complexes. Time progress curves in pre-steady-state studies under "saturating" or kcat conditions showed (i) no burst or lag phenomena, (ii) no change in reaction velocity when adenosine 5'-O-(thiotriphosphate) was used as a phosphate donor, and (iii) no change in reaction velocity on increasing relative microviscosity (0 < or = eta/eta0 < or = 3). Taken together, PDK1-catalyzed trans-phosphorylation of PDK1-Tide approximates a Rapid Equilibrium Random Bi Bi system, where motions in the central ternary complex are largely rate-determining.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124
| | - Thomas K Harris
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124; Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida 33136.
| |
Collapse
|
28
|
Nutchey B, Kaplan J, Dwivedi P, Omdahl J, Ferrante A, May B, Hii C. Molecular action of 1,25-dihydroxyvitamin D3 and phorbol ester on the activation of the rat cytochrome P450C24 (CYP24) promoter: role of MAP kinase activities and identification of an important transcription factor binding site. Biochem J 2005; 389:753-62. [PMID: 15836435 PMCID: PMC1180726 DOI: 10.1042/bj20041947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although investigations of the transcriptional regulation of the rat cytochrome P450C24 [CYP24 (25-hydroxyvitamin D3 24-hydroxylase)] gene by 1,25D (1,25-dihydroxyvitamin D3) at either the genomic, or more recently at the non-genomic, level have provided insight into the mechanism of control of 1,25D levels, this regulation is still poorly characterized. Using HEK-293T cells (human embryonic kidney 293T cells), we reported that 1,25D induction of CYP24 requires JNK (c-Jun N-terminal kinase) but not the ERK1/2 (extracellular-signal-regulated kinase 1/2). The phenomenon of synergistic up-regulation of CYP24 expression by PMA and 1,25D is well known and was found to be protein kinase C-dependent. Whereas ERK1/2 was not activated by 1,25D alone, its activation by PMA was potentiated by 1,25D also. The importance of ERK1/2 for transcriptional synergy was demonstrated by transfection of a dominant-negative ERK1(K71R) mutant (where K71R stands for Lys71-->Arg), which resulted in a reduced level of synergy on a CYP24 promoter-luciferase construct. JNK was also shown to be required for synergy. We report, in the present study, the identification of a site located at -171/-163, about 30 bp upstream of the vitamin D response element-1 in the CYP24 proximal promoter. This sequence, 5'-TGTCGGTCA-3', is critical for 1,25D induction of CYP24 and is therefore termed the vitamin D stimulatory element. The vitamin D stimulatory element, a target for the JNK module, and an Ets-1 binding site were shown to be vital for synergy between PMA and 1,25D. This is the first report to identify the DNA binding sequences required for the synergy between PMA and 1,25D and a role for JNK on the CYP24 gene promoter.
Collapse
Affiliation(s)
- Barbara K. Nutchey
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Josef S. Kaplan
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Prem P. Dwivedi
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - John L. Omdahl
- †Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131-5221, U.S.A
| | - Antonio Ferrante
- ‡Department of Paediatrics, University of Adelaide, Adelaide, SA 5006, Australia
- §Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, SA 5006, North Adelaide, Australia
- ∥School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Brian K. May
- *School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Charles S. T. Hii
- ‡Department of Paediatrics, University of Adelaide, Adelaide, SA 5006, Australia
- §Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, SA 5006, North Adelaide, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Szafranska AE, Dalby KN. Kinetic mechanism for p38 MAP kinase alpha. A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate. FEBS J 2005; 272:4631-45. [PMID: 16156785 DOI: 10.1111/j.1742-4658.2005.04827.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
p38 Mitogen-activated protein kinase alpha (p38 MAPKalpha) is a member of the MAPK family. It is activated by cellular stresses and has a number of cellular substrates whose coordinated regulation mediates inflammatory responses. In addition, it is a useful anti-inflammatory drug target that has a high specificity for Ser-Pro or Thr-Pro motifs in proteins and contains a number of transcription factors as well as protein kinases in its catalog of known substrates. Fundamental to signal transduction research is the understanding of the kinetic mechanisms of protein kinases and other protein modifying enzymes. To achieve this end, because peptides often make only a subset of the full range of interactions made by proteins, protein substrates must be utilized to fully elucidate kinetic mechanisms. We show using an untagged highly active form of p38 MAPKalpha, expressed and purified from Escherichia coli[Szafranska AE, Luo X & Dalby KN (2005) Anal Biochem336, 1-10) that at pH 7.5, 10 mm Mg2+ and 27 degrees C p38 MAPKalpha phosphorylates ATF2Delta115 through a partial rapid-equilibrium random-order ternary-complex mechanism. This mechanism is supported by a combination of steady-state substrate and inhibition kinetics, as well as microcalorimetry and published structural studies. The steady-state kinetic experiments suggest that magnesium adenosine triphosphate (MgATP), adenylyl (beta,gamma-methylene) diphosphonic acid (MgAMP-PCP) and magnesium adenosine diphosphate (MgADP) bind p38 MAPKalpha with dissociation constants of KA = 360 microm, KI = 240 microm, and KI > 2000 microm, respectively. Calorimetry experiments suggest that MgAMP-PCP and MgADP bind the p38 MAPKalpha-ATF2Delta115 binary complex slightly more tightly than they do the free enzyme, with a dissociation constant of Kd approximately 70 microm. Interestingly, MgAMP-PCP exhibits a mixed inhibition pattern with respect to ATF2Delta115, whereas MgADP exhibits an uncompetitive-like pattern. This discrepancy occurs because MgADP, unlike MgAMP-PCP, binds the free enzyme weakly. Intriguingly, no inhibition by 2 mm adenine or 2 mm MgAMP was detected, suggesting that the presence of a beta-phosphate is essential for significant binding of an ATP analog to the enzyme. Surprisingly, we found that inhibition by the well-known p38 MAPKalpha inhibitor SB 203580 does not follow classical linear inhibition kinetics at concentrations > 100 nm, as previously suggested, demonstrating that caution must be used when interpreting kinetic experiments using this inhibitor.
Collapse
Affiliation(s)
- Anna E Szafranska
- Division of Medicinal Chemistry, University of Texas at Austin, TX 78712, USA
| | | |
Collapse
|
30
|
Li Z, Sau AK, Furdui CM, Anderson KS. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range. Anal Biochem 2005; 343:35-47. [PMID: 15979047 DOI: 10.1016/j.ab.2005.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation of phosphoenolpyruvate (PEP) and D-arabinose 5-phosphate (A5P) to produce KDO8P and inorganic phosphate. The enzyme is often isolated with varying amounts of tightly bound PEP substrate. To better understand the role of tightly bound PEP in E. coli KDO8P synthase catalysis, a combination of transient kinetic methodologies including rapid chemical quench and mass spectrometry techniques such as time-resolved electrospray ionization mass spectrometry (ESI-TOF MS) were used to study the enzyme purified both in the PEP-bound state and in the unbound state. Pre-steady state burst and single-turnover experiments using radiolabeled [1-(14)C] and [(32)P]A5P revealed significant kinetic differences between these enzyme preparations. The active sites concentrations for the bound and unbound states of the enzyme were almost the same (approximately 100%) and the product release for both states of the enzyme was rate limiting. However, the rate constant of product formation for the PEP-bound enzyme (125 s(-1)) was higher than that of the unbound enzyme (46 s(-1)). This was further confirmed by single-turnover experiments using radiolabeled [(32)P]A5P. Interestingly, when PEP was removed from the PEP-bound enzyme and external PEP was added before the kinetic experiments, both the pre-steady state burst and the single-turnover kinetic parameters were similar to those of the enzyme purified in the unbound state. The rate constants of product formation were determined as 44 s(-1) (burst experiment) and 48 s(-1) (single-turnover experiment). The reaction kinetics of the E. coli KDO8P synthase was also followed by time-resolved ESI mass spectrometry. To validate the suitability of this technique for conducting enzyme kinetics, the standard reaction of p-nitrophenyl acetate hydrolysis by chymotrypsin was analyzed by stopped-flow and time-resolved ESI-TOF MS. The rate constant of p-nitrophenol formation followed by stopped-flow spectrophotometry matched perfectly the rate constant of acetyl-chymotrypsin intermediate formation followed by time-resolved ESI-TOF MS (0.1 s(-1)). The catalytic properties of the PEP-bound and unbound states of the E. coli KDO8P synthase were then studied on a millisecond time scale. The changes in the intensity of E*PEP, E*KDO8P, and E*intermediate complexes as a function of time were quantified and the reaction kinetics were modeled using KinTekSim simulation software. An analysis of the reaction kinetics established the kinetic competence of the intermediate based upon the rate constants for substrate decay and product formation. The ability of time-resolved ESI-TOF MS to detect and monitor the kinetics for the reaction intermediate constitutes a significant advantage over the traditional rapid chemical quench technique. For all three states of the enzyme (PEP-bound, unbound, and PEP removed from the PEP-bound state) the rate constants obtained by time-resolved ESI-TOF MS matched the pre-steady state rates determined by rapid chemical quench. A comparison of reaction time courses for each state of the enzyme revealed that, in the case of PEP-bound enzyme, the enzymatic reaction reached completion faster than that for the unbound state. In summary, these studies led to the conclusion that bound PEP has an important role in catalysis, maintaining the enzyme in a conformational state optimal for catalytic activity, and established the kinetic competence of the reaction intermediate. This technique has broad applicability for the kinetic analysis of any enzyme system where the substrates, products, or intermediates are eluding the common detection techniques or as a method alternative to the widely used radioactivity assays.
Collapse
Affiliation(s)
- Zhili Li
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
31
|
Szafranska AE, Luo X, Dalby KN. Following in vitro activation of mitogen-activated protein kinases by mass spectrometry and tryptic peptide analysis: purifying fully activated p38 mitogen-activated protein kinase α. Anal Biochem 2005; 336:1-10. [PMID: 15582552 DOI: 10.1016/j.ab.2004.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Indexed: 11/26/2022]
Abstract
p38 mitogen-activated protein kinase alpha (MAPKalpha) belongs to the MAPK subfamily, which plays a pivotal role in cell signal transduction, where it mediates responses to cell stresses and, to a lesser extent, growth factors. Although its cellular function has been under intense scrutiny since its initial discovery, little progress has been made in understanding its kinetic mechanism. A contributory factor has been the lack of a fast and rigorous method for the purification of activated p38 MAPKalpha in sufficient quantity and purity for biophysical studies. Here we present a method for the preparation of milligram quantities of activated p38 MAPKalpha, specifically phosphorylated on Thr180 and Tyr182. Purification of the inactive (unphosphorylated) p38 MAPKalpha is facilitated by an N-terminal hexahistidine tag. Removal of this tag from His6-p38 MAPKalpha, prior to its activation, is essential to ensure preparation of high yields of homogeneous, dually phosphorylated enzyme. Activation is achieved on incubation with a glutathione S-transferase (GST) fusion of the constitutively active mutant of the upstream activator, MKK6b (GST-MKK6b S207E T211E), in the presence of MgATP2-. Notably, we show that specific formation of activated p38 MAPKalpha can be quantified by following the formation of the bis-phosphorylated tryptic peptide, 173-HTDDEMT*GY*VATR-186, using [gamma-32P]adenosine triphosphate (ATP) as the phosphate source and reverse-phase high-performance liquid chromatography (HPLC) to separate the phosphopeptides. This approach offers the only means to specifically determine both stoichiometry and specificity of p38 MAPKalpha phosphorylation.
Collapse
Affiliation(s)
- Anna E Szafranska
- Division of Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
32
|
Waas WF, Rainey MA, Szafranska AE, Cox K, Dalby KN. A kinetic approach towards understanding substrate interactions and the catalytic mechanism of the serine/threonine protein kinase ERK2: identifying a potential regulatory role for divalent magnesium. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:81-7. [PMID: 15023352 DOI: 10.1016/j.bbapap.2003.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 11/12/2003] [Indexed: 02/05/2023]
Abstract
We are interested in the mechanism and regulation of the extracellular regulated protein kinases, ERK1 and ERK2, due to their key roles in cellular signal transduction and disease. Both enzymes phosphorylate a large number of structurally disparate proteins upon activation by phorbol esters, serum and growth factors, and are activated through a protein kinase cascade, termed the mitogen activated protein kinase (MAPK) pathway. ERK2 catalyses the transfer of the gamma-phosphate of adenosine triphosphate to serine or threonine residues found in Ser-Pro or Thr-Pro motifs on proteins. Its catalytic mechanism is intriguing, because it appears to predominantly rely on interactions outside of the active site cleft to specify a substrate. To study ERK2, we developed a recombinant protein called EtsDelta138, which comprises residues 1-138 of the transcription factor Ets-1, an excellent substrate of ERK2. Here we review several steady-state kinetic experiments that reveal details of the ERK2 mechanism and a hitherto unknown process of ERK2 activation by free magnesium. The physiological relevance of this mechanism is discussed.
Collapse
Affiliation(s)
- William F Waas
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The p21-activated kinases (PAKs) play an important role in diverse cellular processes. PAK2 is activated by autophosphorylation upon binding of small G proteins such as Cdc42 and Rac in the GTP-bound state. However, the mechanism of PAK2 autophosphorylation in vitro is unclear. In the present study, the kinetic theory of the substrate reaction during modification of enzyme activity has been applied to a study of the autoactivation of PAK2. On the basis of the kinetic equation of the substrate reaction during the autophosphorylation of PAK2, the activation rate constants for the free enzyme and enzyme-substrate complex have been determined. The results indicate that 1) in the presence of Cdc42, PAK2 autophosphorylation is a bipartite mechanism, with the regulatory domain autophosphorylated at multiple residues, whereas activation coincides with autophosphorylation of the catalytic domain at Thr-402; 2) the autophosphorylation reactions in regulatory domain are either a nonlimiting step or not required for activation of enzyme; 3) the autophosphorylation at site Thr-402 on the catalytic domain occurs by an intermolecular mechanism and is required for phosphorylation of exogenous substrates examined; 4) binding of the exogenous protein/peptide substrates at the active site of PAK2 has little or no effect on the autoactivation of PAK2, suggesting that multiple regions of PAK2 are involved in the enzyme-substrate recognition. The present method also provides a novel approach for studying autophosphorylation reactions. Since the experimental conditions used resemble more closely the in vivo situation where the substrate is constantly being turned over while the enzyme is being modified, this new method would be particularly useful when the regulatory mechanisms of the reversible phosphorylation reaction toward certain enzymes are being assessed.
Collapse
Affiliation(s)
- Hao Wu
- National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Academia Sinica, Beijing 100101, China
| | | |
Collapse
|