1
|
Herold K, Ruffin A, Chmura JC, Dellomo AJ, Ehrlich ES. Kaposi's sarcoma herpesvirus viral FLICE inhibitory protein modulates A20 deubiquitinase activity. Access Microbiol 2024; 6:000625.v4. [PMID: 38868372 PMCID: PMC11165616 DOI: 10.1099/acmi.0.000625.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
KSHV viral FLICE inhibitory protein (vFLIP) is a potent activator of NF-κB signalling and an inhibitor of apoptosis and autophagy. Inhibition of vFLIP function and NF-κB signalling promotes lytic reactivation. Here we provide evidence for a novel function of vFLIP through inhibition of the deubiquitinating (DUB) activity of the negative regulator, A20. We demonstrate direct interaction of vFLIP with Itch and A20 and provide evidence for subsequent loss of A20 DUB activity. Our results provide further insight into the function of vFLIP in the regulation of NF-κB signalling.
Collapse
Affiliation(s)
- Kevin Herold
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Ayana Ruffin
- Department of Biological Sciences, Towson University, Towson, MD, USA
- Cancer Reserach Institute, Emory University, Atlanta, GA, USA
| | | | - Anna J. Dellomo
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD, USA
| |
Collapse
|
2
|
Mohanty S, Kumar A, Das P, Sahu SK, Mukherjee R, Ramachandranpillai R, Nair SS, Choudhuri T. Nm23-H1 induces apoptosis in primary effusion lymphoma cells via inhibition of NF-κB signaling through interaction with oncogenic latent protein vFLIP K13 of Kaposi’s sarcoma-associated herpes virus. Cell Oncol (Dordr) 2022; 45:967-989. [DOI: 10.1007/s13402-022-00701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/03/2022] Open
|
3
|
Choi S, Matta H, Gopalakrishnan R, Natarajan V, Gong S, Jeronimo A, Kuo WY, Bravo B, Chaudhary PM. A novel thermostable beetle luciferase based cytotoxicity assay. Sci Rep 2021; 11:10002. [PMID: 33976304 PMCID: PMC8113442 DOI: 10.1038/s41598-021-89404-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Cytotoxicity assays are essential for the testing and development of novel immunotherapies for the treatment of cancer. We recently described a novel cytotoxicity assay, termed the Matador assay, which was based on marine luciferases and their engineered derivatives. In this study, we describe the development of a new cytotoxicity assay termed 'Matador-Glo assay' which takes advantage of a thermostable variant of Click Beetle Luciferase (Luc146-1H2). Matador-Glo assay utilizes Luc146-1H2 and D-luciferin as the luciferase-substrate pair for luminescence detection. The assay involves ectopic over-expression of Luc146-1H2 in the cytosol of target cells of interest. Upon damage to the membrane integrity, the Luc146-1H2 is either released from the dead and dying cells or its activity is preferentially measured in dead and dying cells. We demonstrate that this assay is simple, fast, specific, sensitive, cost-efficient, and not labor-intensive. We further demonstrate that the Matador-Glo assay can be combined with the marine luciferase-based Matador assay to develop a dual luciferase assay for cell death detection. Finally, we demonstrate that the Luc146-1H2 expressing target cells can also be used for in vivo bioluminescence imaging applications.
Collapse
Affiliation(s)
- Sunju Choi
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hittu Matta
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ramakrishnan Gopalakrishnan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venkatesh Natarajan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songjie Gong
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alberto Jeronimo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wei-Ying Kuo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bryant Bravo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Preet M Chaudhary
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Gopalakrishnan R, Matta H, Choi S, Chaudhary PM. Narciclasine, an isocarbostyril alkaloid, has preferential activity against primary effusion lymphoma. Sci Rep 2020; 10:5712. [PMID: 32235878 PMCID: PMC7109099 DOI: 10.1038/s41598-020-62690-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin lymphoma associated with infection by Kaposi sarcoma-associated herpes virus (KSHV). PEL is an aggressive disease with extremely poor prognosis when treated with conventional chemotherapy. Narciclasine, a natural product present in Amaryllidaceae family of flowering plants including daffodils, belongs to a class of molecules termed ‘isocarbostyril alkaloid’. We have found that narciclasine displays preferential cytotoxicity towards PEL at low nanomolar concentrations and is approximately 10 and 100-fold more potent than its structural analogs lycoricidine and lycorine, respectively. Narciclasine arrested cell-cycle progression at the G1 phase and induced apoptosis in PEL, which is accompanied by activation of caspase-3/7, cleavage of PARP and increase in the surface expression of Annexin-V. Although narciclasine treatment resulted in a marked decrease in the expression of MYC and its direct target genes,time-course experiments revealed that MYC is not a direct target of narciclasine. Narciclasine treatment neither induces the expression of KSHV-RTA/ORF50 nor the production of infectious KSHV virions in PEL. Finally, narciclasine provides dramatic survival advantages to mice in two distinct mouse xenograft models of PEL. In conclusion, our results suggest that narciclasine could be a promising agent for the treatment of PEL.
Collapse
Affiliation(s)
- Ramakrishnan Gopalakrishnan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America.
| | - Hittu Matta
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Sunju Choi
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Preet M Chaudhary
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America.
| |
Collapse
|
5
|
Lee J, Chan ST, Kim JY, Ou JHJ. Hepatitis C Virus Induces the Ubiquitin-Editing Enzyme A20 via Depletion of the Transcription Factor Upstream Stimulatory Factor 1 To Support Its Replication. mBio 2019; 10:e01660-19. [PMID: 31337730 PMCID: PMC6650561 DOI: 10.1128/mbio.01660-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20, is a ubiquitin-editing enzyme capable of ubiquitination or deubiquitination of its target proteins. In this study, we show that hepatitis C virus (HCV) infection could induce the expression of A20 via the activation of the A20 promoter. The induction of A20 by HCV coincided with the loss of upstream stimulatory factor 1 (USF-1), a transcription factor known to suppress the A20 promoter. The role of USF-1 in the regulation of the A20 promoter in HCV-infected cells was confirmed by the chromatin immunoprecipitation (ChIP) assay, and its depletion was apparently mediated by proteasomes, as USF-1 could be stabilized by the proteasome inhibitor MG132 to suppress the A20 expression. As the overexpression of A20 enhanced the replication of HCV and the silencing of A20 had the opposite effect, A20 is a positive regulator of HCV replication. Our further studies indicated that A20 enhanced the activity of the HCV internal ribosome entry site (IRES). In conclusion, our results demonstrated that HCV could induce the expression of A20 via the depletion of USF-1 to enhance its replication. Our study provided important information for further understanding the interaction between HCV and its host cells.IMPORTANCE Hepatitis C virus establishes chronic infection in approximately 85% of the patients whom it infects. However, the mechanism of how HCV evades host immunity to establish persistence is unclear. In this report, we demonstrate that HCV could induce the expression of the ubiquitin-editing enzyme A20, an important negative regulator of the tumor necrosis factor alpha (TNF-α) and NF-κB signaling pathways. This induction of A20 enhanced HCV replication as it could stimulate the HCV IRES activity to enhance the translation of HCV proteins. The induction of A20 was mediated by the depletion of USF-1, a suppressor of the A20 promoter. Our study thus provides important information for further understanding the interaction between HCV and its host cells.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stephanie T Chan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ja Yeon Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
A novel luciferase-based assay for the detection of Chimeric Antigen Receptors. Sci Rep 2019; 9:1957. [PMID: 30760795 PMCID: PMC6374361 DOI: 10.1038/s41598-018-38258-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 12/02/2022] Open
Abstract
Chimeric Antigen Receptor-T (CAR-T) cell immunotherapy has produced dramatic responses in hematologic malignancies. One of the challenges in the field is the lack of a simple assay for the detection of CARs on the surface of immune effector cells. In this study, we describe a novel luciferase-based assay, termed Topanga Assay, for the detection of CAR expression. The assay utilizes a recombinant fusion protein, called Topanga reagent, generated by joining the extra-cellular domain of a CAR-target in frame with one of the marine luciferases or their engineered derivatives. The assay involves incubation of CAR expressing cells with the Topanga reagent, a few washes and measurement of luminescence. The assay can detect CARs comprising either immunoglobulin- or non-immunoglobulin-based antigen binding domains. We further demonstrate that addition of epitope tags to the Topanga reagent not only allows its convenient one step purification but also extends its use for detection of CAR cells using flow cytometry. However, crude supernatant containing the secreted Topanga reagent can be directly used in both luminescence and flow-cytometry based assays without prior protein purification. Our results demonstrate that the Topanga assay is a highly sensitive, specific, convenient, economical and versatile assay for the detection of CARs.
Collapse
|
7
|
Li Y, Shi F, Hu J, Xie L, Bode AM, Cao Y. The Role of Deubiquitinases in Oncovirus and Host Interactions. JOURNAL OF ONCOLOGY 2019; 2019:2128410. [PMID: 31396277 PMCID: PMC6668545 DOI: 10.1155/2019/2128410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Infection-related cancer comprises one-sixth of the global cancer burden. Oncoviruses can directly or indirectly contribute to tumorigenesis. Ubiquitination is a dynamic and reversible posttranslational modification that participates in almost all cellular processes. Hijacking of the ubiquitin system by viruses continues to emerge as a central theme around the viral life cycle. Deubiquitinating enzymes (DUBs) maintain ubiquitin homeostasis by removing ubiquitin modifications from target proteins, thereby altering protein function, stability, and signaling pathways, as well as acting as key mediators between the virus and its host. In this review, we focus on the multiple functions of DUBs in RIG-I-like receptors (RLRs) and stimulator of interferon genes (STING)-mediated antiviral signaling pathways, oncoviruses regulation of NF-κB activation, oncoviral life cycle, and the potential of DUB inhibitors as therapeutic strategies.
Collapse
Affiliation(s)
- Yueshuo Li
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Feng Shi
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Jianmin Hu
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Longlong Xie
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M. Bode
- 4The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
- 5Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China
- 6Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China
- 7National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| |
Collapse
|
8
|
Gopalakrishnan R, Matta H, Tolani B, Triche T, Chaudhary PM. Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion lymphoma in a cereblon-dependent manner and display synergistic cytotoxicity with BRD4 inhibitors. Oncogene 2015; 35:1797-810. [PMID: 26119939 PMCID: PMC4486341 DOI: 10.1038/onc.2015.245] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
Abstract
Primary effusion lymphoma (PEL) is an aggressive type of non-Hodgkin lymphoma localized predominantly in body cavities. Kaposi’s sarcoma-associated herpes virus is the causative agent of PEL. PEL is an incurable malignancy and has extremely poor prognosis when treated with conventional chemotherapy. Immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide are FDA approved drugs for the treatment of various ailments. IMiDs display pronounced anti-proliferative effect against majority of PEL cell lines within their clinically achievable concentrations, by arresting cells at G0/G1 phase of cell-cycle, and without any induction of KSHV lytic-cycle reactivation. Although microarray examination of PEL cells treated with lenalidomide revealed activation of interferon (IFN) signaling, blocking the IFN pathway did not block the anti-PEL activity of IMiDs. The anti-PEL effects of IMiDs involved cereblon-dependent suppression of IRF4 and rapid degradation of IKZF1, but not IKZF3. Small hairpin-RNA (shRNA) mediated knockdown of MYC enhanced the cytotoxicity of IMiDs. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers which perform a vital role in chromatin remodeling and transcriptional regulation. BRD4, a widely expressed transcriptional coactivator, belongs to BET family of proteins, which has been shown to co-occupy the super-enhancers associated with MYC. Specific BRD4 inhibitors were developed which suppress MYC transcriptionally. Lenalidomide displayed synergistic cytotoxicity with several structurally distinct BRD4 inhibitors (JQ-1, IBET151, and PFI-1). Furthermore, combined administration of lenalidomide and BRD4 inhibitor JQ-1 significantly increased the survival of PEL bearing NOD.SCID mice in an orthotopic xenograft model as compared to either agent alone. These results provide compelling evidence for clinical testing of IMiDs alone and in combination with BRD4 inhibitors for PEL.
Collapse
Affiliation(s)
- R Gopalakrishnan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - H Matta
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - B Tolani
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - T Triche
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - P M Chaudhary
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA.,Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Abstract
Cellular apoptosis is of major importance in the struggle between virus and host. Although many viruses use various strategies to control the cell death machinery by encoding anti-apoptotic virulence factors, it is now becoming clear that, in addition to their role in inhibiting apoptosis, these factors function in multiple immune and metabolic pathways to promote fitness and pathogenesis. In this Progress article, we discuss novel functions of viral anti-apoptotic factors in the regulation of autophagy, in the nuclear factor-κB (NF-κB) pathway and in interferon signalling, with a focus on persistent and oncogenic gammaherpesviruses. If viral anti-apoptotic proteins are to be properly exploited as targets for antiviral drugs, their diverse and complex roles should be considered.
Collapse
Affiliation(s)
- Chengyu Liang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90033, USA
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
10
|
Gopalakrishnan R, Matta H, Chaudhary PM. A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-κB. Clin Cancer Res 2013; 19:5016-26. [PMID: 23881928 DOI: 10.1158/1078-0432.ccr-12-3510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Kaposi sarcoma-associated herpes virus (KSHV)-associated primary effusion lymphomas (PEL) have extremely poor prognosis when treated with conventional chemotherapy. KSHV-encoded viral FLICE-inhibitory protein (vFLIP) K13 binds to the IkappaB kinase (IKK) complex to constitutively activate the NF-κB pathway, which has been shown to be essential for the survival and proliferation of PEL cells. The molecular chaperone HSP90 is a component of the IKK complex and is required for its activity. EXPERIMENTAL DESIGN We have analyzed the effect of HSP90 inhibitors on the survival and proliferation of PEL cells and on the activity of the NF-κB pathway. RESULTS We show that BIIB021, a purine scaffold-based orally administrable HSP90 inhibitor, shows preferential cytotoxicity toward PEL cells as compared with non-PEL cells. The cytotoxic effect of BIIB021 against PEL was associated with induction of cell-cycle arrest and apoptosis. BIIB021 blocked the expression of a number of cellular proteins involved in the regulation of cell cycle and apoptosis. BIIB021 also blocked constitutive NF-κB activity present in PEL cells, in part, by blocking the interaction of vFLIP K13 with the IKK complex subunits. In a xenograft model of PEL, BIIB021 significantly reduced tumor growth. CONCLUSION BIIB021 blocks constitutive NF-κB activity in PEL and shows preferential antitumor activity against PEL in vitro and in vivo. BIIB021 may be a promising agent for treatment of PEL.
Collapse
Affiliation(s)
- Ramakrishnan Gopalakrishnan
- Authors' Affiliation: Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Keck School of Medicine, Los Angeles, California
| | | | | |
Collapse
|
11
|
Sakakibara S, Espigol-Frigole G, Gasperini P, Uldrick TS, Yarchoan R, Tosato G. A20/TNFAIP3 inhibits NF-κB activation induced by the Kaposi's sarcoma-associated herpesvirus vFLIP oncoprotein. Oncogene 2013; 32:1223-32. [PMID: 22525270 PMCID: PMC3594048 DOI: 10.1038/onc.2012.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/29/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) K13/vFLIP (viral Flice-inhibitory protein) induces transcription of numerous genes through NF-κB activation, including pro-inflammatory cytokines, which contribute to the pathogenesis of Kaposi's sarcoma (KS). In this study, we report that KSHV vFLIP induces the expression of the NF-κB regulatory proteins A20, ABIN-1 and ABIN-3 (A20-binding NF-κB inhibitors) in primary human endothelial cells, and that KS spindle cells express A20 in KS tissue. In reporter assays, A20 strongly impaired vFLIP-induced NF-κB activation in 293T cells, but ABIN-1 and ABIN-3 did not. Mutational analysis established that the C-terminal domain (residues 427-790) is critical for A20 modulation of NF-κB, but the ubiquitin-editing OTU (ovarian tumor) domain is not. In functional assays, A20 inhibited vFLIP-induced expression of the chemokine IP-10, reduced vFLIP-induced cell proliferation and increased IKK1 protein levels. Thus, we demonstrate that A20 negatively regulates NF-κB activation directly induced by KSHV vFLIP. By attenuating excessive and prolonged vFLIP-induced NF-κB activation that could be harmful to KSHV-infected cells, A20 likely has an important role in the pathogenesis of KSHV-associated diseases, in which vFLIP is expressed.
Collapse
Affiliation(s)
- S Sakakibara
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Espigol-Frigole
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P Gasperini
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - TS Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - R Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal 2013; 25:403-416. [PMID: 23123499 DOI: 10.1016/j.cellsig.2012.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/26/2012] [Indexed: 02/06/2023]
Abstract
Microbial-triggered inflammation protects against pathogens and yet can paradoxically cause considerable secondary damage to host tissues that can result in tissue fibrosis and carcinogenesis, if persistent. In addition to classical pathogens, gut microbiota bacteria, i.e. a group of mutualistic microorganisms permanently inhabiting the gastrointestinal tract and which plays a key role in digestion, immunity, and cancer prevention, can induce inflammation-associated cancer following the alterations of their microenvironment. Emerging experimental evidence indicates that microbiota members like Escherichia coli and several other genotoxic and mutagenic pathogens can cause DNA damage in various cell types. In addition, the inflammatory response induced by chronic infections with pathogens like the microbiota members Helicobacter spp., which have been associated with liver, colorectal, cervical cancers and lymphoma, for instance, can also trigger carcinogenic processes. A microenvironment including active immune cells releasing high amounts of inflammatory signaling molecules can favor the carcinogenic transformation of host cells. Pivotal molecules released during immune response such as the macrophage migration inhibitory factor (MMIF) and the reactive oxygen and nitrogen species' products superoxide and peroxynitrite, can further damage DNA and cause the accumulation of oncogenic mutations, whereas pro-inflammatory cytokines, adhesion molecules, and growth factors may create a microenvironment promoting neoplastic cell survival and proliferation. Recent findings on the implication of inflammatory signaling pathways in microbial-triggered carcinogenesis as well as the possible role of microbiota modulation in cancer prevention are herein summarized and discussed.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | | | | | | | | | | |
Collapse
|
13
|
Punj V, Matta H, Chaudhary PM. A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma. PLoS One 2012; 7:e37498. [PMID: 22624040 PMCID: PMC3356309 DOI: 10.1371/journal.pone.0037498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
Infection with Kaposi's sarcoma associated herpesvirus (KSHV) has been linked to the development of primary effusion lymphoma (PEL), a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL.
Collapse
Affiliation(s)
- Vasu Punj
- From Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- Bioinformatics Core, Norris Comprehensive Cancer Center at USC Epigenome Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Hittu Matta
- From Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Preet M. Chaudhary
- From Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kaposi's sarcoma associated herpesvirus encoded viral FLICE inhibitory protein K13 activates NF-κB pathway independent of TRAF6, TAK1 and LUBAC. PLoS One 2012; 7:e36601. [PMID: 22590573 PMCID: PMC3348130 DOI: 10.1371/journal.pone.0036601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/11/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kaposi's sarcoma associated herpesvirus encoded viral FLICE inhibitory protein (vFLIP) K13 activates the NF-κB pathway by binding to the NEMO/IKKγ subunit of the IκB kinase (IKK) complex. However, it has remained enigmatic how K13-NEMO interaction results in the activation of the IKK complex. Recent studies have implicated TRAF6, TAK1 and linear ubiquitin chains assembled by a linear ubiquitin chain assembly complex (LUBAC) consisting of HOIL-1, HOIP and SHARPIN in IKK activation by proinflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS Here we demonstrate that K13-induced NF-κB DNA binding and transcriptional activities are not impaired in cells derived from mice with targeted disruption of TRAF6, TAK1 and HOIL-1 genes and in cells derived from mice with chronic proliferative dermatitis (cpdm), which have mutation in the Sharpin gene (Sharpin(cpdm/cpdm)). Furthermore, reconstitution of NEMO-deficient murine embryonic fibroblast cells with NEMO mutants that are incapable of binding to linear ubiquitin chains supported K13-induced NF-κB activity. K13-induced NF-κB activity was not blocked by CYLD, a deubiquitylating enzyme that can cleave linear and Lys63-linked ubiquitin chains. On the other hand, NEMO was required for interaction of K13 with IKK1/IKKα and IKK2/IKKβ, which resulted in their activation by "T Loop" phosphorylation. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that K13 activates the NF-κB pathway by binding to NEMO which results in the recruitment of IKK1/IKKα and IKK2/IKKβ and their subsequent activation by phosphorylation. Thus, K13 activates NF-κB via a mechanism distinct from that utilized by inflammatory cytokines. These results have important implications for the development of therapeutic agents targeting K13-induced NF-κB for the treatment of KSHV-associated malignancies.
Collapse
|