1
|
Ni K, Che B, Gu R, Wang C, Pan Y, Li J, Liu L, Luo M, Deng L. Single-Cell Hypertrophy Promotes Contractile Function of Cultured Human Airway Smooth Muscle Cells via Piezo1 and YAP Auto-Regulation. Cells 2024; 13:1697. [PMID: 39451215 PMCID: PMC11505810 DOI: 10.3390/cells13201697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro cultured human ASMCs to increase from 2.7 to 5.2 and 8.2 × 103 μm3 as a simulated ASMC hypertrophy by culturing the cells on micropatterned rectangular substrates with a width of 25 μm and length from 50 to 100 and 200 μm, respectively. We found that as the cell volume increased, ASMCs exhibited a pro-contractile function with increased mRNA expression of contractile proteins, increased cell stiffness and traction force, and enhanced response to contractile stimulation. We also uncovered a concomitant increase in membrane tension and Piezo1 mRNA expression with increasing cell volume. Perhaps more importantly, we found that the enhanced contractile function due to cell volume increase was largely attenuated when membrane tension and Piezo1 mRNA expression were downregulated, and an auto-regulatory loop between Piezo1 and YAP mRNA expression was also involved in perpetuating the contractile function. These findings, thus, provide convincing evidence of a direct link between hypertrophy and enhanced contractile function of ASMCs that was mediated via Piezo1 mRNA expression, which may be specifically targeted as a novel therapeutic strategy to treat pulmonary diseases associated with ASMC hypertrophy such as severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
3
|
Khachigian LM. The MEK-ERK-Egr-1 axis and its regulation in cardiovascular disease. Vascul Pharmacol 2023; 153:107232. [PMID: 37734428 DOI: 10.1016/j.vph.2023.107232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cardiovascular disease (CVD) is the primary cause of morbidity and mortality in the Western world. Multiple molecular and cellular processes underpinning the pathogenesis of CVD are regulated by the zinc finger transcription factor and product of an immediate-early gene, early growth response-1 (Egr-1). Egr-1 regulates multiple pro-inflammatory processes that underpin the manifestation of CVD. The activity of Egr-1 itself is influenced by a range of post-translational modifications including sumoylation, ubiquitination and acetylation. Egr-1 also undergoes phosphorylation by protein kinases, such as extracellular-signal regulated kinase (ERK) which is itself phosphorylated by MEK. This article reviews recent progress on the MEK-ERK-Egr-1 cascade, notably regulation in conjunction with factors and agents such as TET2, TRIB2, MIAT, SphK1, cAMP, teneligliptin, cholinergic drugs, red wine and flavonoids, wogonin, febuxostat, docosahexaenoic acid and AT1R blockade. Such insights should provide new opportunity for therapeutic intervention in CVD.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Xiao B, Li L, Yao D, Mo B. Noncoding RNAs in asthmatic airway smooth muscle cells. Eur Respir Rev 2023; 32:32/168/220184. [PMID: 37076176 PMCID: PMC10113956 DOI: 10.1183/16000617.0184-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 04/21/2023] Open
Abstract
Asthma is a complex and heterogeneous airway disease caused by genetic, environmental and epigenetic factors treated with hormones and biologics. Irreversible pathological changes to airway smooth muscle cells (ASMCs) such as hyperplasia and hypertrophy can occur in asthmatic patients. Determining the mechanisms responsible is vital for preventing such changes. In recent years, noncoding RNAs (ncRNAs), especially microRNAs, long noncoding RNAs and circular RNAs, have been found to be associated with abnormalities of the ASMCs. This review highlights recent ncRNA research into ASMC pathologies. We present a schematic that illustrates the role of ncRNAs in pathophysiological changes to ASMCs that may be useful in future research in diagnostic and treatment strategies for patients with asthma.
Collapse
Affiliation(s)
- Bo Xiao
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- These authors contributed equally to this work
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Dong Yao
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Biwen Mo
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Health Commission, Guilin, China
| |
Collapse
|
5
|
Global O-GlcNAcylation changes impact desmin phosphorylation and its partition toward cytoskeleton in C2C12 skeletal muscle cells differentiated into myotubes. Sci Rep 2022; 12:9831. [PMID: 35701470 PMCID: PMC9198038 DOI: 10.1038/s41598-022-14033-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Desmin is the guardian of striated muscle integrity, permitting the maintenance of muscle shape and the efficiency of contractile activity. It is also a key mediator of cell homeostasis and survival. To ensure the fine regulation of skeletal muscle processes, desmin is regulated by post-translational modifications (PTMs). It is more precisely phosphorylated by several kinases connecting desmin to intracellular processes. Desmin is also modified by O-GlcNAcylation, an atypical glycosylation. However, the functional consequence of O-GlcNAcylation on desmin is still unknown, nor its impact on desmin phosphorylation. In a model of C2C12 myotubes, we modulated the global O-GlcNAcylation level, and we determined whether the expression, the PTMs and the partition of desmin toward insoluble material or cytoskeleton were impacted or not. We have demonstrated in the herein paper that O-GlcNAcylation variations led to changes in desmin behaviour. In particular, our data clearly showed that O-GlcNAcylation increase led to a decrease of phosphorylation level on desmin that seems to involve CamKII correlated to a decrease of its partition toward cytoskeleton. Our data showed that phosphorylation/O-GlcNAcylation interplay is highly complex on desmin, supporting that a PTMs signature could occur on desmin to finely regulate its partition (i.e. distribution) with a spatio-temporal regulation.
Collapse
|
6
|
Vlachou F, Varela A, Stathopoulou K, Ntatsoulis K, Synolaki E, Pratsinis H, Kletsas D, Sideras P, Davos CH, Capetanaki Y, Psarras S. Galectin-3 interferes with tissue repair and promotes cardiac dysfunction and comorbidities in a genetic heart failure model. Cell Mol Life Sci 2022; 79:250. [PMID: 35441327 PMCID: PMC11072767 DOI: 10.1007/s00018-022-04266-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
Galectin-3, a biomarker for heart failure (HF), has been associated with myocardial fibrosis. However, its causal involvement in HF pathogenesis has been questioned in certain models of cardiac injury-induced HF. To address this, we used desmin-deficient mice (des-/-), a model of progressive HF characterized by cardiomyocyte death, spontaneous inflammatory responses sustaining fibrosis, and galectin-3 overexpression. Genetic ablation or pharmacological inhibition of galectin-3 led to improvement of cardiac function and adverse remodeling features including fibrosis. Over the course of development of des-/- cardiomyopathy, monitored for a period of 12 months, galectin-3 deficiency specifically ameliorated the decline in systolic function accompanying the acute inflammatory phase (4-week-old mice), whereas a more pronounced protective effect was observed in older mice, including the preservation of diastolic function. Interestingly, the cardiac repair activities during the early inflammatory phase were restored under galectin-3 deficiency by increasing the proliferation potential and decreasing apoptosis of fibroblasts, while galectin-3 absence modulated macrophage-fibroblast coupled functions and suppressed both pro-fibrotic activation of cardiac fibroblasts and pro-fibrotic gene expression in the des-/- heart. In addition, galectin-3 also affected the emphysema-like comorbid pathology observed in the des-/- mice, as its absence partially normalized lung compliance. Collectively galectin-3 was found to be causally involved in cardiac adverse remodeling, inflammation, and failure by affecting functions of cardiac fibroblasts and macrophages. In concordance with this role, the effectiveness of pharmacological inhibition in ameliorating cardiac pathology features establishes galectin-3 as a valid intervention target for HF, with additive benefits for treatment of associated comorbidities, such as pulmonary defects. Schematic illustrating top to bottom, the detrimental role of galectin-3 (Gal3) in heart failure progression: desmin deficiency-associated spontaneous myocardial inflammation accompanying cardiac cell death (reddish dashed border) is characterized by infiltration of macrophages (round cells) and up-regulation of Lgals3 (encoding secretable galectin-3, green) and detrimental macrophage-related genes (Ccr2 and Arg1). In this galectin-3-enriched milieu, the early up-regulation of profibrotic gene expression (Tgfb1, Acta2, Col1a1), in parallel to the suppression of proliferative activities and a potential of senescence induction by cardiac fibroblasts (spindle-like cells), collectively promote des-/- cardiac fibrosis and dysfunction establishing heart failure (left panel). Additionally, galectin-3+ macrophage-enrichment accompanies the development of emphysema-like lung comorbidities. In the absence of galectin-3 (right panel), the effect of macrophage-fibroblast dipole and associated events are modulated (grey color depicts reduced expression or activities) leading to attenuated cardiac pathology in the des-/-Lgals3-/- mice. Pulmonary comorbidities are also limited.
Collapse
Affiliation(s)
- Fani Vlachou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Aimilia Varela
- Center of Clinical, Experimental and Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Konstantina Stathopoulou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Konstantinos Ntatsoulis
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Evgenia Synolaki
- Center of Clinical, Experimental and Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Harris Pratsinis
- Institute of Biosciences and Applications, NCSR Demokritos, 153 41, Athens, Greece
| | - Dimitris Kletsas
- Institute of Biosciences and Applications, NCSR Demokritos, 153 41, Athens, Greece
| | - Paschalis Sideras
- Center of Clinical, Experimental and Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Constantinos H Davos
- Center of Clinical, Experimental and Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
7
|
Gomes G, Seixas MR, Azevedo S, Audi K, Jurberg AD, Mermelstein C, Costa ML. What does desmin do: A bibliometric assessment of the functions of the muscle intermediate filament. Exp Biol Med (Maywood) 2022; 247:538-550. [PMID: 35130760 DOI: 10.1177/15353702221075035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intermediate filaments were first described in muscle in 1968, and desmin was biochemically identified about 10 years afterwards. Its importance grew after the identification of desminopathies and desmin mutations that cause mostly cardiopathies. Since its characterization until recently, different functions have been attributed to desmin. Here, we use bibliometric tools to evaluate the articles published about desmin and to assess its several putative functions. We identified the most productive authors and the relationships between research groups. We studied the more frequent words among 9734 articles (September 2021) containing "desmin" on the title and abstract, to identify the major research focus. We generated an interactive spreadsheet with the 934 papers that contain "desmin" only on the title that can be used to search and quantify terms in the abstract. We further selected the articles that contained the terms "function" or "role" from the spreadsheet, which we then classified according to type of function, organelle, or tissue involved. Based on the bibliographic analysis, we assess comparatively the putative functions, and we propose an alternative explanation for the desmin function.
Collapse
Affiliation(s)
- Geyse Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Marianna R Seixas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Sarah Azevedo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Karina Audi
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Arnon D Jurberg
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.,Faculdade de Medicina, Universidade Estácio de Sá, Rio de Janeiro 20071-001, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| |
Collapse
|
8
|
Gao P, Ding Y, Yin B, Gu H. Long noncoding RNA LINC-PINT retards the abnormal growth of airway smooth muscle cells via regulating the microRNA-26a-5p/PTEN axis in asthma. Int Immunopharmacol 2021; 99:107997. [PMID: 34315115 DOI: 10.1016/j.intimp.2021.107997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Asthma is a chronic respiratory disease worldwide. This study aimed to explore the functions of the long noncoding RNA LINC-PINT (LINC-PINT) in asthma and to determine its underlying molecular mechanisms. METHODS Rat asthma model was established with ovalbumin sensitization and challenge. The serum level of IgE, airway hyperresponsiveness (AHR), airway inflammation, and pathological changes of lung were evaluated. Airway smooth muscle cells (ASMCs) were stimulated with platelet-derived growth factor-BB (PDGF-BB) to mimic the asthma-like condition at cellular level. QRT-PCR was performed to detect the expression of LINC-PINT, microRNA-26a-5p (miR-26a-5p), and PTEN. MTT and transwell assays were performed to measure the viability and migration of ASMCs. The protein expression of airway remodelling marker MMP-1 and MMP-9 was measured by western blot. The interactions among LINC-PINT, miR-26a-5p, and PTEN were determined by dual-luciferase reporter assay. RESULTS The expression of LINC-PINT and PTEN was decreased, while miR-26a-5p expression was increased in PDGF-BB-stimulated ASMCs. In vivo, overexpression of LINC-PINT decreased the serum level of IgE, AHR, airway inflammation, and pathological changes of lung in asthma rat model. In vitro, up-regulation of LINC-PINT decreased the viability, migration, and MMP-1 and MMP-9 protein expression in PDGF-BB-stimulated ASMCs. Dual-luciferase reporter assay determined that LINC-PINT targeted miR-26a-5p, and miR-26a-5p targeted PTEN in ASMCs. Feedback approaches confirmed that miR-26a-5p up-regulation or PTEN down-regulation reversed the suppressive effect of LINC-PINT overexpression on the abnormal growth of ASMCs. CONCLUSIONS LINC-PINT overexpression retarded the abnormal growth of ASMCs by regulating the miR-26a-5p/PTEN axis, offering a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Pei Gao
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China
| | - Ying Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China
| | - Bingru Yin
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China
| | - Haoxiang Gu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China.
| |
Collapse
|
9
|
Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y, Li M. miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol 2021; 157:103124. [PMID: 33254041 DOI: 10.1016/j.critrevonc.2020.103124] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The microRNA-26 family, including miR-26a, miR-26b, miR-1297 and miR-4465, is a group of broadly conserved small RNAs with identical sequences at the seed region. The expression of miR-26 could be induced by hypoxia via a HIF-dependent mechanism, and up-regulated during multiple cell differentiation. Accumulating studies have demonstrated that miR-26 family members could be detected in many different kinds of tumors, and their validated target genes are involved in cell metabolism, proliferation, differentiation, apoptosis, invasion and metastasis. The expression of miR-26 might be a potentially valuable biomarker and a new target for cancer therapy. In this review, miR-26 family and its target genes in tumorigenesis and development will be summarized as follows.
Collapse
Affiliation(s)
- Chuangang Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China.
| | - Yongyi Li
- University of Virginia, Charlottesville, VA 22903, USA
| | - Yufeng Lu
- Dalian Medical University, Dalian 116044, China
| | - Zhaorui Niu
- Dalian Medical University, Dalian 116044, China
| | - Henan Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yan Peng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Molin Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
10
|
Zhou Q, Shi C, Lv Y, Zhao C, Jiao Z, Wang T. Circulating microRNAs in Response to Exercise Training in Healthy Adults. Front Genet 2020; 11:256. [PMID: 32256529 PMCID: PMC7093586 DOI: 10.3389/fgene.2020.00256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/03/2020] [Indexed: 01/05/2023] Open
Abstract
Circulating microRNAs (miRNAs, miRs) have great potential as cardiac biomarkers and they are also being explored for their roles in intercellular communication and gene expression regulation. The analysis of circulating miRNAs in response to exercise would provide a deeper understanding of the molecular response to physical activity and valuable information for clinical practice. Here, eight male college students were recruited to participate in cardiopulmonary exercise testing (CPET) and 1 h acute exercise training (AET). Blood samples were collected and serum miRNAs involved in angiogenesis, inflammation and enriched in muscle and/or cardiac tissues were analyzed before and after cardiopulmonary exercise and acute exercise. The miRNAs we detected were miR-1, miR-20a, miR-21, miR-126, miR-133a, miR-133b, miR-146, miR155, miR-208a, miR-208b, miR-210, miR-221, miR-222, miR-328, miR-378, miR-499, and miR-940. We found that serum miR-20a was decreased significantly after CPET and serum miR-21 was increased after AET. In addition, no robust correlation was identified between the changes of these miRNAs and makers of cardiac function and exercise capacity, which indicates a distinct adaptation of these miRNAs to exercise. Future studies are highly needed to define the potential use of these circulating miRNAs as useful biomarkers of exercise training, and disclose the biological function of circulating miRNAs as physiological mediators of exercise-induced cardiovascular adaptation.
Collapse
Affiliation(s)
- Qiulian Zhou
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yicheng Lv
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chenglin Zhao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Li Y, Chen Y, Jin W, Fu S, Li D, Zhang Y, Sun G, Jiang R, Han R, Li Z, Kang X, Li G. Analyses of MicroRNA and mRNA Expression Profiles Reveal the Crucial Interaction Networks and Pathways for Regulation of Chicken Breast Muscle Development. Front Genet 2019; 10:197. [PMID: 30936892 PMCID: PMC6431651 DOI: 10.3389/fgene.2019.00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/25/2019] [Indexed: 01/17/2023] Open
Abstract
There is a lack of understanding surrounding the molecular mechanisms involved in the development of chicken skeletal muscle in the late postnatal stage, especially in the regulation of breast muscle development related genes, pathways, miRNAs and other factors. In this study, 12 cDNA libraries and 4 small RNA libraries were constructed from Gushi chicken breast muscle samples from 6, 14, 22, and 30 weeks. A total of 15,508 known transcripts, 25,718 novel transcripts, 388 known miRNAs and 31 novel miRNAs were identified by RNA-seq in breast muscle at the four developmental stages. Through correlation analysis of miRNA and mRNA expression profiles, it was found that 417, 370, 240, 1,418, 496, and 363 negatively correlated miRNA–mRNA pairs of W14 vs. W6, W22 vs. W6, W22 vs. W14, W30 vs. W6, W30 vs. W14, and W30 vs. W22 comparisons, respectively. Based on the annotation analysis of these miRNA–mRNA pairs, we constructed the miRNA–mRNA interaction network related to biological processes, such as muscle cell differentiation, striated muscle tissue development and skeletal muscle cell differentiation. The interaction networks for signaling pathways related to five KEGG pathways (the focal adhesion, ECM-receptor interaction, FoxO signaling, cell cycle, and p53 signaling pathways) and PPI networks were also constructed. We found that ANKRD1, EYA2, JSC, AGT, MYBPC3, MYH11, ACTC1, FHL2, RCAN1, FOS, EGR1, and FOXO3, PTEN, AKT1, GADD45, PLK1, CCNB2, CCNB3 and other genes were the key core nodes of these networks, most of which are targets of miRNAs. The FoxO signaling pathway was in the center of the five pathway-related networks. In the PPI network, there was a clear interaction among PLK1 and CDK1, CCNB2, CDK1, and GADD45B, and CDC45, ORC1 and MCM3 genes. These results increase the understanding for the molecular mechanisms of chicken breast muscle development, and also provide a basis for studying the interactions between genes and miRNAs, as well as the functions of the pathways involved in postnatal developmental regulation of chicken breast muscle.
Collapse
Affiliation(s)
- Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenjiao Jin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shouyi Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Zhang M, Wu Y, Wang M, Wang Y, Tausif R, Yang Y. Genistein rescues hypoxia-induced pulmonary arterial hypertension through estrogen receptor and β-adrenoceptor signaling. J Nutr Biochem 2018; 58:110-118. [DOI: 10.1016/j.jnutbio.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/29/2022]
|
13
|
Lv J, Xiong Y, Li W, Cui X, Cheng X, Leng Q, He R. IL-37 inhibits IL-4/IL-13-induced CCL11 production and lung eosinophilia in murine allergic asthma. Allergy 2018; 73:1642-1652. [PMID: 29319845 DOI: 10.1111/all.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND IL-37 is emerging as an anti-inflammatory cytokine, particularly in innate inflammation. However, the role of IL-37 in Th2-mediated allergic lung inflammation remains uncertain. We sought to determine the role and the underlying mechanisms of IL-37 in the development of house dust mites (HDM)-induced murine asthma model. METHODS We examined the effect of IL-37 administration during the sensitization or challenge phase on Th2-mediated allergic asthma induced by inhaled HDM. Cellular source of CCL11 and distribution of IL-37 receptors, IL-18Rα and IL-1R8, were determined in HDM-exposed lungs. Finally, we examined the effect of IL-37 on CCL11 production and STAT6 activation in different primary lung structural cell types upon IL-4/IL-13 stimulation. RESULTS IL-37 had no effect on HDM sensitization, but when administrated during the challenge phase, significantly attenuated pulmonary eosinophilia, CCL11 production, and airway hyper-reactivity (AHR). Interestingly, IL-37 treatment had no significant effects on lung infiltrating T cells and Th2 cytokine production. Intranasal co-administration of CCL11 reversed the inhibiting effect of IL-37 on HDM-induced pulmonary eosinophilia and AHR. Furthermore, we demonstrated that CCL11 was primarily expressed by fibroblasts and airway smooth muscle cells (AMSC), while IL-37 receptors by tracheobronchial epithelial cells (TEC). In vitro study showed that IL-37 inhibited IL-4/IL-13-induced STAT6 activation and CCL11 production by fibroblasts and AMSC, which was dependent on its direct action on TEC. Moreover, cell contact was required for the inhibitory effect of IL-37-treated TEC. CONCLUSIONS IL-37 attenuates HDM-induced asthma, possibly by inhibiting IL-4/IL-13-induced CCL11 production by fibroblasts and AMSC via its direct act on TEC.
Collapse
Affiliation(s)
- J. Lv
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
- Institute for Immunology; Tsinghua University-Peking University Joint Center for Life Sciences; Tsinghua University School of Medicine; Beijing China
| | - Y. Xiong
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - W. Li
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - X. Cui
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - X. Cheng
- Department of Medical Microbiology and Parasitology; School of Basic Medical Sciences; Fudan University; Shanghai China
| | - Q. Leng
- CAS Key Laboratory of Molecular Virology & Immunology; Institute Pasteur of Shanghai; Chinese Academy of Sciences; Shanghai China
| | - R. He
- Department of Immunology; School of Basic Medical Sciences; Fudan University; Shanghai China
- Department of Laboratory Animal Science; Fudan University; Shanghai China
- State Key Laboratory of Medical Neurobiology; Institutes of Brain Science; Fudan University; Shanghai China
| |
Collapse
|
14
|
Lin X, Yang P, Reece EA, Yang P. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am J Obstet Gynecol 2017; 217:216.e1-216.e13. [PMID: 28412087 PMCID: PMC5787338 DOI: 10.1016/j.ajog.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. OBJECTIVE This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. STUDY DESIGN The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. RESULTS The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus activated the proapoptotic c-Jun-N-terminal kinase 1/2 stress signaling and triggered cell apoptosis by increasing the number of terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells (10.4 ± 2.2% of the type 2 diabetes mellitus group vs 3.8 ± 0.7% of the nondiabetic group, P < .05). CONCLUSION Maternal type 2 diabetes mellitus induces cardiac hypertrophy in embryonic hearts. Adverse cardiac remodeling, including elevated collagen synthesis, suppressed fibronectin synthesis, profibrosis, and apoptosis, is implicated as the etiology of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xue Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Penghua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
15
|
Sun M, Lu Q. MicroRNA regulation of airway smooth muscle function. Biol Chem 2017; 397:507-11. [PMID: 26812790 DOI: 10.1515/hsz-2015-0298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Airway smooth muscle (ASM) controls airway narrowing and plays a pivotal role in the pathogenesis of asthma. MicroRNAs are small yet powerful gene tuners that regulate diverse cellular processes. Recent studies have demonstrated the versatile role of microRNAs in regulating multiple ASM phenotypes that are critically involved in asthma pathogenesis. These ASM phenotypes include proliferation, cell size, chemokine secretion, and contractility. Here we review microRNA-mediated regulation of ASM functions and discuss the potential of microRNAs as a novel class of therapeutic targets to improve ASM function for asthma therapy.
Collapse
|
16
|
MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1. Oncotarget 2017; 8:75844-75853. [PMID: 29100273 PMCID: PMC5652667 DOI: 10.18632/oncotarget.17998] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/06/2017] [Indexed: 12/21/2022] Open
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs) is a key event in the pathogenesis of various vascular diseases, such as atherosclerosis and post-angioplasty restenosis. Small non-coding microRNAs (miRNAs) have emerged as critical modulators of VSMC function. In the present study, miR-26a was significantly increased in cultured VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB) and in arteries with neointimal lesion formation. Moreover, we demonstrated that miR-26a regulates the expression of VSMC differentiation marker genes such as α-smooth muscle actin (α-SMA), calponin and smooth muscle myosin heavy chain (SM-MHC) in PDGF-BB-treated VSMCs. We further confirmed that the regulatory effect of miR-26a during the phenotypic transition occurs through its target gene Smad1, which is a critical mediator of the pro-contractile signal transmitted by bone morphogenetic protein (BMP) and transforming growth factor-beta (TGF-β). This discovery proposed a new channel for communication between PDGF and the BMP/TGF-β family. We concluded that miR-26a is an important regulator in the PDGF-BB-mediated VSMC phenotypic transition by targeting Smad1. Interventions aimed at miR-26a may be promising in treating numerous proliferative vascular disorders.
Collapse
|
17
|
Tan J, Yang L, Liu C, Yan Z. MicroRNA-26a targets MAPK6 to inhibit smooth muscle cell proliferation and vein graft neointimal hyperplasia. Sci Rep 2017; 7:46602. [PMID: 28429763 PMCID: PMC5399463 DOI: 10.1038/srep46602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neointima formation is the major reason for vein graft failure. However, the underlying mechanism is unclear. The aim of this study was to determine the role of miR-26a in the development of neointimal hyperplasia of autogenous vein grafts. Using autologous jugular vein grafts in the rat carotid artery as a model, we found that miR-26a was significantly downregulated in grafted veins as well as proliferating vascular smooth muscle cells (VSMCs) stimulated with platelet-derived growth factor-BB (PDGF-BB). Overexpression of miR-26a reduced the proliferation and migration of VSMCs. Further analysis revealed that the effects of miR-26a in VSMCs were mediated by targeting MAPK6 at the mRNA and protein levels. Luciferase assays showed that miR-26a repressed wild type (WT) MAPK6-3′-UTR-luciferase activity but not mutant MAPK6-3′-UTR-luciferease reporter. MAPK6 deficiency reduced proliferation and migration; in contrast, overexpression of MAPK6 enhanced the proliferation and migration of VSMCs. This study confirmed that neointimal hyperplasia in vein grafts was reduced in vivo by up-regulated miR-26a expression. In conclusion, our results showed that miR-26a is an important regulator of VSMC functions and neointimal hyperplasia, suggesting that miR-26a may be a potential therapeutic target for autologous vein graft diseases.
Collapse
Affiliation(s)
- Juanjuan Tan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liguo Yang
- Department of Cardiology, Shanghai Jiao Tong University afliated Sixth People's Hospital South Campus, Shanghai, 201400, P. R. China
| | - Cuicui Liu
- Central laboratory, Shanghai Jiao Tong University afliated Sixth People's Hospital South Campus, Shanghai, 201400, P. R. China
| | - Zhiqiang Yan
- Central laboratory, Shanghai Jiao Tong University afliated Sixth People's Hospital South Campus, Shanghai, 201400, P. R. China
| |
Collapse
|
18
|
Mittal SP, Khole S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, Ghaskadbi SS. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling. Biochim Biophys Acta Gen Subj 2016; 1860:2377-2390. [DOI: 10.1016/j.bbagen.2016.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
|
19
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Mohamed JS, Hajira A, Lopez MA, Boriek AM. Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy. J Biol Chem 2015; 290:24986-5011. [PMID: 26272747 DOI: 10.1074/jbc.m115.659375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of genetic and neuromuscular disorders, which result in severe loss of motor ability and skeletal muscle mass and function. Aberrant mechanotransduction and dysregulated-microRNA pathways are often associated with the progression of MD. Here, we hypothesized that dysregulation of mechanosensitive microRNAs (mechanomiRs) in dystrophic skeletal muscle plays a major role in the progression of MD. To test our hypothesis, we performed a genome-wide expression profile of anisotropically regulated mechanomiRs and bioinformatically analyzed their target gene networks. We assessed their functional roles in the advancement of MD using diaphragm muscles from mdm (MD with myositis) mice, an animal model of human tibial MD (titinopathy), and their wild-type littermates. We were able to show that ex vivo anisotropic mechanical stretch significantly alters the miRNA expression profile in diaphragm muscles from WT and mdm mice; as a result, some of the genes associated with MDs are dysregulated in mdm mice due to differential regulation of a distinct set of mechanomiRs. Interestingly, we found a contrasting expression pattern of the highly expressed let-7 family mechanomiRs, let-7e-5p and miR-98-5p, and their target genes associated with the extracellular matrix and TGF-β pathways, respectively, between WT and mdm mice. Gain- and loss-of-function analysis of let-7e-5p in myocytes isolated from the diaphragms of WT and mdm mice confirmed Col1a1, Col1a2, Col3a1, Col24a1, Col27a1, Itga1, Itga4, Scd1, and Thbs1 as target genes of let-7e-5p. Furthermore, we found that miR-98 negatively regulates myoblast differentiation. Our study therefore introduces additional biological players in the regulation of skeletal muscle structure and myogenesis that may contribute to unexplained disorders of MD.
Collapse
Affiliation(s)
- Junaith S Mohamed
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Ameena Hajira
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Michael A Lopez
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Aladin M Boriek
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
21
|
Luo Y, Wu X, Ling Z, Yuan L, Cheng Y, Chen J, Xiang C. microRNA133a targets Foxl2 and promotes differentiation of C2C12 into myogenic progenitor cells. DNA Cell Biol 2015; 34:29-36. [PMID: 25317675 PMCID: PMC4281840 DOI: 10.1089/dna.2014.2522] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 01/09/2023] Open
Abstract
microRNAs are endogenous noncoding RNA molecules of ∼22 nucleotides that regulate gene function by modification of target mRNAs. Due to tissue specific of miR-133a and miR-1/206 for skeletal muscles, we investigated the role of miR-133a and miR-1/206 in promoting the differentiation of the C2C12 cells. The results show that directly transfecting mature miR-133a, miR-1/206, or combinations (miR-1 and miR-206, miR-1 and miR-133a, and miR-133a and miR-206) into C2C12 cells, respectively, for 5 days induces formation of myogenic progenitor cells. Overexpression of miR-133a and miR-206 in C2C12 cells greatly improved multinucleated myotube formation. microRNA-133a (miR-133a) is highly expressed during human muscle development. Using bioinformatics, we identified one putative miR-133a binding site within the 3'-untranslated region of the mouse Foxl2 mRNA. The expression of Foxl2 was shown to be downregulated by subsequent western blot analysis.
Collapse
Affiliation(s)
- Yueqiu Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Biochemistry and Molecular Biology Department, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Xiaoxing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Biochemistry and Molecular Biology Department, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Li Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Jingyang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Biochemistry and Molecular Biology Department, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One 2014; 9:e110383. [PMID: 25329154 PMCID: PMC4201534 DOI: 10.1371/journal.pone.0110383] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs contribute to the pathogenesis of certain diseases and may serve as biomarkers. We analyzed glomerular microRNA expression in B6.MRLc1, which serve as a mouse model of autoimmune glomerulonephritis. We found that miR-26a was the most abundantly expressed microRNA in the glomerulus of normal C57BL/6 and that its glomerular expression in B6.MRLc1 was significantly lower than that in C57BL/6. In mouse kidneys, podocytes mainly expressed miR-26a, and glomerular miR-26a expression in B6.MRLc1 mice correlated negatively with the urinary albumin levels and podocyte-specific gene expression. Puromycin-induced injury of immortalized mouse podocytes decreased miR-26a expression, perturbed the actin cytoskeleton, and increased the release of exosomes containing miR-26a. Although miR-26a expression increased with differentiation of immortalized mouse podocytes, silencing miR-26a decreased the expression of genes associated with the podocyte differentiation and formation of the cytoskeleton. In particular, the levels of vimentin and actin significantly decreased. In patients with lupus nephritis and IgA nephropathy, glomerular miR-26a levels were significantly lower than those of healthy controls. In B6.MRLc1 and patients with lupus nephritis, miR-26a levels in urinary exosomes were significantly higher compared with those for the respective healthy control. These data indicate that miR-26a regulates podocyte differentiation and cytoskeletal integrity, and its altered levels in glomerulus and urine may serve as a marker of injured podocytes in autoimmune glomerulonephritis.
Collapse
|
23
|
|
24
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
25
|
Clifford RL, Singer CA, John AE. Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function. Pulm Pharmacol Ther 2013; 26:75-85. [PMID: 22800879 PMCID: PMC4076625 DOI: 10.1016/j.pupt.2012.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
Regulation of phenotypic plasticity in smooth muscle requires an understanding of the mechanisms regulating phenotype-specific genes and the processes dysregulated during pathogenesis. Decades of study in airway smooth muscle has provided extensive knowledge of the gene expression patterns and signaling pathways necessary to maintain and alter smooth muscle cell phenotype. With this solid foundation, the importance and complexity of inheritable epigenetic modifications and mechanisms silencing gene expression have now emerged as fundamental components regulating aspects of inflammation, proliferation and remodeling.
Collapse
Affiliation(s)
- Rachel L. Clifford
- University of Nottingham Division of Respiratory Medicine and Nottingham Respiratory Research Unit Clinical Sciences Building, City Hospital Hucknall Road, Nottingham NG5 1PB, England, UK
| | - Cherie A. Singer
- University of Nevada School of Medicine Center for Molecular Medicine 573 Department of Pharmacology, Reno, NV 89557, USA
| | - Alison E. John
- Corresponding Author University of Nottingham Division of Respiratory Medicine and Nottingham Respiratory Research Unit Clinical Sciences Building, City Hospital Hucknall Road, Nottingham NG5 1PB, England, UK Tel:+44 115 8231106 Fax: +44 115 8231946
| |
Collapse
|
26
|
Chen SC, Kennedy BK, Lampe PD. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects. Exp Cell Res 2012; 319:888-96. [PMID: 23261543 DOI: 10.1016/j.yexcr.2012.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/07/2023]
Abstract
An understanding of the molecular mechanism behind the arrhythmic phenotype associated with laminopathies has yet to emerge. A-type lamins have been shown to interact and sequester activated phospho-ERK1/2(pERK1/2) at the nucleus. The gap junction protein connexin43 (Cx43) can be phosphorylated by pERK1/2 on S279/282 (pS279/282), inhibiting intercellular communication. We hypothesized that without A-type lamins, pS279/282 Cx43 will increase due to inappropriate phosphorylation by pERK1/2, resulting in decreased gap junction function. We observed a 1.6-fold increase in pS279/282 Cx43 levels in Lmna(-/-) mouse embryonic fibroblasts (MEFs) compared to Lmna(+/+), and 1.8-fold more pERK1/2 co-precipitated from Lmna(-/-) MEFs with Cx43 antibodies. We found a 3-fold increase in the fraction of non-nuclear pERK1/2 and a concomitant 2-fold increase in the fraction of pS279/282 Cx43 in Lmna(-/-) MEFs by immunofluorescence. In an assay of gap junctional function, Lmna(-/-) MEFs transferred dye to 60% fewer partners compared to Lmna(+/+) controls. These results are mirrored in 5-6 week-old Lmna(-/-) mice compared to their Lmna(+/+) littermates as we detect increased pS279/282 Cx43 in gap junctions by immunofluorescence and 1.7-fold increased levels by immunoblot. We conclude that increased pS279/282 Cx43 in the Lmna(-/-) background results in decreased cell communication and may contribute to the arrhythmic pathology in vivo.
Collapse
Affiliation(s)
- Steven C Chen
- Fred Hutchinson Cancer Research Center (FHCRC), Public Health Sciences Division, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|