1
|
Haynes LM, Huttinger ZM, Yee A, Kretz CA, Siemieniak DR, Lawrence DA, Ginsburg D. Deep mutational scanning and massively parallel kinetics of plasminogen activator inhibitor-1 functional stability to probe its latency transition. J Biol Chem 2022; 298:102608. [PMID: 36257408 PMCID: PMC9667310 DOI: 10.1016/j.jbc.2022.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor superfamily of proteins, is unique among serine protease inhibitors for exhibiting a spontaneous conformational change to a latent or inactive state. The functional half-life for this transition at physiologic temperature and pH is ∼1 to 2 h. To better understand the molecular mechanisms underlying this transition, we now report on the analysis of a comprehensive PAI-1 variant library expressed on filamentous phage and selected for functional stability after 48 h at 37 °C. Of the 7201 possible single amino acid substitutions in PAI-1, we identified 439 that increased the functional stability of PAI-1 beyond that of the WT protein. We also found 1549 single amino acid substitutions that retained inhibitory activity toward the canonical target protease of PAI-1 (urokinase-like plasminogen activator), whereas exhibiting functional stability less than or equal to that of WT PAI-1. Missense mutations that increase PAI-1 functional stability are concentrated in highly flexible regions within the PAI-1 structure. Finally, we developed a method for simultaneously measuring the functional half-lives of hundreds of PAI-1 variants in a multiplexed, massively parallel manner, quantifying the functional half-lives for 697 single missense variants of PAI-1 by this approach. Overall, these findings provide novel insight into the mechanisms underlying the latency transition of PAI-1 and provide a database for interpreting human PAI-1 genetic variants.
Collapse
Affiliation(s)
- Laura M Haynes
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Zachary M Huttinger
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Yee
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Long-range allostery mediates the regulation of plasminogen activator inhibitor-1 by cell adhesion factor vitronectin. J Biol Chem 2022; 298:102652. [PMID: 36444882 PMCID: PMC9731859 DOI: 10.1016/j.jbc.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Abstract
The serpin plasminogen activator inhibitor 1 (PAI-1) spontaneously undergoes a massive structural change from a metastable and active conformation, with a solvent-accessible reactive center loop (RCL), to a stable, inactive, or latent conformation, with the RCL inserted into the central β-sheet. Physiologically, conversion to the latent state is regulated by the binding of vitronectin, which hinders the latency transition rate approximately twofold. The molecular mechanisms leading to this rate change are unclear. Here, we investigated the effects of vitronectin on the PAI-1 latency transition using all-atom path sampling simulations in explicit solvent. In simulated latency transitions of free PAI-1, the RCL is quite mobile as is the gate, the region that impedes RCL access to the central β-sheet. This mobility allows the formation of a transient salt bridge that facilitates the transition; this finding rationalizes existing mutagenesis results. Vitronectin binding reduces RCL and gate mobility by allosterically rigidifying structural elements over 40 Å away from the binding site, thus blocking transition to the latent conformation. The effects of vitronectin are propagated by a network of dynamically correlated residues including a number of conserved sites that were previously identified as important for PAI-1 stability. Simulations also revealed a transient pocket populated only in the vitronectin-bound state, corresponding to a cryptic drug-binding site identified by crystallography. Overall, these results shed new light on PAI-1 latency transition regulation by vitronectin and illustrate the potential of path sampling simulations for understanding functional protein conformational changes and for facilitating drug discovery.
Collapse
|
3
|
Sillen M, Declerck PJ. A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or Not to Target? Int J Mol Sci 2021; 22:ijms22052721. [PMID: 33800359 PMCID: PMC7962805 DOI: 10.3390/ijms22052721] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of plasminogen activators (PAs) and is therefore an important inhibitor of the plasminogen/plasmin system. Being the fast-acting inhibitor of tissue-type PA (tPA), PAI-1 primarily attenuates fibrinolysis. Through inhibition of urokinase-type PA (uPA) and interaction with biological ligands such as vitronectin and cell-surface receptors, the function of PAI-1 extends to pericellular proteolysis, tissue remodeling and other processes including cell migration. This review aims at providing a general overview of the properties of PAI-1 and the role it plays in many biological processes and touches upon the possible use of PAI-1 inhibitors as therapeutics.
Collapse
|
4
|
Sillen M, Declerck PJ. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front Cardiovasc Med 2020; 7:622473. [PMID: 33415130 PMCID: PMC7782431 DOI: 10.3389/fcvm.2020.622473] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily with antiprotease activity, is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role in various acute and chronic pathophysiological processes, including cardiovascular disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the broad range of PAI-1-related pathologies, many efforts have been devoted to developing PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules, peptides, antibodies, and antibody fragments, in various animal disease models has provided ample evidence of their beneficial effect in vivo and moved forward some of these inhibitors in clinical trials. However, none of these inhibitors is currently approved for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore, the conformational plasticity of PAI-1, which is unique among serpins, poses a real challenge in the identification and development of PAI-1 inhibitors. This review will provide an overview of the structural insights into PAI-1 functionality and modulation thereof and will highlight diverse approaches to inhibit PAI-1 activity.
Collapse
Affiliation(s)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Chu Y, Bucci JC, Peterson CB. Dissecting molecular details and functional effects of the high-affinity copper binding site in plasminogen activator Inhibitor-1. Protein Sci 2020; 30:597-612. [PMID: 33345392 DOI: 10.1002/pro.4017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor for plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). As a unique member in the serine protease inhibitor (serpin) family, PAI-1 is metastable and converts to an inactive, latent structure with a half-life of 1-2 hr under physiological conditions. Unusual effects of metals on the rate of the latency conversion are incompletely understood. Previous work has identified two residues near the N-terminus, H2 and H3, which reside in a high-affinity copper-binding site in PAI-1 [Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB (2017) J Biol Inorg Chem 22:1123-1,135]. In this study, neighboring residues, H10, E81, and H364, were tested as possible sites that participate in Cu(II) coordination at the high-affinity site. Kinetic methods, gel sensitivity assays, and isothermal titration calorimetry (ITC) revealed that E81 and H364 have different roles in coordinating metal and mediating the stability of PAI-1. H364 provides a third histidine in the metal-coordination sphere with H2 and H3. In contrast, E81 does not appear to be required for metal ligation along with histidines; contacts made by the side-chain carboxylate upon metal binding are perturbed and, in turn, influence dynamic fluctuations within the region encompassing helices D, E, and F and the W86 loop that are important in the pathway for the PAI-1 latency conversion. This investigation underscores a prominent role of protein dynamics, noncovalent bonding networks and ligand binding in controlling the stability of the active form of PAI-1.
Collapse
Affiliation(s)
- Yuzhuo Chu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel C Bucci
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Cynthia B Peterson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
6
|
Gao Y, Jin H. Plasminogen activator inhibitor-1: a potential etiological role in livedoid vasculopathy. Int Wound J 2020; 17:1902-1908. [PMID: 33043622 DOI: 10.1111/iwj.13480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023] Open
Abstract
Livedoid vasculopathy (LV) is a chronic, recurrent skin disorder with unknown aetiology and pathogenesis that seriously affects the quality of life of people who suffer from it. Plasminogen activator inhibitor (PAI)-1 is a primary inhibitory component of the endogenous fibrinolytic system in blood coagulation. PAI-1 also plays a role in many other physiological processes and activities, including thrombosis, fibrosis, wound healing, angiogenesis, inflammation, cell migration, and adhesion. Enhanced expression and genotype polymorphism of PAI-1 have been observed in LV patients. In this review, we summarise the known functions of PAI-1 with emphasis on the roles that PAI-1 probably plays in the pathogenesis of LV, thereby illustrating that PAI-1 represents a potential LV biomarker and therapeutic target for treating LV.
Collapse
Affiliation(s)
- Yimeng Gao
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Sillen M, Weeks SD, Strelkov SV, Declerck PJ. Structural Insights into the Mechanism of a Nanobody That Stabilizes PAI-1 and Modulates Its Activity. Int J Mol Sci 2020; 21:ijms21165859. [PMID: 32824134 PMCID: PMC7461574 DOI: 10.3390/ijms21165859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being critically involved in fibrinolysis and wound healing, emerging evidence indicates that PAI-1 plays an important role in many diseases, including cardiovascular disease, tissue fibrosis, and cancer. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1 related pathologies. Despite ongoing efforts no PAI-1 inhibitors were approved to date for therapeutic use in humans. A better understanding of the molecular mechanisms of PAI-1 inhibition is therefore necessary to guide the rational design of PAI-1 modulators. Here, we present a 1.9 Å crystal structure of PAI-1 in complex with an inhibitory nanobody VHH-s-a93 (Nb93). Structural analysis in combination with biochemical characterization reveals that Nb93 directly interferes with PAI-1/PA complex formation and stabilizes the active conformation of the PAI-1 molecule.
Collapse
Affiliation(s)
- Machteld Sillen
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
| | - Stephen D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
- Correspondence:
| |
Collapse
|
8
|
Sillen M, Weeks SD, Zhou X, Komissarov AA, Florova G, Idell S, Strelkov SV, Declerck PJ. Molecular mechanism of two nanobodies that inhibit PAI-1 activity reveals a modulation at distinct stages of the PAI-1/plasminogen activator interaction. J Thromb Haemost 2020; 18:681-692. [PMID: 31858714 PMCID: PMC8855783 DOI: 10.1111/jth.14716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasminogen activators (PAs) tissue-type PA (tPA) and urokinase-type PA (uPA) plays a crucial role in many (patho)physiological processes (e.g., cardiovascular disease, tissue fibrosis) as well as in many age-related pathologies. Therefore, much effort has been put into the development of small molecule or antibody-based PAI-1 inhibitors. OBJECTIVE To elucidate the molecular mechanism of nanobody-induced PAI-1 inhibition. METHODS AND RESULTS Here we present the first crystal structures of PAI-1 in complex with two neutralizing nanobodies (Nbs). These structures, together with biochemical and biophysical characterization, reveal that Nb VHH-2g-42 (Nb42) interferes with the initial PAI-1/PA complex formation, whereas VHH-2w-64 (Nb64) redirects the PAI-1/PA interaction to PAI-1 deactivation and regeneration of active PA. Furthermore, whereas vitronectin does not have an impact on the inhibitory effect of Nb42, it strongly potentiates the inhibitory effect of Nb64, which may contribute to a strong inhibitory potential of Nb64 in vivo. CONCLUSIONS These findings illuminate the molecular mechanisms of PAI-1 inhibition. Nb42 and Nb64 can be used as starting points to engineer further improved antibody-based PAI-1 inhibitors or guide the rational design of small molecule inhibitors to treat a wide range of PAI-1-related pathophysiological conditions.
Collapse
Affiliation(s)
- Machteld Sillen
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Stephen D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Xiaohua Zhou
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Andrey A. Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX, USA
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX, USA
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Puster LO, Stanley CB, Uversky VN, Curtis JE, Krueger S, Chu Y, Peterson CB. Characterization of an Extensive Interface on Vitronectin for Binding to Plasminogen Activator Inhibitor-1: Adoption of Structure in an Intrinsically Disordered Region. Biochemistry 2019; 58:5117-5134. [PMID: 31793295 DOI: 10.1021/acs.biochem.9b00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small-angle neutron scattering (SANS) measurements were pursued to study human vitronectin, a protein found in tissues and the circulation that regulates cell adhesion/migration and proteolytic cascades that govern hemostasis and pericellular proteolysis. Many of these functions occur via interactions with its binding partner, plasminogen activator inhibitor-1 (PAI-1), the chief inhibitor of proteases that lyse and activate plasminogen. We focused on a region of vitronectin that remains uncharacterized from previous X-ray scattering, nuclear magnetic resonance, and computational modeling approaches and which we propose is involved in binding to PAI-1. This region, which bridges the N-terminal somatomedin B (SMB) domain with a large central β-propeller domain of vitronectin, appears unstructured and has characteristics of an intrinsically disordered domain (IDD). The effect of osmolytes was evaluated using circular dichroism and SANS to explore the potential of the IDD to undergo a disorder-to-order transition. The results suggest that the IDD favors a more ordered structure under osmotic pressure; SANS shows a smaller radius of gyration (Rg) and a more compact fold of the IDD upon addition of osmolytes. To test whether PAI-1 binding is also coupled to folding within the IDD structure, a set of SANS experiments with contrast variation were performed on the complex of PAI-1 with a vitronectin fragment corresponding to the N-terminal 130 amino acids (denoted the SMB-IDD because it contains the SMB domain and IDD in linear sequence). Analysis of the SANS data using the Ensemble Optimization Method confirms that the SMB-IDD adopts a more compact configuration when bound to PAI-1. Calculated structures for the PAI-1:SMB-IDD complex suggest that the IDD provides an interaction surface outside of the primary PAI-1-binding site located within the SMB domain; this binding is proposed to lead to the assembly of higher-order structures of vitronectin and PAI-1 commonly found in tissues.
Collapse
Affiliation(s)
- Letitia O Puster
- Department of Biochemistry and Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Christopher B Stanley
- Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow region 142290 , Russia
| | - Joseph E Curtis
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg , Maryland 20899 , United States
| | - Susan Krueger
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg , Maryland 20899 , United States
| | - Yuzhuo Chu
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Cynthia B Peterson
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
10
|
Vousden KA, Lundqvist T, Popovic B, Naiman B, Carruthers AM, Newton P, Johnson DJD, Pomowski A, Wilkinson T, Dufner P, de Mendez I, Mallinder PR, Murray C, Strain M, Connor J, Murray LA, Sleeman MA, Lowe DC, Huntington JA, Vaughan TJ. Discovery and characterisation of an antibody that selectively modulates the inhibitory activity of plasminogen activator inhibitor-1. Sci Rep 2019; 9:1605. [PMID: 30733557 PMCID: PMC6367345 DOI: 10.1038/s41598-019-38842-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 01/21/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (serpin) that regulates fibrinolysis, cell adhesion and cell motility via its interactions with plasminogen activators and vitronectin. PAI-1 has been shown to play a role in a number of diverse pathologies including cardiovascular diseases, obesity and cancer and is therefore an attractive therapeutic target. However the multiple patho-physiological roles of PAI-1, and understanding the relative contributions of these in any one disease setting, make the development of therapeutically relevant molecules challenging. Here we describe the identification and characterisation of fully human antibody MEDI-579, which binds with high affinity and specificity to the active form of human PAI-1. MEDI-579 specifically inhibits serine protease interactions with PAI-1 while conserving vitronectin binding. Crystallographic analysis reveals that this specificity is achieved through direct binding of MEDI-579 Fab to the reactive centre loop (RCL) of PAI-1 and at the same exosite used by both tissue and urokinase plasminogen activators (tPA and uPA). We propose that MEDI-579 acts by directly competing with proteases for RCL binding and as such is able to modulate the interaction of PAI-1 with tPA and uPA in a way not previously described for a human PAI-1 inhibitor.
Collapse
Affiliation(s)
| | - Tomas Lundqvist
- AstraZeneca AB R&D, Pepparedsleden 1, 431 50, Mölndal, Sweden
| | | | - Brian Naiman
- MedImmune LLC, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | | | | | - Daniel J D Johnson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anja Pomowski
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | | | | | | | - Clare Murray
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | | | - Jane Connor
- MedImmune LLC, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | | | | | | | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | | |
Collapse
|
11
|
Serpine1 Knockdown Enhances MMP Activity after Flexor Tendon Injury in Mice: Implications for Adhesions Therapy. Sci Rep 2018; 8:5810. [PMID: 29643421 PMCID: PMC5895578 DOI: 10.1038/s41598-018-24144-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Injuries to flexor tendons can be complicated by fibrotic adhesions, which severely impair the function of the hand. Adhesions have been associated with TGF-β1, which causes upregulation of PAI-1, a master suppressor of protease activity, including matrix metalloproteinases (MMP). In the present study, the effects of inhibiting PAI-1 in murine zone II flexor tendon injury were evaluated utilizing knockout (KO) mice and local nanoparticle-mediated siRNA delivery. In the PAI-1 KO murine model, reduced adherence of injured tendon to surrounding subcutaneous tissue and accelerated recovery of normal biomechanical properties compared to wild type controls were observed. Furthermore, MMP activity was significantly increased in the injured tendons of the PAI-1 KO mice, which could explain their reduced adhesions and accelerated remodeling. These data demonstrate that PAI-1 mediates fibrotic adhesions in injured flexor tendons by suppressing MMP activity. In vitro siRNA delivery to silence Serpine1 expression after treatment with TGF-β1 increased MMP activity. Nanoparticle-mediated delivery of siRNA targeting Serpine1 in injured flexor tendons significantly reduced target gene expression and subsequently increased MMP activity. Collectively, the data demonstrate that PAI-1 can be a druggable target for treating adhesions and accelerating the remodeling of flexor tendon injuries.
Collapse
|
12
|
Jung RG, Simard T, Labinaz A, Ramirez FD, Di Santo P, Motazedian P, Rochman R, Gaudet C, Faraz MA, Beanlands RS, Hibbert B. Role of plasminogen activator inhibitor-1 in coronary pathophysiology. Thromb Res 2018; 164:54-62. [DOI: 10.1016/j.thromres.2018.02.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/03/2018] [Accepted: 02/15/2018] [Indexed: 01/13/2023]
|
13
|
Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB. Resolving distinct molecular origins for copper effects on PAI-1. J Biol Inorg Chem 2017; 22:1123-1135. [PMID: 28913669 PMCID: PMC5613068 DOI: 10.1007/s00775-017-1489-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022]
Abstract
Components of the fibrinolytic system are subjected to stringent control to maintain proper hemostasis. Central to this regulation is the serpin plasminogen activator inhibitor-1 (PAI-1), which is responsible for specific and rapid inhibition of fibrinolytic proteases. Active PAI-1 is inherently unstable and readily converts to a latent, inactive form. The binding of vitronectin and other ligands influences stability of active PAI-1. Our laboratory recently observed reciprocal effects on the stability of active PAI-1 in the presence of transition metals, such as copper, depending on the whether vitronectin was also present (Thompson et al. Protein Sci 20:353–365, 2011). To better understand the molecular basis for these copper effects on PAI-1, we have developed a gel-based copper sensitivity assay that can be used to assess the copper concentrations that accelerate the conversion of active PAI-1 to a latent form. The copper sensitivity of wild-type PAI-1 was compared with variants lacking N-terminal histidine residues hypothesized to be involved in copper binding. In these PAI-1 variants, we observed significant differences in copper sensitivity, and these data were corroborated by latency conversion kinetics and thermodynamics of copper binding by isothermal titration calorimetry. These studies identified a copper-binding site involving histidines at positions 2 and 3 that confers a remarkable stabilization of PAI-1 beyond what is observed with vitronectin alone. A second site, independent from the two histidines, binds metal and increases the rate of the latency conversion.
Collapse
Affiliation(s)
- Joel C Bucci
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.,Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Carlee S McClintock
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| | - Yuzhuo Chu
- Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Gregory L Ware
- Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kayla D McConnell
- Department of Chemistry, Mississippi State University, Box 1115, Starkville, MS, 39762, USA
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Box 1115, Starkville, MS, 39762, USA
| | - Cynthia B Peterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA. .,Department of Biological Sciences, A221 Life Sciences Annex, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
14
|
Jendroszek A, Sønnichsen MS, Muñoz AC, Leyman K, Christensen A, Petersen SV, Wang T, Bendixen C, Panitz F, Andreasen PA, Jensen JK. Latency transition of plasminogen activator inhibitor type 1 is evolutionarily conserved. Thromb Haemost 2017; 117:1688-1699. [PMID: 28771275 DOI: 10.1160/th17-02-0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 02/04/2023]
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a central regulator of fibrinolysis and tissue remodelling. PAI-1 belongs to the serpin superfamily and unlike other inhibitory serpins undergoes a spontaneous inactivation process under physiological conditions, termed latency transition. During latency transition the solvent exposed reactive centre loop is inserted into the central β-sheet A of the molecule, and is no longer accessible to reaction with the protease. More than three decades of research on mammalian PAI-1 has not been able to clarify the evolutionary advantage and physiological relevance of latency transition. In order to study the origin of PAI-1 latency transition, we produced PAI-1 from Spiny dogfish shark (Squalus acanthias) and African lungfish (Protopterus sp.), which represent central species in the evolution of vertebrates. Although human PAI-1 and the non-mammalian PAI-1 variants share only approximately 50 % sequence identity, our results showed that all tested PAI-1 variants undergo latency transition with a similar rate. Since the functional stability of PAI-1 can be greatly increased by substitution of few amino acid residues, we conclude that the ability to undergo latency transition must have been a specific selection criterion for the evolution of PAI-1. It appears that all PAI-1 molecules must harbour latency transition to fulfil their physiological function, stressing the importance to further pursue a complete understanding of this molecular phenomenon with possible implication to pharmacological intervention. Our results provide the next step in understanding how the complete role of this important protease inhibitor evolved along with the fibrinolytic system.
Collapse
|
15
|
Petersen M, Madsen JB, Jørgensen TJD, Trelle MB. Conformational preludes to the latency transition in PAI-1 as determined by atomistic computer simulations and hydrogen/deuterium-exchange mass spectrometry. Sci Rep 2017; 7:6636. [PMID: 28747729 PMCID: PMC5529462 DOI: 10.1038/s41598-017-06290-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Both function and dysfunction of serine protease inhibitors (serpins) involve massive conformational change in their tertiary structure but the dynamics facilitating these events remain poorly understood. We have studied the dynamic preludes to conformational change in the serpin plasminogen activator inhibitor 1 (PAI-1). We report the first multi-microsecond atomistic molecular dynamics simulations of PAI-1 and compare the data with experimental hydrogen/deuterium-exchange data (HDXMS). The simulations reveal notable conformational flexibility of helices D, E and F and major fluctuations are observed in the W86-loop which occasionally leads to progressive detachment of β-strand 2 A from β-strand 3 A. An interesting correlation between Cα-RMSD values from simulations and experimental HDXMS data is observed. Helices D, E and F are known to be important for the overall stability of active PAI-1 as ligand binding in this region can accelerate or decelerate the conformational inactivation. Plasticity in this region may thus be mechanistically linked to the conformational change, possibly through facilitation of further unfolding of the hydrophobic core, as previously reported. This study provides a promising example of how computer simulations can help tether out mechanisms of serpin function and dysfunction at a spatial and temporal resolution that is far beyond the reach of any experiment.
Collapse
Affiliation(s)
- Michael Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark
| | - Jeppe B Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark
| | - Morten B Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, M, Denmark.
| |
Collapse
|
16
|
Bucci JC, Trelle MB, McClintock CS, Qureshi T, Jørgensen TJD, Peterson CB. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability. Biochemistry 2016; 55:4386-98. [DOI: 10.1021/acs.biochem.6b00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel C. Bucci
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
- Department
of Biological Sciences, Louisiana State University, A221 Life
Sciences Annex, Baton Rouge, Louisiana 70803, United States
| | - Morten Beck Trelle
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 55 Campusvej, 5000 Odense M, Denmark
| | - Carlee S. McClintock
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Tihami Qureshi
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 55 Campusvej, 5000 Odense M, Denmark
| | - Cynthia B. Peterson
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Walters Life Sciences Building, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
- Department
of Biological Sciences, Louisiana State University, A221 Life
Sciences Annex, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
17
|
Qureshi T, Goswami S, McClintock CS, Ramsey MT, Peterson CB. Distinct encounter complexes of PAI-1 with plasminogen activators and vitronectin revealed by changes in the conformation and dynamics of the reactive center loop. Protein Sci 2015; 25:499-510. [PMID: 26548921 DOI: 10.1002/pro.2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 11/07/2022]
Abstract
UNLABELLED Plasminogen activator inhibitor-1 (PAI-1) is a biologically important serine protease inhibitor (serpin) that, when overexpressed, is associated with a high risk for cardiovascular disease and cancer metastasis. Several of its ligands, including vitronectin, tissue-type and urokinase-type plasminogen activator (tPA, uPA), affect the fate of PAI-1. Here, we measured changes in the solvent accessibility and dynamics of an important unresolved functional region, the reactive center loop (RCL), upon binding of these ligands. Binding of the catalytically inactive S195A variant of tPA to the RCL causes an increase in fluorescence, indicating greater solvent protection, at its C-terminus, while mobility along the loop remains relatively unchanged. In contrast, a fluorescence increase and large decrease in mobility at the N-terminal RCL is observed upon binding of S195A-uPA to PAI-1. At a site distant from the RCL, binding of vitronectin results in a modest decrease in fluorescence at its proximal end without restricting overall loop dynamics. These results provide the new evidence for ligand effects on RCL conformation and dynamics and differences in the Michaelis complex with plasminogen activators that can be used for the development of more specific inhibitors to PAI-1. This study is also the first to use electron paramagnetic resonance (EPR) spectroscopy to investigate PAI-1 dynamics. SIGNIFICANCE Balanced blood homeostasis and controlled cell migration requires coordination between serine proteases, serpins, and cofactors. These ligands form noncovalent complexes, which influence the outcome of protease inhibition and associated physiological processes. This study reveals differences in binding via changes in solvent accessibility and dynamics within these complexes that can be exploited to develop more specific drugs in the treatment of diseases associated with unbalanced serpin activity.
Collapse
Affiliation(s)
- Tihami Qureshi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Sumit Goswami
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Carlee S McClintock
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Matthew T Ramsey
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia B Peterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
18
|
Qureshi T, Peterson CB. Single fluorescence probes along the reactive center loop reveal site-specific changes during the latency transition of PAI-1. Protein Sci 2015; 25:487-98. [PMID: 26540464 DOI: 10.1002/pro.2839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Abstract
The serine protease inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI-1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI-1, in which the solvent-exposed reactive center loop (RCL) inserts into its central β-sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13-P5') to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap-like RCL-insertion that occurs with a half-life of 1-2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half-life of ∼5 and 25 min at the P5' and P8 RCL positions, respectively. We hypothesize that the process detected at P5' represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.
Collapse
Affiliation(s)
- Tihami Qureshi
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia B Peterson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
19
|
Gonzalez T, Gaultney RA, Floden AM, Brissette CA. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain. Front Microbiol 2015; 6:1095. [PMID: 26500634 PMCID: PMC4595779 DOI: 10.3389/fmicb.2015.01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli lipoprotein (Lpp) is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysinses in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen (Plg), a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to Plg, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-Plg interactions were examined. Additionally, the ability of Lpp-bound Plg to be converted to active plasmin was analyzed. We determined that Lpp binds Plg via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that Plg bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding Plg are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.
Collapse
Affiliation(s)
- Tammy Gonzalez
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Robert A Gaultney
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Angela M Floden
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Catherine A Brissette
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| |
Collapse
|
20
|
Kozlova N, Jensen JK, Chi TF, Samoylenko A, Kietzmann T. PAI-1 modulates cell migration in a LRP1-dependent manner via β-catenin and ERK1/2. Thromb Haemost 2015; 113:988-98. [PMID: 25694133 DOI: 10.1160/th14-08-0678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/06/2015] [Indexed: 01/28/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major and most specific acting urokinase (uPA) and tissue plasminogen activator (tPA) inhibitor. Apart from its function in the fibrinolytic system, PAI-1 was also found to contribute to processes like tissue remodelling, angiogenesis, and tumour progression. However, the role of PAI-1 in those processes remains largely controversial with respect to the influence of PAI-1 on cell signalling pathways. Although PAI-1 does not possess its own cellular receptor, it can be bound to low-density lipoprotein receptor-related protein 1 (LRP1) which was proposed to modulate the β-catenin pathway. Therefore, we used wild-type mouse embryonic fibroblasts (MEFs), and MEFs deficient of LRP1 to study PAI-1 as modulator of the β-catenin pathway. We found that PAI-1 influences MEF proliferation and motility in a LRP1-dependent manner and that β-catenin is important for that response. In addition, expression of β-catenin and β-catenin-dependent transcriptional activity were induced by PAI-1 in wild type MEFs, but not in LRP1-deficient cells. Moreover, PAI-1-induced ERK1/2 activation was more prominent in the LRP1-deficient cells and interestingly knockdown of β-catenin abolished this effect. Together, the data of the current study show that PAI-1 can promote cell migration via LRP1-dependent activation of the β-catenin and ERK1/2 MAPK pathway which may be important in stage-specific treatment of human diseases associated with high PAI-1 levels.
Collapse
Affiliation(s)
| | | | | | - Anatoly Samoylenko
- Anatoly Samoylenko, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P. O.Box 3000, FI-90014 Oulu, Finland, E-mail:
| | - Thomas Kietzmann
- Thomas Kietzmann, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P. O.Box 3000, FI-90014 Oulu, Finland, Tel : +358 2 9448 7713,
| |
Collapse
|
21
|
McMahon BJ, Kwaan HC. Components of the Plasminogen-Plasmin System as Biologic Markers for Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 867:145-56. [PMID: 26530365 DOI: 10.1007/978-94-017-7215-0_10] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Members of the plasminogen-plasmin (PP) system participate in many physiologic functions. In particular, uPA, its receptor (uPAR) and its inhibitor PAI-1 play an important role in cell migration, cell proliferation and tissue remodeling. Through a number of interactions, these components of the PP system are also involved in the pathogenesis of many diseases. In cancer, they modulate the essential processes of tumor development, growth, invasion and metastasis as well as angiogenesis and fibrosis. Thus, quantification of uPA, uPAR and PAI-1 in tumors and, in some cases in the circulating blood, became of potential value in the prognostication of many types of cancer. These include cancer of the breast, stomach, colon and rectum, esophagus, pancreas, glioma, lung, kidney, prostate, uterine cervix, ovary, liver and bone. Published data are reviewed in this chapter. Clinical validation of the prognostic value has also been made, particularly in cancer of the breast. Inclusion of these biomarkers in the risk assessment of cancer patients is now considered in the risk-adapted management in carcinoma of the breast. Factors limiting its broader use are discussed with suggestions how these can be overcome. Hopefully the use of these biomarkers will be applied to other types of cancer in the near future.
Collapse
Affiliation(s)
- Brandon J McMahon
- Division of Hematology/Oncology, Feinberg School of Medicine, and the Robert H. Lurie Cancer, Northwestern University, Chicago, IL, USA.,Olson Pavilion, Room 8258, 710 N. Fairbanks Court, Chicago, IL, 60611, USA
| | - Hau C Kwaan
- Division of Hematology/Oncology, Feinberg School of Medicine, and the Robert H. Lurie Cancer, Northwestern University, Chicago, IL, USA. .,Olson Pavilion, Room 8258, 710 N. Fairbanks Court, Chicago, IL, 60611, USA.
| |
Collapse
|
22
|
Trelle MB, Madsen JB, Andreasen PA, Jørgensen TJD. Local Transient Unfolding of Native State PAI-1 Associated with Serpin Metastability. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Trelle MB, Madsen JB, Andreasen PA, Jørgensen TJD. Local Transient Unfolding of Native State PAI-1 Associated with Serpin Metastability. Angew Chem Int Ed Engl 2014; 53:9751-4. [DOI: 10.1002/anie.201402796] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/26/2014] [Indexed: 11/08/2022]
|
24
|
Kousted TM, Skjoedt K, Petersen SV, Koch C, Vitved L, Sochalska M, Lacroix C, Andersen LM, Wind T, Andreasen PA, Jensen JK. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation. Thromb Haemost 2013; 111:29-40. [PMID: 24085288 DOI: 10.1160/th13-04-0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/24/2013] [Indexed: 11/05/2022]
Abstract
Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between the loop connecting α-helix F with β-strand 3A and the loop connecting α-helix A with β-strand 1B. We conclude that antibody binding causes a direct blockage of the final critical step of protease translocation, resulting in abortive inhibition and premature release of reactive centre cleaved PN-1. These new antibodies will provide a powerful tool to study the in vivo role of PN-1's protease inhibitory activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jan K Jensen
- Jan K. Jensen, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, E-mail:
| |
Collapse
|
25
|
Bager R, Johansen JS, Jensen JK, Stensballe A, Jendroszek A, Buxbom L, Sørensen HP, Andreasen PA. Protein conformational change delayed by steric hindrance from an N-linked glycan. J Mol Biol 2013; 425:2867-77. [PMID: 23702291 DOI: 10.1016/j.jmb.2013.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022]
Abstract
Very few studies have attributed a direct, active, functional role to N-linked glycans. We describe here an N-linked glycan with a unique role for maintaining the active conformation of a protein of the serpin family. The distinguishing feature of serpins is the "stressed-to-relaxed" transition, in which the reactive center loop inserts as a β-strand into the central β-sheet A. This transition forms the basis for the conversion of serpins to the inactive latent state. We demonstrate that plasminogen activator inhibitor-1 (PAI-1) from zebrafish converts to the latent state about 5-fold slower than human PAI-1. In contrast to human PAI-1, fish PAI-1 carries a single N-linked glycan at Asn185 in the gate region through which the reactive center loop passes during latency transition. While the latency transition of human PAI-1 is unaffected by deglycosylation, deglycosylated zebrafish PAI-1 (zfPAI-1) goes latent about 50-fold faster than the glycosylated zfPAI-1 and about 25-fold faster than non-glycosylated human PAI-1. X-ray crystal structure analysis of glycosylated fish PAI-1 confirmed the presence of an N-linked glycan in the gate region and a lack of glycan-induced structural changes. Thus, latency transition of zfPAI-1 is delayed by steric hindrance from the glycan in the gate region. Our findings reveal a previously unknown mechanism for inhibition of protein conformational changes by steric hindrance from N-linked glycans.
Collapse
Affiliation(s)
- René Bager
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fjellström O, Deinum J, Sjögren T, Johansson C, Geschwindner S, Nerme V, Legnehed A, McPheat J, Olsson K, Bodin C, Paunovic A, Gustafsson D. Characterization of a small molecule inhibitor of plasminogen activator inhibitor type 1 that accelerates the transition into the latent conformation. J Biol Chem 2012; 288:873-85. [PMID: 23155046 DOI: 10.1074/jbc.m112.371732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel class of small molecule inhibitors for plasminogen activator inhibitor type 1 (PAI-1), represented by AZ3976, was identified in a high throughput screening campaign. AZ3976 displayed an IC(50) value of 26 μm in an enzymatic chromogenic assay. In a plasma clot lysis assay, the compound was active with an IC(50) of 16 μm. Surprisingly, AZ3976 did not bind to active PAI-1 but bound to latent PAI-1 with a K(D) of 0.29 μm at 35 °C and a binding stoichiometry of 0.94, as measured by isothermal calorimetry. Reversible binding was confirmed by surface plasmon resonance direct binding experiments. The x-ray structure of AZ3976 in complex with latent PAI-1 was determined at 2.4 Å resolution. The inhibitor was bound in the flexible joint region with the entrance to the cavity located between α-helix D and β-strand 2A. A set of surface plasmon resonance experiments revealed that AZ3976 inhibited PAI-1 by enhancing the latency transition of active PAI-1. Because AZ3976 only had measurable affinity for latent PAI-1, we propose that its mechanism of inhibition is based on binding to a small fraction in equilibrium with active PAI-1, a latent-like prelatent form, from which latent PAI-1 is then generated more rapidly. This mode of action, with induced accelerated latency transition of active PAI-1 may, together with supporting x-ray data, provide improved opportunities for small molecule drug design in the hunt for therapeutically useful PAI-1 inhibitors.
Collapse
Affiliation(s)
- Ola Fjellström
- Department of Medicinal Chemistry, AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Trelle MB, Hirschberg D, Jansson A, Ploug M, Roepstorff P, Andreasen PA, Jørgensen TJD. Hydrogen/deuterium exchange mass spectrometry reveals specific changes in the local flexibility of plasminogen activator inhibitor 1 upon binding to the somatomedin B domain of vitronectin. Biochemistry 2012; 51:8256-66. [PMID: 22957734 DOI: 10.1021/bi3008998] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The native fold of plasminogen activator inhibitor 1 (PAI-1) represents an active metastable conformation that spontaneously converts to an inactive latent form. Binding of the somatomedin B domain (SMB) of the endogenous cofactor vitronectin to PAI-1 delays the transition to the latent state and increases the thermal stability of the protein dramatically. We have used hydrogen/deuterium exchange mass spectrometry to assess the inherent structural flexibility of PAI-1 and to monitor the changes induced by SMB binding. Our data show that the PAI-1 core consisting of β-sheet B is rather protected against exchange with the solvent, while the remainder of the molecule is more dynamic. SMB binding causes a pronounced and widespread stabilization of PAI-1 that is not confined to the binding interface with SMB. We further explored the local structural flexibility in a mutationally stabilized PAI-1 variant (14-1B) as well as the effect of stabilizing antibody Mab-1 on wild-type PAI-1. The three modes of stabilizing PAI-1 (SMB, Mab-1, and the mutations in 14-1B) all cause a delayed latency transition, and this effect was accompanied by unique signatures on the flexibility of PAI-1. Reduced flexibility in the region around helices B, C, and I was seen in all three cases, which suggests an involvement of this region in mediating structural flexibility necessary for the latency transition. These data therefore add considerable depth to our current understanding of the local structural flexibility in PAI-1 and provide novel indications of regions that may affect the functional stability of PAI-1.
Collapse
Affiliation(s)
- Morten Beck Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
28
|
A peptide mimicking the C-terminal part of the reactive center loop induces the transition to the latent form of plasminogen activator inhibitor type-1. FEBS Lett 2012; 586:686-92. [DOI: 10.1016/j.febslet.2012.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 11/21/2022]
|