1
|
Wang M, Zhu M, Jia X, Wu J, Yuan Q, Xu T, Wang Z, Huang M, Ji N, Zhang M. LincR-PPP2R5C regulates IL-1β ubiquitination in macrophages and promotes airway inflammation and emphysema in a murine model of COPD. Int Immunopharmacol 2024; 139:112680. [PMID: 39018689 DOI: 10.1016/j.intimp.2024.112680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. Macrophages release IL-1β and orchestrate airway inflammation in COPD. Previously, we explored the role of a new lncRNA, LincR-PPP2R5C, in regulating Th2 cells in asthma. Here, we established a murine model of COPD and explored the roles and mechanisms by which LincR-PPP2R5C regulates IL-1β in macrophages. LincR-PPP2R5C was highly expressed in pulmonary macrophages from COPD-like mice. LincR-PPP2R5C deficiency ameliorated emphysema and pulmonary inflammation, as characterized by reduced IL-1β in macrophages. Unexpectedly, in both lung tissues and macrophages, LincR-PPP2R5C deficiency decreased the expression of the IL-1β protein but not the IL-1β mRNA. Furthermore, we found that LincR-PPP2R5C deficiency increased the level of ubiquitinated IL-1β in macrophages, which was mediated by PP2A activity. Targeting PP2A with FTY720 decreased IL-1β and improved COPD. In conclusion, LincR-PPP2R5C regulates IL-1β ubiquitination by affecting PP2A activity in macrophages, contributing to the airway inflammation and emphysema in a murine model of COPD. PP2A and IL-1β ubiquitination in macrophages might be new therapeutic avenues for COPD therapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Manni Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
El-Amouri S, Karakashian A, Bieberich E, Nikolova-Karakashian M. Regulated translocation of neutral sphingomyelinase-2 to the plasma membrane drives insulin resistance in steatotic hepatocytes. J Lipid Res 2023; 64:100435. [PMID: 37640282 PMCID: PMC10550728 DOI: 10.1016/j.jlr.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity-associated diabetes is linked to the accumulation of ceramide in various organs, including the liver. The exact mechanisms by which ceramide contributes to diabetic pathology are unclear, but one proposed scenario is that ceramide accumulation may inhibit insulin signaling pathways. It is unknown however whether the excess ceramide is generated proximal to the insulin receptor, that is, at the plasma membrane (PM), where it could affect the insulin signaling pathway directly, or the onset of insulin resistance is due to ceramide-induced mitochondrial dysfunction and/or lipotoxicity. Using hepatic cell lines and primary cultures, gain- and loss- of function approach, and state-of-the art lipid imaging, this study shows that PM-associated neutral sphingomyelinase 2 (nSMase2) regulates ceramide homeostasis in fat-loaded hepatocytes and drives the onset of insulin resistance. Our results provide evidence of a regulated translocation of nSMase2 to the PM which leads to local generation of ceramide and insulin resistance in cells treated with palmitic acid (PAL), a type of fat commonly found in diabetogenic diets. Oleic acid, which also causes accumulation of lipid droplets, does not induce nSMase2 translocation and insulin resistance. Experiments using the acyl-biotin exchange method to quantify protein palmitoylation show that cellular PAL abundance regulates the rate of nSMase2 palmitoylation. Furthermore, while inhibition of nSMase2 with GW4869 prevents PAL-induced insulin resistance, the overexpression of wild type nSMase2 but not palmitoylation-defective mutant protein potentiates the suppressive effect of PAL on insulin signaling. Overall, this study identifies nSMase2 as a novel component of the mechanism of insulin resistance onset in fat-loaded hepatocytes, that is, cell-autonomous and driven by PAL.
Collapse
Affiliation(s)
- S El-Amouri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - E Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - M Nikolova-Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
3
|
Elimination of negative feedback in TLR signalling allows rapid and hypersensitive detection of microbial contaminants. Sci Rep 2021; 11:24414. [PMID: 34952917 PMCID: PMC8709846 DOI: 10.1038/s41598-021-03618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The exquisite specificity of Toll-like receptors (TLRs) to sense microbial molecular signatures is used as a powerful tool to pinpoint microbial contaminants. Various cellular systems, from native human blood cells to transfected cell lines exploit TLRs as pyrogen detectors in biological preparations. However, slow cellular responses and limited sensitivity have hampered the replacement of animal-based tests such as the rabbit pyrogen test or lipopolysaccharide detection by Limulus amoebocyte lysate. Here, we report a novel human cell-based approach to boost detection of microbial contaminants by TLR-expressing cells. By genetic and pharmacologic elimination of negative control circuits, TLR-initiated cellular responses to bacterial molecular patterns were accelerated and significantly elevated. Combining depletion of protein phosphatase PP2ACA and pharmacological inhibition of PP1 in the optimized reporter cells further enhanced the sensitivity to allow detection of bacterial lipoprotein at 30 picogram/ml. Such next-generation cellular monitoring is poised to replace animal-based testing for microbial contaminants.
Collapse
|
4
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
5
|
Kunz TC, Kozjak-Pavlovic V. Diverse Facets of Sphingolipid Involvement in Bacterial Infections. Front Cell Dev Biol 2019; 7:203. [PMID: 31608278 PMCID: PMC6761390 DOI: 10.3389/fcell.2019.00203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.
Collapse
Affiliation(s)
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Abstract
For many years, neutral sphingomyelinases (N-SMases) were long thought to be anticancer enzymes owing to their roles as key producers of ceramide linked to apoptosis, growth arrest, and the chemotherapeutic response. However, in recent years, with the cloning of multiple isoforms and with new information on their cellular roles, particularly for nSMase2, a more complex picture is emerging suggesting that N-SMases have both pro- and anticancer roles. In this chapter, we will summarize current knowledge on N-SMase expression in cancer and the roles of N-SMase activity and specific isoforms in cancer-relevant biologies. We will also discuss what we see as the major challenges ahead for research into N-SMases in cancer.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Medicine and Cancer Center, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
7
|
DiNicolantonio JJ, O'Keefe JH, McCarty MF. Supplemental N-acetylcysteine and other measures that boost intracellular glutathione can downregulate interleukin-1β signalling: a potential strategy for preventing cardiovascular events? Open Heart 2017; 4:e000599. [PMID: 28878946 PMCID: PMC5574421 DOI: 10.1136/openhrt-2017-000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 11/03/2022] Open
|
8
|
Huang FC. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection. Int J Mol Sci 2017; 18:1720. [PMID: 28783107 PMCID: PMC5578110 DOI: 10.3390/ijms18081720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella, a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
9
|
Sun L, Pham TT, Cornell TT, McDonough KL, McHugh WM, Blatt NB, Dahmer MK, Shanley TP. Myeloid-Specific Gene Deletion of Protein Phosphatase 2A Magnifies MyD88- and TRIF-Dependent Inflammation following Endotoxin Challenge. THE JOURNAL OF IMMUNOLOGY 2016; 198:404-416. [PMID: 27872207 DOI: 10.4049/jimmunol.1600221] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022]
Abstract
Protein phosphatase 2A (PP2A) is a member of the intracellular serine/threonine phosphatases. Innate immune cell activation triggered by pathogen-associated molecular patterns is mediated by various protein kinases, and PP2A plays a counter-regulatory role by deactivating these kinases. In this study, we generated a conditional knockout of the α isoform of the catalytic subunit of PP2A (PP2ACα). After crossing with myeloid-specific cre-expressing mice, effective gene knockout was achieved in various myeloid cells. The myeloid-specific knockout mice (lyM-PP2Afl/fl) showed higher mortality in response to endotoxin challenge and bacterial infection. Upon LPS challenge, serum levels of TNF-α, KC, IL-6, and IL-10 were significantly increased in lyM-PP2Afl/fl mice, and increased phosphorylation was observed in MAPK pathways (p38, ERK, JNK) and the NF-κB pathway (IKKα/β, NF-κB p65) in bone marrow-derived macrophages (BMDMs) from knockout mice. Heightened NF-κB activation was not associated with degradation of IκBα; instead, enhanced phosphorylation of the NF-κB p65 subunit and p38 phosphorylation-mediated TNF-α mRNA stabilization appear to contribute to the increased TNF-α expression. In addition, increased IL-10 expression appears to be due to PP2ACα-knockout-induced IKKα/β hyperactivation. Microarray experiments indicated that the Toll/IL-1R domain-containing adaptor inducing IFN-β/ TNFR-associated factor 3 pathway was highly upregulated in LPS-treated PP2ACα-knockout BMDMs, and knockout BMDMs had elevated IFN-α/β production compared with control BMDMs. Serum IFN-β levels from PP2ACα-knockout mice treated with LPS were also greater than those in controls. Thus, we demonstrate that PP2A plays an important role in regulating inflammation and survival in the setting of septic insult by targeting MyD88- and Toll/IL-1R domain-containing adaptor inducing IFN-β-dependent pathways.
Collapse
Affiliation(s)
- Lei Sun
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109;
| | - Tiffany T Pham
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Timothy T Cornell
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kelli L McDonough
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Walker M McHugh
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Neal B Blatt
- Division of Pediatric Nephrology, Department of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Mary K Dahmer
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Thomas P Shanley
- Department of Pediatrics, Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611
| |
Collapse
|
10
|
Shi L, Banerjee D, Dobierzewska A, Sathishkumar S, Karakashian AA, Giltiay NV, Nikolova-Karakashian MN. Direct regulation of IGF-binding protein 1 promoter by interleukin-1β via an insulin- and FoxO-1-independent mechanism. Am J Physiol Endocrinol Metab 2016; 310:E612-E623. [PMID: 26884383 PMCID: PMC4835944 DOI: 10.1152/ajpendo.00289.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
The level of insulin-like growth factor-binding protein 1 (IGFBP1), a liver-produced serum protein that regulates insulin-like growth factor-I bioactivity, glucose homeostasis, and tissue regeneration, increases during inflammation. This manuscript describes a novel pathway for the regulation of hepatic IGFBP1 mRNA and protein levels by interleukin (IL)-1β. Experiments with the luciferase reporter system show that IL-1β stimulates transcriptional activity from the 1-kb promoter region of IGFBP1. Although IL-1β stimulation suppresses the insulin activation of protein kinase B, the major upstream regulator of IGFBP1 mRNA transcription, the induction of IGFBP1 by IL-1β did not require an intact insulin response element. Furthermore, neither overexpression nor silencing of FoxO-1 had any effect on the IL-1β-induced increase in IGFBP1 mRNA levels and promoter activity. However, inhibition of the ERK MAP kinases effectively prevented the IL-1β effects. Inhibition of neutral sphingomyelinase, a key player in the IL-1β signaling cascade that acts upstream of ERK, also suppressed the IL-1β effects, while increasing the ceramide, through the addition of C2-ceramide or via treatment with exogenous sphingomyelinase, was sufficient to induce IGFBP1 promoter-driven luciferase activity. Studies in primary rat hepatocytes where the levels of neutral sphingomyelinase were either elevated or suppressed using adenoviral constructs affirmed the key role of neutral sphingomyelinase and ceramide (exerted likely through ERK activation) in the IL-1β-induced IGFBP1 production. Finally, the IL-1β effects on IGFBP1 mRNA production and protein secretion could be abolished by the addition of insulin, either at very late time points or at very high doses.
Collapse
Affiliation(s)
- L Shi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - D Banerjee
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - A Dobierzewska
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - S Sathishkumar
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - A A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - N V Giltiay
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | |
Collapse
|
11
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
12
|
The intracerebroventricular injection of rimonabant inhibits systemic lipopolysaccharide-induced lung inflammation. J Neuroimmunol 2015; 286:16-24. [PMID: 26298320 DOI: 10.1016/j.jneuroim.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 01/23/2023]
Abstract
We investigated the role of intracerebroventricular (ICV) injection of rimonabant (500ng), a CB1 antagonist, on lipopolysaccharide ((LPS) 5mg/kg)-induced pulmonary inflammation in rats in an isolated perfused lung model. There were decreases in pulmonary capillary pressure (Ppc) and increases in the ((Wet-Dry)/Dry lung weight)/(Ppc) ratio in the ICV-vehicle/LPS group at 4h. There were decreases in TLR4 pathway markers, such as interleukin receptor-associated kinase-1, IκBα, Raf1 and phospho-SFK (Tyr416) at 30min and at 4h increases in IL-6, vascular cell adhesion molecule-1 and myeloperoxidase in lung homogenate. Intracerebroventricular rimonabant attenuated these LPS-induced responses, indicating that ICV rimonabant modulates LPS-initiated pulmonary inflammation.
Collapse
|
13
|
Shamseddine AA, Airola MV, Hannun YA. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv Biol Regul 2014; 57:24-41. [PMID: 25465297 DOI: 10.1016/j.jbior.2014.10.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 12/23/2022]
Abstract
Our understanding of the functions of ceramide signaling has advanced tremendously over the past decade. In this review, we focus on the roles and regulation of neutral sphingomyelinase 2 (nSMase2), an enzyme that generates the bioactive lipid ceramide through the hydrolysis of the membrane lipid sphingomyelin. A large body of work has now implicated nSMase2 in a diverse set of cellular functions, physiological processes, and disease pathologies. We discuss different aspects of this enzyme's regulation from transcriptional, post-translational, and biochemical. Furthermore, we highlight nSMase2 involvement in cellular processes including inflammatory signaling, exosome generation, cell growth, and apoptosis, which in turn play important roles in pathologies such as cancer metastasis, Alzheimer's disease, and other organ systems disorders. Lastly, we examine avenues where targeted nSMase2-inhibition may be clinically beneficial in disease scenarios.
Collapse
Affiliation(s)
- Achraf A Shamseddine
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA.
| |
Collapse
|
14
|
Moylan JS, Smith JD, Wolf Horrell EM, McLean JB, Deevska GM, Bonnell MR, Nikolova-Karakashian MN, Reid MB. Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle. Redox Biol 2014; 2:910-20. [PMID: 25180167 PMCID: PMC4143815 DOI: 10.1016/j.redox.2014.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022] Open
Abstract
Aims Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. Results We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. Innovation These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Conclusion Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity. First measures of endogenous nSMase3 protein in muscle. Detection of nSMase3 splice variant proteins. Identification of a functional role for nSMase3 in redox signaling. Identification of an intermediate in TNF/redox signaling.
Collapse
Affiliation(s)
- Jennifer S Moylan
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Jeffrey D Smith
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Erin M Wolf Horrell
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA ; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Julie B McLean
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Gergana M Deevska
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Mark R Bonnell
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | | | - Michael B Reid
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Sasaki H, Toyomura K, Matsuzaki W, Okamoto A, Yamaguchi N, Nakamura H, Murayama T. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. Arch Biochem Biophys 2014; 550-551:12-9. [DOI: 10.1016/j.abb.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
|
16
|
Xue B, Dunker AK, Uversky VN. The roles of intrinsic disorder in orchestrating the Wnt-pathway. J Biomol Struct Dyn 2012; 29:843-61. [PMID: 22292947 DOI: 10.1080/073911012010525024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The canonical Wnt-pathway plays a number of crucial roles in the development of organism. Malfunctions of this pathway lead to various diseases including cancer. In the inactivated state, this pathway involves five proteins, Axin, CKI-α, GSK-3β, APC, and β-catenin. We analyzed these proteins by a number of computational tools, such as PONDR(r)VLXT, PONDR(r)VSL2, MoRF-II predictor and Hydrophobic Cluster Analysis (HCA) to show that each of the Wnt-pathway proteins contains several intrinsically disordered regions. Based on a comprehensive analysis of published data we conclude that these disordered regions facilitate protein-protein interactions, post-translational modifications, and signaling. The scaffold protein Axin and another large protein, APC, act as flexible concentrators in gathering together all other proteins involved in the Wnt-pathway, emphasizing the role of intrinsically disordered regions in orchestrating the complex protein-protein interactions. We further explore the intricate roles of highly disordered APC in regulation of β-catenin function. Intrinsically disordered APC helps the collection of β-catenin from cytoplasm, facilitates the b-catenin delivery to the binding sites on Axin, and controls the final detachment of β-catenin from Axin.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
17
|
Dobierzewska A, Shi L, Karakashian AA, Nikolova-Karakashian MN. Interleukin 1β regulation of FoxO1 protein content and localization: evidence for a novel ceramide-dependent mechanism. J Biol Chem 2012; 287:44749-60. [PMID: 23105097 DOI: 10.1074/jbc.m112.378836] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
FoxO1 transcription factor controls the glucose and lipid metabolism, as well as cell proliferation and stress response. Akt, activated by insulin and other growth factors, phosphorylates FoxO1 causing its nuclear export and activity suppression. In this manuscript, we show that IL-1β, a pro-inflammatory cytokine, has the opposite effects on FoxO1. IL-1β stimulation of primary rat hepatocytes and HEK293 cells overexpressing the IL-1β receptor (293-IL-1RI) results in increased nuclear and cytosolic FoxO1 protein but not mRNA levels. IL-1β stimulation also elevates the levels of a mutant FoxO1 that is resistant to Akt phosphorylation. This suggests that an Akt-independent mechanism is involved. Co-stimulation with insulin does not affect the IL-1β induction of FoxO1. The IL-1β effects on FoxO1 are counteracted, however, by the silencing or inhibition of neutral sphingomyelinase 2 (nSMase-2) using shRNAi, scyphostatin, or GW4869, as well as by the pharmacological inhibition of JNK and ERK. Reversely, the overexpression of nSMase-2 through adenovirus-mediated gene transfer potentiates, in a JNK- and ERK-dependent manner, the IL-1β effects. We also show that transcription of insulin-like growth factor-binding protein-1 mRNA, which requires active FoxO1, is stimulated by IL-1β and is suppressed by the inhibition of nSMase-2 and JNK. In conclusion, we propose that IL-1β regulates FoxO1 activity through a novel nSMase-2-dependent pathway.
Collapse
Affiliation(s)
- Aneta Dobierzewska
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
18
|
Zhu Q, Lin L, Cheng Q, Xu Q, Zhang J, Tomlinson S, Jin J, Chen X, He S. The role of acid sphingomyelinase and caspase 5 in hypoxia-induced HuR cleavage and subsequent apoptosis in hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1453-61. [PMID: 22906436 DOI: 10.1016/j.bbalip.2012.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/14/2012] [Accepted: 08/02/2012] [Indexed: 11/24/2022]
Abstract
A previous data showed that the hypoxia mimetic compound CoCl(2) induced cleavage of HuR and subsequent apoptosis in human oral cancer cells. We also previously demonstrated that exposure of NT-2 human neuronal precursor cells to hypoxia resulted in changes in sphingolipid levels and apoptosis. Since it is known that CoCl(2) induces cleavage of HuR, we investigated whether there is a link between HuR cleavage and the observed sphingolipid changes in cells exposed to hypoxia, and whether this link is associated with the induction of apoptosis. Exposure of hepatocytes to direct hypoxia by means of a hypoxic chamber resulted in acid sphingomyelinase activation and ceramide elevation. The elevation in ceramide levels was associated with activation of caspase 5 and the subsequent cleavage of HuR and apoptotic cell death. These data raise the possibility that acid sphingomyelinase and caspase 5 are each potential targets for treating hypoxia (ischemia)-induced liver injury.
Collapse
Affiliation(s)
- Qun Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|