1
|
Lin W, Lin Z, Wu L, Zheng Y, Xi H. NSUN2 facilitates tenogenic differentiation of rat tendon-derived stem cells via m5C methylation of KLF2. Regen Ther 2024; 26:792-799. [PMID: 39309399 PMCID: PMC11415532 DOI: 10.1016/j.reth.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Tendon-derived stem cells (TDSCs) play a critical role in tendon repair. N5-methylcytosine (m5C) is a key regulator of cellular processes such as differentiation. This study aimed to investigate the impact of m5C on TDSC differentiation and the underlying mechanism. Methods TDSCs were isolated from rats and identified, and a tendon injury rat model was generated. Tenogenic differentiation in vitro was evaluated using Sirius red staining and quantitative real-time polymerase chain reaction, while that in vivo was assessed using immunohistochemistry and hematoxylin‒eosin staining. m5C methylation was analyzed using methylated RNA immunoprecipitation, dual-luciferase reporter assay, and RNA stability assay. Results The results showed that m5C levels and NSUN2 expression were increased in TDSCs after tenogenic differentiation. Knockdown of NSUN2 inhibited m5C methylation of KLF2 and decreased its stability, which was recognized by YBX1. Moreover, interfering with KLF2 suppressed tenogenic differentiation of TDSCs, which could be abrogated by KLF2 overexpression. Additionally, TDSCs after NSUN2 overexpression contributed to ameliorating tendon injury in vivo. In conclusion, NSUN2 promotes tenogenic differentiation of TDSCs via m5C methylation of KLF2 and accelerates tendon repair. Conclusions The findings suggest that overexpression of NSUN2 can stimulate the differentiation ability of TDSCs, which can be used in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Wei Lin
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
- Taizhou Integrated Traditional Chinese and Western Medicine Hospital in Zhejiang Province, Shangcheng Street, Zeguo Town, Wengling City, Zhejiang 317200, China
| | - Zhi Lin
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Lizhi Wu
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Youmao Zheng
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Huifeng Xi
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| |
Collapse
|
2
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
4
|
Zhang H, Wang S, Liu D, Gao C, Han Y, Guo X, Qu X, Li W, Zhang S, Geng J, Zhang L, Mendelson A, Yazdanbakhsh K, Chen L, An X. EpoR-tdTomato-Cre mice enable identification of EpoR expression in subsets of tissue macrophages and hematopoietic cells. Blood 2021; 138:1986-1997. [PMID: 34098576 PMCID: PMC8767788 DOI: 10.1182/blood.2021011410] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022] Open
Abstract
The erythropoietin receptor (EpoR) has traditionally been thought of as an erythroid-specific gene. Notably, accumulating evidence suggests that EpoR is expressed well beyond erythroid cells. However, the expression of EpoR in non-erythroid cells has been controversial. In this study, we generated EpoR-tdTomato-Cre mice and used them to examine the expression of EpoR in tissue macrophages and hematopoietic cells. We show that in marked contrast to the previously available EpoR-eGFPcre mice, in which a very weak eGFP signal was detected in erythroid cells, tdTomato was readily detectable in both fetal liver (FL) and bone marrow (BM) erythroid cells at all developmental stages and exhibited dynamic changes during erythropoiesis. Consistent with our recent finding that erythroblastic island (EBI) macrophages are characterized by the expression of EpoR, tdTomato was readily detected in both FL and BM EBI macrophages. Moreover, tdTomato was also detected in subsets of hematopoietic stem cells, progenitors, megakaryocytes, and B cells in BM as well as in spleen red pulp macrophages and liver Kupffer cells. The expression of EpoR was further shown by the EpoR-tdTomato-Cre-mediated excision of the floxed STOP sequence. Importantly, EPO injection selectively promoted proliferation of the EpoR-expressing cells and induced erythroid lineage bias during hematopoiesis. Our findings imply broad roles for EPO/EpoR in hematopoiesis that warrant further investigation. The EpoR-tdTomato-Cre mouse line provides a powerful tool to facilitate future studies on EpoR expression and regulation in various non-hematopoietic cells and to conditionally manipulate gene expression in EpoR-expressing cells for functional studies.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
- Laboratory of Membrane Biology and
| | - Shihui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
- Laboratory of Membrane Biology and
| | - Donghao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | | | | | | | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Wei Li
- Laboratory of Membrane Biology and
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Jingyu Geng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Linlin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Avital Mendelson
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | | | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Xiuli An
- Laboratory of Membrane Biology and
| |
Collapse
|
5
|
Gene Therapies for Transfusion-Dependent β-Thalassemia. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Soni S. Gene therapies for transfusion dependent β-thalassemia: Current status and critical criteria for success. Am J Hematol 2020; 95:1099-1112. [PMID: 32562290 DOI: 10.1002/ajh.25909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023]
Abstract
Thalassemia is one of the most prevalent monogenic diseases usually caused by quantitative defects in the production of β-globin leading to severe anemia. Technological advances in genome sequencing, stem cell selection, viral vector development, transduction and gene editing strategies now allow for efficient exvivo genetic manipulation of human stem cells that can lead to production of hemoglobin, leading to a meaningful clinical benefit in thalassemia patients. In this review, the status of the gene-therapy approaches available for transfusion dependent thalassemia are discussed, along with the critical criteria that affect efficacy and lessons that have been learned from the early phase clinical trials. Salient steps necessary for the clinical development, manufacturing, and regulatory approvals of gene therapies for thalassemia are also highlighted, so that the potential of these therapies can be realized. It is highly anticipated that gene therapies will soon become a treatment option for patients lacking compatible donors for hematopoietic stem cell transplant and will offer an alternative for definitive treatment of β-thalassemia.
Collapse
Affiliation(s)
- Sandeep Soni
- Division of Pediatric Stem Cell Transplant and RM Lucile Packard Children's Hospital, Stanford University Palo Alto California
| |
Collapse
|
7
|
Stratopoulos A, Kolliopoulou A, Karamperis K, John A, Kydonopoulou K, Esftathiou G, Sgourou A, Kourakli A, Vlachaki E, Chalkia P, Theodoridou S, Papadakis MN, Gerou S, Symeonidis A, Katsila T, Ali BR, Papachatzopoulou A, Patrinos GP. Genomic variants in members of the Krüppel-like factor gene family are associated with disease severity and hydroxyurea treatment efficacy in β-hemoglobinopathies patients. Pharmacogenomics 2019; 20:791-801. [PMID: 31393228 DOI: 10.2217/pgs-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Aim: β-Type hemoglobinopathies are characterized by vast phenotypic diversity as far as disease severity is concerned, while differences have also been observed in hydroxyurea (HU) treatment efficacy. These differences are partly attributed to the residual expression of fetal hemoglobin (HbF) in adulthood. The Krüppel-like family of transcription factors (KLFs) are a set of zinc finger DNA-binding proteins which play a major role in HbF regulation. Here, we explored the possible association of variants in KLF gene family members with response to HU treatment efficacy and disease severity in β-hemoglobinopathies patients. Materials & methods: Six tag single nucleotide polymorphisms, located in four KLF genes, namely KLF3, KLF4, KLF9 and KLF10, were analyzed in 110 β-thalassemia major patients (TDT), 18 nontransfusion dependent β-thalassemia patients (NTDT), 82 sickle cell disease/β-thalassemia compound heterozygous patients and 85 healthy individuals as controls. Results: Our findings show that a KLF4 genomic variant (rs2236599) is associated with HU treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients and two KLF10 genomic variants (rs980112, rs3191333) are associated with persistent HbF levels in NTDT patients. Conclusion: Our findings provide evidence that genomic variants located in KLF10 gene may be considered as potential prognostic biomarkers of β-thalassemia clinical severity and an additional variant in KLF4 gene as a pharmacogenomic biomarker, predicting response to HU treatment.
Collapse
Affiliation(s)
- Apostolos Stratopoulos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Alexandra Kolliopoulou
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Kariofyllis Karamperis
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Anne John
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | | | - Argyro Sgourou
- School of Science & Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Alexandra Kourakli
- Thalassemia & Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Efthimia Vlachaki
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia & Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatia Theodoridou
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | | | - Argiris Symeonidis
- Medical Faculty, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Bassam R Ali
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
- United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, United Arab Emirates
| |
Collapse
|
8
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.
Collapse
|
10
|
Adelvand P, Hamid M, Sardari S. The intrinsic genetic and epigenetic regulator factors as therapeutic targets, and the effect on fetal globin gene expression. Expert Rev Hematol 2017; 11:71-81. [DOI: 10.1080/17474086.2018.1406795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pegah Adelvand
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammed Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Novel and innovative approaches for treatment of β-thalassemia. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2017. [DOI: 10.1016/j.phoj.2017.11.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Wang X, Jiang Z, Zhang Y, Wang X, Liu L, Fan Z. RNA sequencing analysis reveals protective role of kruppel-like factor 3 in colorectal cancer. Oncotarget 2017; 8:21984-21993. [PMID: 28423541 PMCID: PMC5400639 DOI: 10.18632/oncotarget.15766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/27/2017] [Indexed: 01/03/2023] Open
Abstract
The Kruppel-like factor (KLF) family of transcription factors plays an important role in embryonic formation and cancer progression. This study was performed to determine the clinical importance of the KLF family in colorectal cancer (CRC). In total, 361 patients with CRC from The Cancer Genome Atlas (TCGA) cohort were used to comprehensively study the role of the KLF family in CRC. The results were then further validated using an in-house cohort (n=194). Univariate and multivariate Cox proportional hazards models were used to assess the risk factors for survival. In the TCGA cohort, KLF3 (hazard ratio [HR], 0.501; 95% confidence interval [CI], 0.272-0.920; P=0.025), KLF14 (HR, 1.454; 95% CI, 1.059-1.995; P=0.020), and KLF17 (HR, 1.241; 95% CI, 1.030-1.494, P=0.023) were identified as potential biomarkers in the univariate analysis, but after Cox proportional hazards analysis, only KLF3 (HR, 0.473; 95% CI, 0.230-0.831; P=0.012) was shown to be independently predictive of overall survival in patients with CRC. This finding was validated in our in-house cohort, which demonstrated that KLF3 expression was an independent predictor of both overall survival (HR, 0.628; 95% CI, 0.342-0.922; P=0.035) and disease-free survival (HR, 0.421; 95% CI, 0.317-0.697, P=0.016). KLF3 expression was inversely correlated with the N stage (P=0.015) and lymphovascular invasion (P=0.020). Collectively, loss of KLF3 was correlated with aggressive phenotypes and poor survival outcomes. KLF3 might be a potential new predictor and therapeutic target for CRC. Further study is needed for a more detailed understanding of the role of KLF3 in CRC.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Digestive Endoscopy Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Gastroenterology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhonghua Jiang
- Department of Gastroenterology, First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yu Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiang Wang
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Liu
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhining Fan
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Sangwung P, Zhou G, Lu Y, Liao X, Wang B, Mutchler SM, Miller M, Chance MR, Straub AC, Jain MK. Regulation of endothelial hemoglobin alpha expression by Kruppel-like factors. Vasc Med 2017; 22:363-369. [PMID: 28825355 PMCID: PMC5898218 DOI: 10.1177/1358863x17722211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemoglobin subunit alpha (HBA) expression in endothelial cells (ECs) has recently been shown to control vascular tone and function. We sought to elucidate the transcriptional regulation of HBA expression in the EC. Gain of KLF2 or KLF4 function studies led to significant induction of HBA in ECs. An opposite effect was observed in ECs isolated from animals with endothelial-specific ablation of Klf2, Klf4 or both. Promoter reporter assays demonstrated that KLF2/KLF4 transactivated the hemoglobin alpha promoter, an effect that was abrogated following mutation of all four putative KLF-binding sites. Fine promoter mutational studies localized three out of four KLF-binding sites (sites 2, 3, and 4) as critical for the transactivation of the HBA promoter by KLF2/KLF4. Chromatin immunoprecipitation studies showed that KLF4 bound to the HBA promoter in ECs. Thus, KLF2 and KLF4 serve as important regulators that promote HBA expression in the endothelium.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Guangjin Zhou
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yuan Lu
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Xudong Liao
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie M Mutchler
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan Miller
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
14
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
15
|
Klf10 Gene, a Secondary Modifier and a Pharmacogenomic Biomarker of Hydroxyurea Treatment Among Patients With Hemoglobinopathies. J Pediatr Hematol Oncol 2017; 39:e155-e162. [PMID: 28085748 DOI: 10.1097/mph.0000000000000762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The klf10 gene could indirectly modify γ-globin chain production and hence the level of fetal hemoglobin (HbF) ameliorating the phenotype of β-hemoglobinopathies and the response to hydroxycarbamide (hydroxyurea [HU]) therapy. In this study, we aimed to evaluate the frequency of different genotypes for the klf10 gene in β-thalassemia major (B-TM), β-thalassemia intermedia (B-TI), and sickle cell disease (SCD) patients by polymerase chain reaction and to assess its relation to disease phenotypes and HU response. METHODS This cross-sectional study included 75 patients: 50 B-TM, 12 SCD, and 13 B-TI patients (on stable HU dose). The relation of the klf10 gene polymorphism (TIEG, TIEG1, EGRα) (rs3191333: c*0.141C>T) to phenotype was studied through baseline mean corpuscular volume, HbF, and transfusion history, whereas evaluation of response to HU therapy was carried out clinically and laboratory. RESULTS The frequency of the mutant klf10 genotype (TT) and that of the mutant allele (T) was significantly higher among B-TM patients compared with those with B-TI and SCD patients. Only homozygous SCD patients for the wild-type allele within the klf10 gene had a significantly lower transfusion frequency. The percentage of HU responders and nonresponders between different klf10 polymorphic genotypes among B-TI or SCD patients was comparable. CONCLUSIONS Although the klf10 gene does not play a standalone role as an HbF modifier, our data support its importance in ameliorating phenotype among β-hemoglobinopathies.
Collapse
|
16
|
Hasegawa A, Shimizu R. GATA1 Activity Governed by Configurations of cis-Acting Elements. Front Oncol 2017; 6:269. [PMID: 28119852 PMCID: PMC5220053 DOI: 10.3389/fonc.2016.00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
The transcription factor GATA1 regulates the expression of essential erythroid and megakaryocytic differentiation genes through binding to the DNA consensus sequence WGATAR. The GATA1 protein has four functional domains, including two centrally located zinc-finger domains and two transactivation domains at the N- and C-termini. These functional domains play characteristic roles in the elaborate regulation of diversified GATA1 target genes, each of which exhibits a unique expression profile. Three types of GATA1-related hematological malignancies have been reported. One is a structural mutation in the GATA1 gene, resulting in the production of a short form of GATA1 that lacks the N-terminal transactivation domain and is found in Down syndrome-related acute megakaryocytic leukemia. The other two are cis-acting regulatory mutations affecting expression of the Gata1 gene, which have been shown to cause acute erythroblastic leukemia and myelofibrosis in mice. Therefore, imbalanced gene regulation caused by qualitative and quantitative changes in GATA1 is thought to be involved in specific hematological disease pathogenesis. In the present review, we discuss recent advances in understanding the mechanisms of differential transcriptional regulation by GATA1 during erythroid differentiation, with special reference to the binding kinetics of GATA1 at conformation-specific binding sites.
Collapse
Affiliation(s)
- Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Kim YW, Yun WJ, Kim A. Erythroid activator NF-E2, TAL1 and KLF1 play roles in forming the LCR HSs in the human adult β-globin locus. Int J Biochem Cell Biol 2016; 75:45-52. [PMID: 27026582 DOI: 10.1016/j.biocel.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 01/12/2023]
Abstract
The β-like globin genes are developmental stage specifically transcribed in erythroid cells. The transcription of the β-like globin genes requires erythroid specific activators such as GATA-1, NF-E2, TAL1 and KLF1. However, the roles of these activators have not fully elucidated in transcription of the human adult β-globin gene. Here we employed hybrid MEL cells (MEL/ch11) where a human chromosome containing the β-globin locus is present and the adult β-globin gene is highly transcribed by induction. The roles of erythroid specific activators were analyzed by inhibiting the expression of NF-E2, TAL1 or KLF1 in MEL/ch11 cells. The loss of each activator decreased the transcription of human β-globin gene, locus wide histone hyperacetylation and the binding of other erythroid specific activators including GATA-1, even though not affecting the expression of other activators. Notably, sensitivity to DNase I was reduced in the locus control region (LCR) hypersensitive sites (HSs) with the depletion of activators. These results indicate that NF-E2, TAL1 and KLF1, all activators play a primary role in HSs formation in the LCR. It might contribute to the transcription of human adult β-globin gene by allowing the access of activators and cofactors. The roles of activators in the adult β-globin locus appear to be different from the roles in the early fetal locus.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Won Ju Yun
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
18
|
Otsuka H, Takito J, Endo Y, Yagi H, Soeta S, Yanagisawa N, Nonaka N, Nakamura M. The expression of embryonic globin mRNA in a severely anemic mouse model induced by treatment with nitrogen-containing bisphosphonate. BMC HEMATOLOGY 2016; 16:4. [PMID: 26877876 PMCID: PMC4751657 DOI: 10.1186/s12878-016-0041-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022]
Abstract
Background Mammalian erythropoiesis can be divided into two distinct types, primitive and definitive, in which new cells are derived from the yolk sac and hematopoietic stem cells, respectively. Primitive erythropoiesis occurs within a restricted period during embryogenesis. Primitive erythrocytes remain nucleated, and their hemoglobins are different from those in definitive erythrocytes. Embryonic type hemoglobin is expressed in adult animals under genetically abnormal condition, but its later expression has not been reported in genetically normal adult animals, even under anemic conditions. We previously reported that injecting animals with nitrogen-containing bisphosphonate (NBP) decreased erythropoiesis in bone marrow (BM). Here, we induced severe anemia in a mouse model by injecting NBP injection in combination with phenylhydrazine (PHZ), and then we analyzed erythropoiesis and the levels of different types of hemoglobin. Methods Splenectomized mice were treated with NBP to inhibit erythropoiesis in BM, and with PHZ to induce hemolytic anemia. We analyzed hematopoietic sites and peripheral blood using morphological and molecular biological methods. Results Combined treatment of splenectomized mice with NBP and PHZ induced critical anemia compared to treatment with PHZ alone, and numerous nucleated erythrocytes appeared in the peripheral blood. In the BM, immature CD71-positive erythroblasts were increased, and extramedullary erythropoiesis occurred in the liver. Furthermore, embryonic type globin mRNA was detected in both the BM and the liver. In peripheral blood, spots that did not correspond to control hemoglobin were observed in 2D electrophoresis. ChIP analyses showed that KLF1 and KLF2 bind to the promoter regions of β-like globin. Wine-colored capsuled structures were unexpectedly observed in the abdominal cavity, and active erythropoiesis was also observed in these structures. Conclusion These results indicate that primitive erythropoiesis occurs in adult mice to rescue critical anemia because primitive erythropoiesis does not require macrophages as stroma whereas macrophages play a pivotal role in definitive erythropoiesis even outside the medulla. The cells expressing embryonic hemoglobin in this study were similar to primitive erythrocytes, indicating the possibility that yolk sac-derived primitive erythroid cells may persist into adulthood in mice. Electronic supplementary material The online version of this article (doi:10.1186/s12878-016-0041-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hirotada Otsuka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Yasuo Endo
- Division of Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Hideki Yagi
- Faculty of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara-shi, Tochigi 324-8501 Japan
| | - Satoshi Soeta
- Department of Veterinary Anatomy, Nippon Veterinary and Animal Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602 Japan
| | - Nobuaki Yanagisawa
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| |
Collapse
|
19
|
Vinjamur DS, Alhashem YN, Mohamad SF, Amin P, Williams DC, Lloyd JA. Krüppel-Like Transcription Factor KLF1 Is Required for Optimal γ- and β-Globin Expression in Human Fetal Erythroblasts. PLoS One 2016; 11:e0146802. [PMID: 26840243 PMCID: PMC4739742 DOI: 10.1371/journal.pone.0146802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/21/2015] [Indexed: 01/22/2023] Open
Abstract
In human adult erythroid cells, lower than normal levels of Krüppel-like transcription factor 1 (KLF1) are generally associated with decreased adult β- and increased fetal γ-globin gene expression. KLF1 also regulates BCL11A, a known repressor of adult γ-globin expression. In seeming contrast to the findings in adult cells, lower amounts of KLF1 correlate with both reduced embryonic and reduced fetal β-like globin mRNA in mouse embryonic erythroid cells. The role of KLF1 in primary human fetal erythroid cells, which express both γ- and β-globin mRNA, is less well understood. Therefore, we studied the role of KLF1 in ex vivo differentiated CD34+ umbilical cord blood cells (UCB erythroblasts), representing the fetal milieu. In UCB erythroblasts, KLF1 binds to the β-globin locus control region (LCR), and the β-globin promoter. There is very little KLF1 binding detectable at the γ-globin promoter. Correspondingly, when cultured fetal UCB erythroblasts are subjected to lentiviral KLF1 knockdown, the active histone mark H3K4me3 and RNA pol II recruitment are diminished at the β- but not the γ-globin gene. The amount of KLF1 expression strongly positively correlates with β-globin mRNA and weakly positively correlates with BCL11A mRNA. With modest KLF1 knockdown, mimicking haploinsufficiency, γ-globin mRNA is increased in UCB erythroblasts, as is common in adult cells. However, a threshold level of KLF1 is evidently required, or there is no absolute increase in γ-globin mRNA in UCB erythroblasts. Therefore, the role of KLF1 in γ-globin regulation in fetal erythroblasts is complex, with both positive and negative facets. Furthermore, in UCB erythroblasts, diminished BCL11A is not sufficient to induce γ-globin in the absence of KLF1. These findings have implications for the manipulation of BCL11A and/or KLF1 to induce γ-globin for therapy of the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Divya S. Vinjamur
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Yousef N. Alhashem
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Safa F. Mohamad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Parth Amin
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David C. Williams
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joyce A. Lloyd
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wang Y, Rank G, Li Z, Wang Y, Ju J, Nuber A, Wu Y, Liu M, Nie M, Huang F, Cerruti L, Ma C, Tan R, Schotta G, Jane SM, Zeng CK, Zhao Q. ε-globin expression is regulated by SUV4-20h1. Haematologica 2016; 101:e168-72. [PMID: 26802048 DOI: 10.3324/haematol.2015.139980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yadong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Gerhard Rank
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, Australia
| | - Zhuchen Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Alexander Nuber
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, Martinsried, Germany
| | - Yupeng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Min Nie
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Feifei Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Loretta Cerruti
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, Australia
| | - Chi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Gunnar Schotta
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, Martinsried, Germany
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, Australia
| | | | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| |
Collapse
|
21
|
Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Dev Biol 2015; 403:115-27. [PMID: 26015096 DOI: 10.1016/j.ydbio.2015.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
Krüppel-like transcription factors (Klfs), each of which contains a CACCC-box binding domain, have been investigated in a variety of developmental processes, such as angiogenesis, neurogenesis and somatic-cell reprogramming. However, the function and molecular mechanism by which the Klf family acts during developmental hematopoiesis remain elusive. Here, we report identification of 24 Klf family genes in zebrafish using bioinformatics. Gene expression profiling shows that 6 of these genes are expressed in blood and/or vascular endothelial cells during embryogenesis. Loss of function of 2 factors (klf3 or klf6a) leads to a decreased number of mature erythrocytes. Molecular studies indicate that both Klf3 and Klf6a are essential for erythroid cell differentiation and maturation but that these two proteins function in distinct manners. We find that Klf3 inhibits the expression of ferric-chelate reductase 1b (frrs1b), thereby promoting the maturation of erythroid cells, whereas Klf6a controls the erythroid cell cycle by negatively regulating cdkn1a expression to determine the rate of red blood cell proliferation. Taken together, our study provides a global view of the Klf family members that contribute to hematopoiesis in zebrafish and sheds new light on the function and molecular mechanism by which Klf3 and Klf6a act during erythropoiesis in vertebrates.
Collapse
|
22
|
Fuxman Bass JI, Sahni N, Shrestha S, Garcia-Gonzalez A, Mori A, Bhat N, Yi S, Hill DE, Vidal M, Walhout AJM. Human gene-centered transcription factor networks for enhancers and disease variants. Cell 2015; 161:661-673. [PMID: 25910213 PMCID: PMC4409666 DOI: 10.1016/j.cell.2015.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 01/30/2015] [Indexed: 01/16/2023]
Abstract
Gene regulatory networks (GRNs) comprising interactions between transcription factors (TFs) and regulatory loci control development and physiology. Numerous disease-associated mutations have been identified, the vast majority residing in non-coding regions of the genome. As current GRN mapping methods test one TF at a time and require the use of cells harboring the mutation(s) of interest, they are not suitable to identify TFs that bind to wild-type and mutant loci. Here, we use gene-centered yeast one-hybrid (eY1H) assays to interrogate binding of 1,086 human TFs to 246 enhancers, as well as to 109 non-coding disease mutations. We detect both loss and gain of TF interactions with mutant loci that are concordant with target gene expression changes. This work establishes eY1H assays as a powerful addition to the toolkit of mapping human GRNs and for the high-throughput characterization of genomic variants that are rapidly being identified by genome-wide association studies.
Collapse
Affiliation(s)
- Juan I Fuxman Bass
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nidhi Sahni
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shaleen Shrestha
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aurian Garcia-Gonzalez
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Akihiro Mori
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Numana Bhat
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Song Yi
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David E Hill
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Albertha J M Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Perna F, Vu LP, Themeli M, Kriks S, Hoya-Arias R, Khanin R, Hricik T, Mansilla-Soto J, Papapetrou EP, Levine RL, Studer L, Sadelain M, Nimer SD. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports 2015; 4:658-69. [PMID: 25754204 PMCID: PMC4400644 DOI: 10.1016/j.stemcr.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/11/2023] Open
Abstract
Epigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development, and, thus, aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knockdown of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia. L3MBTL1 is a chromatin-binding protein that represses SMAD5 expression Lack of L3MBTL1 primes the hematopoietic development of pluripotent stem cells L3MBTL1 regulates erythroid differentiation
Collapse
Affiliation(s)
- Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ly P Vu
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Themeli
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Kriks
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruben Hoya-Arias
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raya Khanin
- Bioinformatics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
24
|
Weber JP, Fuhrmann F, Feist RK, Lahmann A, Al Baz MS, Gentz LJ, Vu Van D, Mages HW, Haftmann C, Riedel R, Grün JR, Schuh W, Kroczek RA, Radbruch A, Mashreghi MF, Hutloff A. ICOS maintains the T follicular helper cell phenotype by down-regulating Krüppel-like factor 2. ACTA ACUST UNITED AC 2015; 212:217-33. [PMID: 25646266 PMCID: PMC4322049 DOI: 10.1084/jem.20141432] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ICOS signaling is required for inhibition of the transcription factor Klf2, which controls expression of genes expressed by follicular T helper (Tfh) cells. When ICOS signaling is blocked, Tfh cells lose expression of characteristic Tfh genes and revert to an effector phenotype, resulting in disruption of the germinal center response. The co-stimulators ICOS (inducible T cell co-stimulator) and CD28 are both important for T follicular helper (TFH) cells, yet their individual contributions are unclear. Here, we show that each molecule plays an exclusive role at different stages of TFH cell development. While CD28 regulated early expression of the master transcription factor Bcl-6, ICOS co-stimulation was essential to maintain the phenotype by regulating the novel TFH transcription factor Klf2 via Foxo1. Klf2 directly binds to Cxcr5, Ccr7, Psgl-1, and S1pr1, and low levels of Klf2 were essential to maintain this typical TFH homing receptor pattern. Blocking ICOS resulted in relocation of fully developed TFH cells back to the T cell zone and reversion of their phenotype to non-TFH effector cells, which ultimately resulted in breakdown of the germinal center response. Our study describes for the first time the exclusive role of ICOS and its downstream signaling in the maintenance of TFH cells by controlling their anatomical localization in the B cell follicle.
Collapse
Affiliation(s)
- Jan P Weber
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Franziska Fuhrmann
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Randi K Feist
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Annette Lahmann
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Maysun S Al Baz
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Lea-Jean Gentz
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Dana Vu Van
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Hans W Mages
- Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Claudia Haftmann
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany
| | - René Riedel
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany
| | - Joachim R Grün
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Andreas Radbruch
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany
| | - Andreas Hutloff
- Chronic Immune Reactions, Cell Biology, and Bioinformatics, German Rheumatism Research Centre, a Leibniz Institute, 10117 Berlin, Germany Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
25
|
Kang Y, Kim YW, Yun J, Shin J, Kim A. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:282-9. [PMID: 25528728 DOI: 10.1016/j.bbagrm.2014.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023]
Abstract
KLF1 is an erythroid specific transcription factor that binds to regulatory regions of erythroid genes. Binding sites of KLF1 are often found near binding sites of GATA-1 and TAL1. In the β-globin locus, KLF1 is required for forming active chromatin structure, although its role is unclear. To explore the role of KLF1 in transcribing the human γ-globin genes, we stably reduced the expression of KLF1 in erythroid K562 cells, compromising its association in the β-globin locus. The γ-globin transcription was reduced with disappearance of active chromatin structure of the locus in the KLF1 knockdown cells. Interestingly, GATA-1 and TAL1 binding was reduced in the β-globin locus, even though their expressions were not affected by KLF1 knockdown. The KLF1-dependent GATA-1 and TAL1 binding was observed in the adult locus transcribing the β-globin gene and in several erythroid genes, where GATA-1 occupancy is independent from TAL1. These results indicate that KLF1 plays a role in facilitating and/or stabilizing GATA-1 and TAL1 occupancy in the erythroid genes, contributing to the generation of active chromatin structure such as histone acetylation and chromatin looping.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Jangmi Yun
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Jongo Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
26
|
Vinjamur DS, Wade KJ, Mohamad SF, Haar JL, Sawyer ST, Lloyd JA. Krüppel-like transcription factors KLF1 and KLF2 have unique and coordinate roles in regulating embryonic erythroid precursor maturation. Haematologica 2014; 99:1565-73. [PMID: 25150253 DOI: 10.3324/haematol.2014.104943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Krüppel-like transcription factors KLF1 and KLF2 are essential for embryonic erythropoiesis. They can partially compensate for each other during mouse development, and coordinately regulate numerous erythroid genes, including the β-like globins. Simultaneous ablation of KLF1 and KLF2 results in earlier embryonic lethality and severe anemia. In this study, we determine that this anemia is caused by a paucity of blood cells, and exacerbated by diminished β-like globin gene expression. The anemia phenotype is dose-dependent, and, interestingly, can be ameliorated by a single copy of the KLF2, but not the KLF1 gene. The roles of KLF1 and KLF2 in maintaining normal peripheral blood cell numbers and globin mRNA amounts are erythroid cell-specific. Mechanistic studies led to the discovery that KLF2 has an essential function in erythroid precursor maintenance. KLF1 can partially compensate for KLF2 in this role, but is uniquely crucial for erythroid precursor proliferation through its regulation of G1- to S-phase cell cycle transition. A more drastic impairment of primitive erythroid colony formation from embryonic progenitor cells occurs with simultaneous loss of KLF1 and KLF2 than with loss of a single factor. KLF1 and KLF2 coordinately regulate several proliferation-associated genes, including Foxm1. Differential expression of FoxM1, in particular, correlates with the observed KLF1 and KLF2 gene dosage effects on anemia. Furthermore, KLF1 binds to the FoxM1 gene promoter in blood cells. Thus KLF1 and KLF2 coordinately regulate embryonic erythroid precursor maturation through the regulation of multiple homeostasis-associated genes, and KLF2 has a novel and essential role in this process.
Collapse
Affiliation(s)
- Divya S Vinjamur
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Kristen J Wade
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Safa F Mohamad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jack L Haar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephen T Sawyer
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Joyce A Lloyd
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Heme-bound iron activates placenta growth factor in erythroid cells via erythroid Krüppel-like factor. Blood 2014; 124:946-54. [PMID: 24916507 DOI: 10.1182/blood-2013-11-539718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In adults with sickle cell disease (SCD), markers of iron burden are associated with excessive production of the angiogenic protein placenta growth factor (PlGF) and high estimated pulmonary artery pressure. Enforced PlGF expression in mice stimulates production of the potent vasoconstrictor endothelin-1, producing pulmonary hypertension. We now demonstrate heme-bound iron (hemin) induces PlGF mRNA >200-fold in a dose- and time-dependent fashion. In murine and human erythroid cells, expression of erythroid Krüppel-like factor (EKLF) precedes PlGF, and its enforced expression in human erythroid progenitor cells induces PlGF mRNA. Hemin-induced expression of PlGF is abolished in EKLF-deficient murine erythroid cells but rescued by conditional expression of EKLF. Chromatin immunoprecipitation reveals that EKLF binds to the PlGF promoter region. SCD patients show higher level expression of both EKLF and PlGF mRNA in circulating blood cells, and markers of iron overload are associated with high PlGF and early mortality. Finally, PlGF association with iron burden generalizes to other human diseases of iron overload. Our results demonstrate a specific mechanistic pathway induced by excess iron that is linked in humans with SCD and in mice to markers of vasculopathy and pulmonary hypertension. These trials were registered at www.clinicaltrials.gov as #NCT00007150, #NCT00023296, #NCT00081523, and #NCT00352430.
Collapse
|
28
|
Cortegano I, Melgar-Rojas P, Luna-Zurita L, Siguero-Álvarez M, Marcos MAR, Gaspar ML, de la Pompa JL. Notch1 regulates progenitor cell proliferation and differentiation during mouse yolk sac hematopoiesis. Cell Death Differ 2014; 21:1081-94. [PMID: 24583642 DOI: 10.1038/cdd.2014.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/27/2013] [Accepted: 01/28/2014] [Indexed: 01/08/2023] Open
Abstract
Loss-of-function studies have demonstrated the essential role of Notch in definitive embryonic mouse hematopoiesis. We report here the consequences of Notch gain-of-function in mouse embryo hematopoiesis, achieved by constitutive expression of Notch1 intracellular domain (N1ICD) in angiopoietin receptor tyrosine kinase receptor-2 (Tie2)-derived enhanced green fluorescence protein (EGFP(+)) hematovascular progenitors. At E9.5, N1ICD expression led to the absence of the dorsal aorta hematopoietic clusters and of definitive hematopoiesis. The EGFP(+) transient multipotent progenitors, purified from E9.5 to 10.5 Tie2-Cre;N1ICD yolk sac (YS) cells, had strongly reduced hematopoietic potential, whereas they had increased numbers of hemogenic endothelial cells. Late erythroid cell differentiation stages and mature myeloid cells (Gr1(+), MPO(+)) were also strongly decreased. In contrast, EGFP(+) erythro-myeloid progenitors, immature and intermediate differentiation stages of YS erythroid and myeloid cell lineages, were expanded. Tie2-Cre;N1ICD YS had reduced numbers of CD41(++) megakaryocytes, and these produced reduced below-normal numbers of immature colonies in vitro and their terminal differentiation was blocked. Cells from Tie2-Cre;N1ICD YS had a higher proliferation rate and lower apoptosis than wild-type (WT) YS cells. Quantitative gene expression analysis of FACS-purified EGFP(+) YS progenitors revealed upregulation of Notch1-related genes and alterations in genes involved in hematopoietic differentiation. These results represent the first in vivo evidence of a role for Notch signaling in YS transient definitive hematopoiesis. Our results show that constitutive Notch1 activation in Tie2(+) cells hampers YS hematopoiesis of E9.5 embryos and demonstrate that Notch signaling regulates this process by balancing the proliferation and differentiation dynamics of lineage-restricted intermediate progenitors.
Collapse
Affiliation(s)
- I Cortegano
- 1] Immunology Department, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km 2, 28220 Madrid, Spain [2] Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas (CBM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - P Melgar-Rojas
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - L Luna-Zurita
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - M Siguero-Álvarez
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - M A R Marcos
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas (CBM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - M L Gaspar
- Immunology Department, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km 2, 28220 Madrid, Spain
| | - J L de la Pompa
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
29
|
Three fingers on the switch: Krüppel-like factor 1 regulation of γ-globin to β-globin gene switching. Curr Opin Hematol 2013; 20:193-200. [PMID: 23474875 DOI: 10.1097/moh.0b013e32835f59ba] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Krüppel-like factor 1 (KLF1) regulates most aspects of erythropoiesis. Many years ago, transgenic mouse studies implicated KLF1 in the control of the human γ-globin to β-globin switch. In this review, we will integrate these initial studies with recent developments in human genetics to discuss our present understanding of how KLF1 and its target genes direct the switch. RECENT FINDINGS Recent studies have shown that human mutations in KLF1 are common and mostly asymptomatic, but lead to significant increases in levels of fetal hemoglobin (HbF) (α2γ2) and adult HbA2 (α2δ2). Genome-wide association studies (GWAS) have demonstrated that three primary loci are associated with increased HbF levels in the population: the β-globin locus itself, the BCL11A locus, and a site between MYB and HBS1L. We discuss evidence that KLF1 directly regulates BCL11A, MYB and other genes, which are involved directly or indirectly in γ-globin silencing, thus providing a link between GWAS and KLF1 in hemoglobin switching. SUMMARY KLF1 regulates the γ-globin to β-globin genetic switch by many mechanisms. Firstly, it facilitates formation of an active chromatin hub (ACH) at the β-globin gene cluster. Specifically, KLF1 conscripts the adult-stage β-globin gene to replace the γ-globin gene within the ACH in a stage-specific manner. Secondly, KLF1 acts as a direct activator of genes that encode repressors of γ-globin gene expression. Finally, KLF1 is a regulator of many components of the cell cycle machinery. We suggest that dysregulation of these genes leads to cell cycle perturbation and 'erythropoietic stress' leading to indirect upregulation of HbF.
Collapse
|
30
|
Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. Mol Cell Biol 2013; 33:2976-87. [PMID: 23716600 DOI: 10.1128/mcb.00074-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.
Collapse
|
31
|
Borg J, Phylactides M, Bartsakoulia M, Tafrali C, Lederer C, Felice AE, Papachatzopoulou A, Kourakli A, Stavrou EF, Christou S, Hou J, Karkabouna S, Lappa-Manakou C, Ozgur Z, van Ijcken W, von Lindern M, Grosveld FG, Georgitsi M, Kleanthous M, Philipsen S, Patrinos GP. KLF10 gene expression is associated with high fetal hemoglobin levels and with response to hydroxyurea treatment in β-hemoglobinopathy patients. Pharmacogenomics 2013; 13:1487-500. [PMID: 23057549 DOI: 10.2217/pgs.12.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM In humans, fetal hemoglobin (HbF) production is controlled by many intricate mechanisms that, to date, remain only partly understood. PATIENTS & METHODS Pharmacogenomic analysis of the effects of hydroxyurea (HU) on HbF production was undertaken in a collection of Hellenic β-thalassemia and sickle cell disease (SCD) compound heterozygotes and a collection of healthy and KLF1-haploinsufficient Maltese adults, to identify genomic signatures that follow high HbF patterns. RESULTS KLF10 emerged as a top candidate. Moreover, genotype analysis of β-thalassemia major and intermedia patients and an independent cohort of β-thalassemia/SCD compound heterozygous patients that do or do not respond to HU treatment showed that the homozygous mutant state of a tagSNP in the KLF10 3'UTR is not present in β-thalassemia intermedia patients and is underrepresented in β-thalassemia/SCD compound heterozygous patients that respond well to HU treatment. CONCLUSION These data suggest that KLF10 may constitute a pharmacogenomic marker to discriminate between response and nonresponse to HU treatment.
Collapse
Affiliation(s)
- Joseph Borg
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Case AJ, Madsen JM, Motto DG, Meyerholz DK, Domann FE. Manganese superoxide dismutase depletion in murine hematopoietic stem cells perturbs iron homeostasis, globin switching, and epigenetic control in erythrocyte precursor cells. Free Radic Biol Med 2013; 56:17-27. [PMID: 23219873 PMCID: PMC3578015 DOI: 10.1016/j.freeradbiomed.2012.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 11/20/2022]
Abstract
Heme synthesis partially occurs in the mitochondrial matrix; thus there is a high probability that enzymes and intermediates important in the production of heme will be exposed to metabolic by-products including reactive oxygen species. In addition, the need for ferrous iron for heme production, Fe/S coordination, and other processes occurring in the mitochondrial matrix suggests that aberrant fluxes of reactive oxygen species in this compartment might perturb normal iron homeostasis. Manganese superoxide dismutase (Sod2) is an antioxidant enzyme that governs steady-state levels of the superoxide in the mitochondrial matrix. Using hematopoietic stem cell-specific conditional Sod2 knockout mice we observed increased superoxide concentrations in red cell progeny, which caused significant pathologies including impaired erythrocytes and decreased ferrochelatase activity. Animals lacking Sod2 expression in erythroid precursors also displayed extramedullary hematopoiesis and systemic iron redistribution. Additionally, the increase in superoxide flux in erythroid precursors caused abnormal gene regulation of hematopoietic transcription factors, globins, and iron-response genes. Moreover, the erythroid precursors also displayed evidence of global changes in histone posttranslational modifications, a likely cause of at least some of the aberrant gene expression noted. From a therapeutic translational perspective, mitochondrially targeted superoxide-scavenging antioxidants partially rescued the observed phenotype. Taken together, our findings illuminate the superoxide sensitivity of normal iron homeostasis in erythrocyte precursors and suggest a probable link between mitochondrial redox metabolism and epigenetic control of nuclear gene regulation during mammalian erythropoiesis.
Collapse
Affiliation(s)
- Adam J. Case
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Joshua M. Madsen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - David G. Motto
- Division of Hematology Oncology, Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - David K. Meyerholz
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Chiplunkar AR, Lung TK, Alhashem Y, Koppenhaver BA, Salloum FN, Kukreja RC, Haar JL, Lloyd JA. Krüppel-like factor 2 is required for normal mouse cardiac development. PLoS One 2013; 8:e54891. [PMID: 23457456 PMCID: PMC3573061 DOI: 10.1371/journal.pone.0054891] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 2 (KLF2) is expressed in endothelial cells in the developing heart, particularly in areas of high shear stress, such as the atrioventricular (AV) canal. KLF2 ablation leads to myocardial thinning, high output cardiac failure and death by mouse embryonic day 14.5 (E14.5) in a mixed genetic background. This work identifies an earlier and more fundamental role for KLF2 in mouse cardiac development in FVB/N mice. FVB/N KLF2−/− embryos die earlier, by E11.5. E9.5 FVB/N KLF2−/− hearts have multiple, disorganized cell layers lining the AV cushions, the primordia of the AV valves, rather than the normal single layer. By E10.5, traditional and endothelial-specific FVB/N KLF2−/− AV cushions are hypocellular, suggesting that the cells accumulating at the AV canal have a defect in endothelial to mesenchymal transformation (EMT). E10.5 FVB/N KLF2−/− hearts have reduced glycosaminoglycans in the cardiac jelly, correlating with the reduced EMT. However, the number of mesenchymal cells migrating from FVB/N KLF2−/− AV explants into a collagen matrix is reduced considerably compared to wild-type, suggesting that the EMT defect is not due solely to abnormal cardiac jelly. Echocardiography of E10.5 FVB/N KLF2−/− embryos indicates that they have abnormal heart function compared to wild-type. E10.5 C57BL/6 KLF2−/− hearts have largely normal AV cushions. However, E10.5 FVB/N and C57BL/6 KLF2−/− embryos have a delay in the formation of the atrial septum that is not observed in a defined mixed background. KLF2 ablation results in reduced Sox9, UDP-glucose dehydrogenase (Ugdh), Gata4 and Tbx5 mRNA in FVB/N AV canals. KLF2 binds to the Gata4, Tbx5 and Ugdh promoters in chromatin immunoprecipitation assays, indicating that KLF2 could directly regulate these genes. In conclusion, KLF2−/− heart phenotypes are genetic background-dependent. KLF2 plays a role in EMT through its regulation of important cardiovascular genes.
Collapse
MESH Headings
- Animals
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Embryo, Mammalian/physiopathology
- Female
- GATA4 Transcription Factor/metabolism
- Gene Expression Regulation, Developmental
- Glycosaminoglycans/analysis
- Heart/embryology
- Heart/physiopathology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Mice/abnormalities
- Mice/embryology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myocardium/cytology
- Myocardium/metabolism
- Myocardium/pathology
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Aditi R. Chiplunkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tina K. Lung
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Yousef Alhashem
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin A. Koppenhaver
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fadi N. Salloum
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rakesh C. Kukreja
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jack L. Haar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joyce A. Lloyd
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013; 33:4-13. [PMID: 23090966 PMCID: PMC3536305 DOI: 10.1128/mcb.01058-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF or KLF1) is a transcriptional regulator that plays a critical role in lineage-restricted control of gene expression. KLF1 expression and activity are tightly controlled in a temporal and differentiation stage-specific manner. The mechanisms by which KLF1 is regulated encompass a range of biological processes, including control of KLF1 RNA transcription, protein stability, localization, and posttranslational modifications. Intact KLF1 regulation is essential to correctly regulate erythroid function by gene transcription and to maintain hematopoietic lineage homeostasis by ensuring a proper balance of erythroid/megakaryocytic differentiation. In turn, KLF1 regulates erythroid biology by a wide variety of mechanisms, including gene activation and repression by regulation of chromatin configuration, transcriptional initiation and elongation, and localization of gene loci to transcription factories in the nucleus. An extensive series of biochemical, molecular, and genetic analyses has uncovered some of the secrets of its success, and recent studies are highlighted here. These reveal a multilayered set of control mechanisms that enable efficient and specific integration of transcriptional and epigenetic controls and that pave the way for proper lineage commitment and differentiation.
Collapse
Affiliation(s)
- Yvette Y. Yien
- Department of Developmental and Regenerative Biology
- Graduate School of Biological Sciences
| | - James J. Bieker
- Department of Developmental and Regenerative Biology
- Black Family Stem Cell Institute
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
35
|
Simvastatin and t-butylhydroquinone suppress KLF1 and BCL11A gene expression and additively increase fetal hemoglobin in primary human erythroid cells. Blood 2012; 121:830-9. [PMID: 23223429 DOI: 10.1182/blood-2012-07-443986] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Although increased fetal hemoglobin (HbF) levels have proven benefit for people with β-hemoglobinopathies, all current HbF-inducing agents have limitations. We previously reported that drugs that activate the NRF2 antioxidant response signaling pathway increase HbF in primary human erythroid cells. In an attempt to increase HbF levels achieved with NRF2 activators, in the present study, we investigated potential complementary activity between these agents and HMG-CoA reductase inhibitors (statins) based on their ability to induce KLF2 protein levels. Experiments in K562 cells showed that simvastatin increased KLF2 mRNA and protein and KLF2 binding to HS2 of the β-globin locus control region and enhanced -globin mRNA production by the NRF2 activator Tert-butylhydroquinone (tBHQ). When tested in differentiating primary human erythroid cells, simvastatin induced HbF alone and additively with tBHQ, but it did not increase KLF2 mRNA or locus control region binding above levels seen with normal differentiation. Investigating alternative mechanisms of action, we found that both simvastatin and tBHQ suppress β-globin mRNA and KLF1 and BCL11A mRNA and protein, similar to what is seen in people with an HPFH phenotype because of KLF1 haploinsufficiency. These findings identify statins as a potential class of HbF-inducing agents and suggest a novel mechanism of action based on pharmacologic suppression of KLF1 and BCL11A gene expression. KEY POINTS Simvastatin and tBHQ suppress KLF1 and BCL11 gene expression and additively increase fetal hemoglobin in primary human erythroid cells. Because both drugs are FDA-approved, these findings could lead to clinical trials in the relatively near future.
Collapse
|
36
|
Regulation of delta-aminolevulinic acid dehydratase by krüppel-like factor 1. PLoS One 2012; 7:e46482. [PMID: 23056320 PMCID: PMC3463598 DOI: 10.1371/journal.pone.0046482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factor 1(KLF1) is a hematopoietic-specific zinc finger transcription factor essential for erythroid gene expression. In concert with the transacting factor GATA1, KLF1 modulates the coordinate expression of the genes encoding the multi-enzyme heme biosynthetic pathway during erythroid differentiation. To explore the mechanisms underpinning KLF1 action at the gene loci regulating the first 3 steps in this process, we have exploited the K1-ERp erythroid cell line, in which KLF1 translocates rapidly to the nucleus in response to treatment with 4-OH-Tamoxifen (4-OHT). KLF1 acts as a differentiation-independent transcriptional co-regulator of delta-aminolevulinic acid dehydratase (Alad), but not 5-aminolevulinate synthase gene (Alas2) or porphobilinogen deaminase (Pbgd). Similar to its role at the β-globin promoter, KLF1 induces factor recruitment and chromatin changes at the Alad1b promoter in a temporally-specific manner. In contrast to these changes, we observed a distinct mechanism of histone eviction at the Alad1b promoter. Furthermore, KLF1-dependent events were not modulated by GATA1 factor promoter co-occupancy alone. These results not only enhance our understanding of erythroid-specific modulation of heme biosynthetic regulation by KLF1, but provide a model that will facilitate the elucidation of novel KLF1-dependent events at erythroid gene loci that are independent of GATA1 activity.
Collapse
|
37
|
Kruppel-like factor 1 (KLF1), KLF2, and Myc control a regulatory network essential for embryonic erythropoiesis. Mol Cell Biol 2012; 32:2628-44. [PMID: 22566683 DOI: 10.1128/mcb.00104-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1(-/-) KLF2(-/-) double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1(-/-), and KLF1(-/-) KLF2(-/-) mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1(-/-) KLF2(-/-) embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and β-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program.
Collapse
|