1
|
Al-Jaf S, Soliman AY, El-Yazbi AF, Abd-Elrahman KS. Unveiling the Interplay: Neurovascular Coupling, Astrocytes and G Protein-Coupled Receptors in Alzheimer's Disease. ACS Pharmacol Transl Sci 2025; 8:271-285. [PMID: 39974631 PMCID: PMC11833731 DOI: 10.1021/acsptsci.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
Astrocytes are a type of glial cell that are involved in actively modulating synaptic plasticity, neurotransmitter homeostasis, and neuroinflammatory responses. More importantly, they coordinate neuronal activity and cerebral blood flow (CBF) in what is known as neurovascular coupling (NVC). NVC is an essential mechanism that maintains the high energy demand the brain requires by supplying continuous and rapid supply of oxygen and nutrients through CBF. Impairment in NVC is one of the key events that triggers a spiral of occurrences that lead to the clinical advancement of Alzheimer's disease (AD). It is yet to be determined what the molecular manifestations of NVC impairment relate to; nonetheless, it is believed that alterations in G protein-coupled receptors (GPCRs) are responsible for exacerbating these effects. In this review, we summarize the current evidence supporting the involvement of GPCRs on astrocytes in NVC and the pathophysiology of AD. Additionally, we propose potential research directions to further elucidate the underlying mechanisms and evaluate the feasibility of targeting specific GPCRs as a therapeutic strategy to correct brain blood flow and memory impairments associated with AD.
Collapse
Affiliation(s)
- Sanarya Al-Jaf
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alaa Y. Soliman
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed F. El-Yazbi
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Khaled S. Abd-Elrahman
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
Legname G, Scialò C. On the role of the cellular prion protein in the uptake and signaling of pathological aggregates in neurodegenerative diseases. Prion 2021; 14:257-270. [PMID: 33345731 PMCID: PMC7757855 DOI: 10.1080/19336896.2020.1854034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative disorders are associated with intra- or extra-cellular deposition of aggregates of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Novel evidence suggests that the circulating soluble oligomeric species of these misfolded proteins could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Recent convincing data support the proposition that the cellular prion protein, PrPC, act as a toxicity-inducing receptor for amyloid-β oligomers. As a consequence, several studies focused their investigations to the role played by PrPC in binding other protein aggregates, such as tau and α-synuclein, for its possible common role in mediating toxic signalling. The biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, could lead to relevant therapeutic implications. Here we describe the structure of PrPC and the proposed interplay with its pathological counterpart PrPSc and then we recapitulate the most recent findings regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Carlo Scialò
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
3
|
Willbold D, Strodel B, Schröder GF, Hoyer W, Heise H. Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chem Rev 2021; 121:8285-8307. [PMID: 34137605 DOI: 10.1021/acs.chemrev.1c00196] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review will focus on the process of amyloid-type protein aggregation. Amyloid fibrils are an important hallmark of protein misfolding diseases and therefore have been investigated for decades. Only recently, however, atomic or near-atomic resolution structures have been elucidated from various in vitro and ex vivo obtained fibrils. In parallel, the process of fibril formation has been studied in vitro under highly artificial but comparatively reproducible conditions. The review starts with a summary of what is known and speculated from artificial in vitro amyloid-type protein aggregation experiments. A partially hypothetic fibril selection model will be described that may be suitable to explain why amyloid fibrils look the way they do, in particular, why at least all so far reported high resolution cryo-electron microscopy obtained fibril structures are in register, parallel, cross-β-sheet fibrils that mostly consist of two protofilaments twisted around each other. An intrinsic feature of the model is the prion-like nature of all amyloid assemblies. Transferring the model from the in vitro point of view to the in vivo situation is not straightforward, highly hypothetic, and leaves many open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Birgit Strodel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Molecular Factors Mediating Neural Cell Plasticity Changes in Dementia Brain Diseases. Neural Plast 2021; 2021:8834645. [PMID: 33854544 PMCID: PMC8021472 DOI: 10.1155/2021/8834645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neural plasticity-the ability to alter a neuronal response to environmental stimuli-is an important factor in learning and memory. Short-term synaptic plasticity and long-term synaptic plasticity, including long-term potentiation and long-term depression, are the most-characterized models of learning and memory at the molecular and cellular level. These processes are often disrupted by neurodegeneration-induced dementias. Alzheimer's disease (AD) accounts for 50% of cases of dementia. Vascular dementia (VaD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) constitute much of the remaining cases. While vascular lesions are the principal cause of VaD, neurodegenerative processes have been established as etiological agents of many dementia diseases. Chief among such processes is the deposition of pathological protein aggregates in vivo including β-amyloid deposition in AD, the formation of neurofibrillary tangles in AD and FTD, and the accumulation of Lewy bodies composed of α-synuclein aggregates in DLB and PDD. The main symptoms of dementia are cognitive decline and memory and learning impairment. Nonetheless, accurate diagnoses of neurodegenerative diseases can be difficult due to overlapping clinical symptoms and the diverse locations of cortical lesions. Still, new neuroimaging and molecular biomarkers have improved clinicians' diagnostic capabilities in the context of dementia and may lead to the development of more effective treatments. Both genetic and environmental factors may lead to the aggregation of pathological proteins and altered levels of cytokines, such that can trigger the formation of proinflammatory immunological phenotypes. This cascade of pathological changes provides fertile ground for the development of neural plasticity disorders and dementias. Available pharmacotherapy and disease-modifying therapies currently in clinical trials may modulate synaptic plasticity to mitigate the effects neuropathological changes have on cognitive function, memory, and learning. In this article, we review the neural plasticity changes seen in common neurodegenerative diseases from pathophysiological and clinical points of view and highlight potential molecular targets of disease-modifying therapies.
Collapse
|
5
|
Chok KC, Ng KY, Koh RY, Chye SM. Role of the gut microbiome in Alzheimer's disease. Rev Neurosci 2021; 32:767-789. [PMID: 33725748 DOI: 10.1515/revneuro-2020-0122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of individuals each year and this number is expected to significantly increase. The complicated microorganisms residing in human gut are closely associated with our health. Emerging evidence has suggested possible involvement of human gut microbiome in AD. Symbiotic gut microbiomes are known to maintain brain health by modulating host's barriers integrity, metabolic system, immune system, nervous system and endocrine system. However, in the event of gut dysbiosis and barriers disruption, gut pathobionts disrupt homeostasis of the metabolic system, immune system, nervous system, and endocrine system, resulting in deterioration of neurological functions and subsequently promoting development of AD. Multiple therapeutic approaches, such as fecal microbiome transplant, antibiotics, prebiotics, probiotics, symbiotic, and diet are discussed as potential treatment options for AD by manipulating the gut microbiome to reverse pathological alteration in the systems above.
Collapse
Affiliation(s)
- Kian Chung Chok
- School of Health Science, International Medical University, 57000Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J Biol Chem 2021; 296:100499. [PMID: 33667547 PMCID: PMC8042448 DOI: 10.1016/j.jbc.2021.100499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Human PrP (huPrP) is a high-affinity receptor for oligomeric amyloid β (Aβ) protein aggregates. Binding of Aβ oligomers to membrane-anchored huPrP has been suggested to trigger neurotoxic cell signaling in Alzheimer’s disease, while an N-terminal soluble fragment of huPrP can sequester Aβ oligomers and reduce their toxicity. Synthetic oligomeric Aβ species are known to be heterogeneous, dynamic, and transient, rendering their structural investigation particularly challenging. Here, using huPrP to preserve Aβ oligomers by coprecipitating them into large heteroassemblies, we investigated the conformations of Aβ(1–42) oligomers and huPrP in the complex by solid-state MAS NMR spectroscopy. The disordered N-terminal region of huPrP becomes immobilized in the complex and therefore visible in dipolar spectra without adopting chemical shifts characteristic of a regular secondary structure. Most of the well-defined C-terminal part of huPrP is part of the rigid complex, and solid-state NMR spectra suggest a loss in regular secondary structure in the two C-terminal α-helices. For Aβ(1–42) oligomers in complex with huPrP, secondary chemical shifts reveal substantial β-strand content. Importantly, not all Aβ(1–42) molecules within the complex have identical conformations. Comparison with the chemical shifts of synthetic Aβ fibrils suggests that the Aβ oligomer preparation represents a heterogeneous mixture of β-strand-rich assemblies, of which some have the potential to evolve and elongate into different fibril polymorphs, reflecting a general propensity of Aβ to adopt variable β-strand-rich conformers. Taken together, our results reveal structural changes in huPrP upon binding to Aβ oligomers that suggest a role of the C terminus of huPrP in cell signaling. Trapping Aβ(1–42) oligomers by binding to huPrP has proved to be a useful tool for studying the structure of these highly heterogeneous β-strand-rich assemblies.
Collapse
|
7
|
Padilla-Zambrano HS, García-Ballestas E, Quiñones-Ossa GA, Sibaja-Perez AE, Agrawal A, Moscote-Salazar LR, Menéndez-González M. The Prion-like Properties of Amyloid-beta Peptide and Tau: Is there Any Risk of Transmitting Alzheimer's Disease During Neurosurgical Interventions? Curr Alzheimer Res 2021; 17:781-789. [PMID: 33280597 DOI: 10.2174/1567205017666201204164220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Recent studies have recognized similarities between the peptides involved in the neuropathology of Alzheimer's disease and prions. The Tau protein and the Amyloid β peptide represent the theoretical pillars of Alzheimer's disease development. It is probable that there is a shared mechanism for the transmission of these substances and the prion diseases development; this presumption is based on the presentation of several cases of individuals without risk factors who developed dementia decades after a neurosurgical procedure. This article aims to present the role of Aβ and Tau, which underlie the pathophysiologic mechanisms involved in the AD and their similarities with the prion diseases infective mechanisms by means of the presentation of the available evidence at molecular (in-vitro), animal, and human levels that support the controversy on whether these diseases might be transmitted in neurosurgical interventions, which may constitute a wide public health issue.
Collapse
Affiliation(s)
- Huber S Padilla-Zambrano
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ezequiel García-Ballestas
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | | | - Andrés E Sibaja-Perez
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Amit Agrawal
- Department of Neurosurgery, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Luis R Moscote-Salazar
- Neurosurgeon-Critical Care, Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena de Indias, Bolivar, Colombia
| | | |
Collapse
|
8
|
Scialò C, Legname G. The role of the cellular prion protein in the uptake and toxic signaling of pathological neurodegenerative aggregates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:297-323. [PMID: 32958237 DOI: 10.1016/bs.pmbts.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are invariably associated with intra- or extra-cellular deposition of aggregates composed of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Emerging evidence suggests that the circulating soluble species of these misfolded proteins (usually referred as oligomers) could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Convincing data support the hypothesis that the cellular prion protein, PrPC, act as a toxicity-transducing receptor for amyloid-β oligomers. As a consequence, several studies extended investigations to the role played by PrPC in binding aggregates of proteins other than Aβ, such as tau and α-synuclein, for its possible common role in mediating toxic signaling. A better characterization of the biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, would bring relevant therapeutic implications. Here we will first describe the structure of the prion protein and the hypothesized interplay with its pathological counterpart PrPSc and then we will recapitulate the most relevant discoveries regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
9
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
10
|
Kong C, Xie H, Gao Z, Shao M, Li H, Shi R, Cai L, Gao S, Sun T, Li C. Binding between Prion Protein and Aβ Oligomers Contributes to the Pathogenesis of Alzheimer's Disease. Virol Sin 2019; 34:475-488. [PMID: 31093882 DOI: 10.1007/s12250-019-00124-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease (AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein (PrPC) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrPC contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrPC, which lead to high affinity binding between Aβ oligomers and PrPC. The interaction between PrPC and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system (CNS). Thus, silencing PrPC expression may turn out be an effective treatment for PrPC dependent AD.
Collapse
Affiliation(s)
- Chang Kong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenxing Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Run Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shanshan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
11
|
Julien C, Tomberlin C, Roberts CM, Akram A, Stein GH, Silverman MA, Link CD. In vivo induction of membrane damage by β-amyloid peptide oligomers. Acta Neuropathol Commun 2018; 6:131. [PMID: 30497524 PMCID: PMC6263551 DOI: 10.1186/s40478-018-0634-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Exposure to the β-amyloid peptide (Aβ) is toxic to neurons and other cell types, but the mechanism(s) involved are still unresolved. Synthetic Aβ oligomers can induce ion-permeable pores in synthetic membranes, but whether this ability to damage membranes plays a role in the ability of Aβ oligomers to induce tau hyperphosphorylation, or other disease-relevant pathological changes, is unclear. To examine the cellular responses to Aβ exposure independent of possible receptor interactions, we have developed an in vivo C. elegans model that allows us to visualize these cellular responses in living animals. We find that feeding C. elegans E. coli expressing human Aβ induces a membrane repair response similar to that induced by exposure to the CRY5B, a known pore-forming toxin produced by B. thuringensis. This repair response does not occur when C. elegans is exposed to an Aβ Gly37Leu variant, which we have previously shown to be incapable of inducing tau phosphorylation in hippocampal neurons. The repair response is also blocked by loss of calpain function, and is altered by loss-of-function mutations in the C. elegans orthologs of BIN1 and PICALM, well-established risk genes for late onset Alzheimer's disease. To investigate the role of membrane repair on tau phosphorylation directly, we exposed hippocampal neurons to streptolysin O (SLO), a pore-forming toxin that induces a well-characterized membrane repair response. We find that SLO induces tau hyperphosphorylation, which is blocked by calpain inhibition. Finally, we use a novel biarsenical dye-tagging approach to show that the Gly37Leu substitution interferes with Aβ multimerization and thus the formation of potentially pore-forming oligomers. We propose that Aβ-induced tau hyperphosphorylation may be a downstream consequence of induction of a membrane repair process.
Collapse
|
12
|
Sarell CJ, Quarterman E, Yip DCM, Terry C, Nicoll AJ, Wadsworth JDF, Farrow MA, Walsh DM, Collinge J. Soluble Aβ aggregates can inhibit prion propagation. Open Biol 2018; 7:rsob.170158. [PMID: 29142106 PMCID: PMC5717343 DOI: 10.1098/rsob.170158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrPC). Ligands that bind to PrPC can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrPC, and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrPC and emphasize the bidirectional nature of the interplay between Aβ and PrPC in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common.
Collapse
Affiliation(s)
- Claire J Sarell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Emma Quarterman
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Daniel C-M Yip
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Cassandra Terry
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Andrew J Nicoll
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Mark A Farrow
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Dominic M Walsh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK .,Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
13
|
Younan ND, Chen KF, Rose RS, Crowther DC, Viles JH. Prion protein stabilizes amyloid-β (Aβ) oligomers and enhances Aβ neurotoxicity in a Drosophila model of Alzheimer's disease. J Biol Chem 2018; 293:13090-13099. [PMID: 29887525 DOI: 10.1074/jbc.ra118.003319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/05/2018] [Indexed: 12/16/2022] Open
Abstract
The cellular prion protein (PrPC) can act as a cell-surface receptor for β-amyloid (Aβ) peptide; however, a role for PrPC in the pathogenesis of Alzheimer's disease (AD) is contested. Here, we expressed a range of Aβ isoforms and PrPC in the Drosophila brain. We found that co-expression of Aβ and PrPC significantly reduces the lifespan, disrupts circadian rhythms, and increases Aβ deposition in the fly brain. In contrast, under the same conditions, expression of Aβ or PrPC individually did not lead to these phenotypic changes. In vitro studies revealed that substoichiometric amounts of PrPC trap Aβ as oligomeric assemblies and fragment-preformed Aβ fibers. The ability of membrane-anchored PrPC to trap Aβ as cytotoxic oligomers at the membrane surface and fragment inert Aβ fibers suggests a mechanism by which PrPC exacerbates Aβ deposition and pathogenic phenotypes in the fly, supporting a role for PrPC in AD. This study provides a second animal model linking PrPC expression with Aβ toxicity and supports a role for PrPC in AD pathogenesis. Blocking the interaction of Aβ and PrPC represents a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nadine D Younan
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Ko-Fan Chen
- the Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Ruth-Sarah Rose
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Damian C Crowther
- the Neuroscience IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - John H Viles
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom,
| |
Collapse
|
14
|
Osborne C, West E, Bate C. The phospholipase A 2 pathway controls a synaptic cholesterol ester cycle and synapse damage. J Cell Sci 2018; 131:jcs.211789. [PMID: 29588394 DOI: 10.1242/jcs.211789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
The cellular prion protein (PrPC) acts as a scaffold protein that organises signalling complexes. In synaptosomes, the aggregation of PrPC by amyloid-β (Aβ) oligomers attracts and activates cytoplasmic phospholipase A2 (cPLA2), leading to synapse degeneration. The signalling platform is dependent on cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs). The activation of cPLA2 requires cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs), enzymes dependent upon platelet activating factor (PAF) released by activated cPLA2 This demonstrates a positive feedback system in which activated cPLA2 increased cholesterol concentrations, which in turn facilitated cPLA2 activation. PAF was also required for the incorporation of the tyrosine kinase Fyn and cyclooxygenase (COX)-2 into Aβ-PrPC-cPLA2 complexes. As a failure to deactivate signalling complexes can lead to pathology, the mechanisms involved in their dispersal were studied. PAF facilitated the incorporation of acyl-coenzyme A:cholesterol acyltransferase (ACAT)-1 into Aβ-PrPC-cPLA2-COX-2-Fyn complexes. The esterification of cholesterol reduced cholesterol concentrations, causing dispersal of Aβ-PrPC-cPLA2-COX-2-Fyn complexes and the cessation of signalling. This study identifies PAF as a key mediator regulating the cholesterol ester cycle, activation of cPLA2 and COX-2 within synapses, and synapse damage.
Collapse
Affiliation(s)
- Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| |
Collapse
|
15
|
Purro SA, Nicoll AJ, Collinge J. Prion Protein as a Toxic Acceptor of Amyloid-β Oligomers. Biol Psychiatry 2018; 83:358-368. [PMID: 29331212 DOI: 10.1016/j.biopsych.2017.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 02/08/2023]
Abstract
The initial report that cellular prion protein (PrPC) mediates toxicity of amyloid-β species linked to Alzheimer's disease was initially treated with scepticism, but growing evidence supports this claim. That there is a high-affinity interaction is now clear, and its molecular basis is being unraveled, while recent studies have identified possible downstream toxic mechanisms. Determination of the clinical significance of such interactions between PrPC and disease-associated amyloid-β species will require experimental medicine studies in humans. Trials of compounds that inhibit PrP-dependent amyloid-β toxicity are commencing in humans, and although it is clear that only a fraction of Alzheimer's disease toxicity could be governed by PrPC, a partial, but still therapeutically useful, role in human disease may soon be testable.
Collapse
Affiliation(s)
- Silvia A Purro
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom
| | - Andrew J Nicoll
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom; Elkington and Fife LLP, Kent, United Kingdom.
| | - John Collinge
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom.
| |
Collapse
|
16
|
Bate C, Williams A. Monomeric amyloid-β reduced amyloid-β oligomer-induced synapse damage in neuronal cultures. Neurobiol Dis 2017; 111:48-58. [PMID: 29272738 DOI: 10.1016/j.nbd.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/12/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) in the brain. Aβ oligomers are believed to cause synapse damage resulting in the memory deficits that are characteristic of this disease. Since the loss of synaptic proteins in the brain correlates closely with the degree of dementia in Alzheimer's disease, the process of Aβ-induced synapse damage was investigated in cultured neurons by measuring the loss of synaptic proteins. Soluble Aβ oligomers, derived from Alzheimer's-affected brains, caused the loss of cysteine string protein and synaptophysin from neurons. When applied to synaptosomes Aβ oligomers increased cholesterol concentrations and caused aberrant activation of cytoplasmic phospholipase A2 (cPLA2). In contrast, Aβ monomer preparations did not affect cholesterol concentrations or activate synaptic cPLA2, nor did they damage synapses. The Aβ oligomer-induced aggregation of cellular prion proteins (PrPC) at synapses triggered the activation of cPLA2 that leads to synapse degeneration. Critically, Aβ monomer preparations did not cause the aggregation of PrPC; rather they reduced the Aβ oligomer-induced aggregation of PrPC. The presence of Aβ monomer preparations also inhibited the Aβ oligomer-induced increase in cholesterol concentrations and activation of cPLA2 in synaptosomes and protected neurons against the Aβ oligomer-induced synapse damage. These results support the hypothesis that Aβ monomers are neuroprotective. We hypothesise that synapse damage may result from a pathological Aβ monomer:oligomer ratio rather than the total concentrations of Aβ within the brain.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK.
| | - Alun Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
17
|
Bate C. Breaking the Cycle, Cholesterol Cycling, and Synapse Damage in Response to Amyloid-β. J Exp Neurosci 2017; 11:1179069517733096. [PMID: 29238218 PMCID: PMC5721958 DOI: 10.1177/1179069517733096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
Soluble amyloid-β (Aβ) oligomers, a key driver of pathogenesis in Alzheimer disease, bind to cellular prion proteins (PrPC) expressed on synaptosomes resulting in increased cholesterol concentrations, movement of cytoplasmic phospholipase A2 (cPLA2) to lipid rafts and activation of cPLA2. The formation of Aβ-PrPC-cPLA2 complexes was controlled by the cholesterol ester cycle. Thus, Aβ activated cholesterol ester hydrolases which released cholesterol from stores of cholesterol esters; the increased cholesterol concentrations stabilised Aβ-PrPC-cPLA2 complexes. Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC-cPLA2. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; inhibition of cholesterol ester hydrolases protected neurons, whereas inhibition of cholesterol esterification increased the Aβ-induced synapse damage. Here, I speculate that a failure to deactivate signalling pathways can lead to pathology. Consequently, the esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms and synapse degeneration.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield,UK
| |
Collapse
|
18
|
Brody AH, Strittmatter SM. Synaptotoxic Signaling by Amyloid Beta Oligomers in Alzheimer's Disease Through Prion Protein and mGluR5. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:293-323. [PMID: 29413525 PMCID: PMC5835229 DOI: 10.1016/bs.apha.2017.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) represents an impending global health crisis, yet the complexity of AD pathophysiology has so far precluded the development of any interventions to successfully slow or halt AD progression. It is clear that accumulation of Amyloid-beta (Aβ) peptide triggers progressive synapse loss to cause AD symptoms. Once initiated by Aβ, disease progression is complicated and accelerated by inflammation and by tau pathology. The recognition that Aβ peptide assumes multiple distinct states and that soluble oligomeric species (Aβo) are critical for synaptic damage is central to molecular understanding of AD. This knowledge has led to the identification of specific Aβo receptors, such as cellular prion protein (PrPC), mediating synaptic toxicity and neuronal dysfunction. The identification of PrPC as an Aβo receptor has illuminated an Aβo-induced signaling cascade involving mGluR5, Fyn, and Pyk2 that links Aβ and tau pathologies. This pathway provides novel potential therapeutic targets for disease-modifying AD therapy. Here, we discuss the methods by which several putative Aβo receptors were identified. We also offer an in-depth examination of the known molecular mechanisms believed to mediate Aβo-induced synaptic dysfunction, toxicity, and memory dysfunction.
Collapse
Affiliation(s)
- A Harrison Brody
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, United States; Yale University, New Haven, CT, United States
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, United States; Yale University, New Haven, CT, United States.
| |
Collapse
|
19
|
West E, Osborne C, Bate C. The cholesterol ester cycle regulates signalling complexes and synapse damage caused by amyloid-β. J Cell Sci 2017; 130:3050-3059. [PMID: 28760925 DOI: 10.1242/jcs.205484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/26/2017] [Indexed: 02/01/2023] Open
Abstract
Cholesterol is required for the formation and function of some signalling platforms. In synaptosomes, amyloid-β (Aβ) oligomers, the causative agent in Alzheimer's disease, bind to cellular prion proteins (PrPC) resulting in increased cholesterol concentrations, translocation of cytoplasmic phospholipase A2 (cPLA2, also known as PLA2G4A) to lipid rafts, and activation of cPLA2 The formation of Aβ-PrPC complexes is controlled by the cholesterol ester cycle. In this study, Aβ activated cholesterol ester hydrolases, which released cholesterol from stores of cholesterol esters and stabilised Aβ-PrPC complexes, resulting in activated cPLA2 Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC complexes. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; cholesterol ester hydrolase inhibitors protected neurons, while inhibition of cholesterol esterification significantly increased Aβ-induced synapse damage. An understanding of the molecular mechanisms involved in the dispersal of signalling complexes is important as failure to deactivate signalling pathways can lead to pathology. This study demonstrates that esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms involved in the activation of cPLA2 and synapse degeneration.
Collapse
Affiliation(s)
- Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| |
Collapse
|
20
|
Smith LM, Strittmatter SM. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024075. [PMID: 27940601 DOI: 10.1101/cshperspect.a024075] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Alzheimer's disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis.
Collapse
Affiliation(s)
- Levi M Smith
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| |
Collapse
|
21
|
Jiang G, Wang C, Zhang J, Liu H. Mediation of insulin growth factor-1 in Alzheimer's disease and the mechanism of PRNP genetic expression and the PI3K/Akt signaling pathway. Exp Ther Med 2017; 13:2763-2766. [PMID: 28587338 PMCID: PMC5450607 DOI: 10.3892/etm.2017.4320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to examine the mediation of insulin growth factor-1 (IGF-1) in Alzheimer's disease (AD), as well as the underlying mechanism of the PRNP genetic expression and PI3K/Akt signaling pathway. The Aβ25-35-incubated rat adrenal pheochromocytoma cell (PC12) in vitro was established, constituting the AD model. Different doses (0, 20, 40 and 80 ng/ml) of IGF-1 were used in PC12 cells and the level of PRNP mRNA was tested after 24 h using the quantitative PCR method and the level of APP protein was assessed using western blot analysis. PC12 cells were divided into the control group (PC12 cells without Aβ25-35 treatment), model group (PC12 cells with Aβ25-35 treatment), IGF-1 80 ng/ml group, IGF-1 80 ng/ml+PI3K inhibitor LY294002 25 µmol/l group, and IGF-1 80 ng/ml+LY294002 50 µmol/l group, whose PRNP mRNA level and Akt, pAkt and APP protein level were tested 24 h later. As the dose of IGF-1 increases, the expression levels of PRNP mRNA and APP protein were more highly expressed. The difference between them was significant (P<0.05). In addition, regarding Akt protein, the expression levels of PRNP mRNA, APP protein and pAkt protein in the IGF-1 groups were significantly higher than those in the control and model groups. With the LY concentration increasing, the levels of expression of the three substances gradually decreased significantly (P<0.05). In conclusion, IGF-I can mediate the expression of the PRNP gene and APP protein through the PI3K/Akt signaling pathway, in a rat model.
Collapse
Affiliation(s)
- Guohong Jiang
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Changming Wang
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jun Zhang
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Haijun Liu
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
22
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Zhou YL, Liu SQ, Yuan B, Lu N. The expression of insulin-like growth factor-1 in senior patients with diabetes and dementia. Exp Ther Med 2016; 13:103-106. [PMID: 28123476 PMCID: PMC5244895 DOI: 10.3892/etm.2016.3961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022] Open
Abstract
This study was conducted to investigate the expression of insulin-like growth factor-1 (IGF-1) in elderly patients with diabetes and dementia and to analyze the expression mechanism. A total of 30 senior patients with diabetes and dementia (group A), 30 senior patients with dementia but no diabetes (group B), 30 senior patients with diabetes but no dementia (group C), and 30 healthy seniors (group D) were continuously selected. The ELISA method was used to test the level of serum IGF-1, β-amyloid peptide (Aβ) and the phosphorylation of immunohistochemical staining of microtubule associated protein (tau protein). Western blot analysis was utilized to test the level of prion protein (PrP), forkhead transcription factor O (FOXO) subfamily protein, p-PI3K and p-Akt. The levels of IGF-1, Aβ, tau protein positive rate, PrP, FOXO protein, p-PI3K, and p-Akt in group A were significantly higher than that in group B, which was higher than in groups C and D. The results between groups A and B, but not groups C and D, were statistically significant (P<0.05). IGF-1 was highly expressed in senior patients with diabetes and dementia. Thus, IGF-1 can adjust the expression of PrP and FOXO through p-PI3K/Akt pathway and further impact the formation of Aβ and tau protein, leading to dementia.
Collapse
Affiliation(s)
- Yan-Ling Zhou
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shu-Qing Liu
- Department of Neurology, Linglong Yingcheng Hospital, Zhaoyuan, Shandong 265400, P.R. China
| | - Bin Yuan
- Department of Neurology, Affiliated Hospital of Heze Medical College, Heze, Shandong 274000, P.R. China
| | - Ning Lu
- Department of Geriatric Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
24
|
Zhao J, Ma B, Nussinov R. Compilation and Analysis of Enzymes, Engineered Antibodies, and Nanoparticles Designed to Interfere with Amyloid-β Aggregation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Buyong Ma
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Ruth Nussinov
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
25
|
Beraldo FH, Ostapchenko VG, Caetano FA, Guimaraes ALS, Ferretti GDS, Daude N, Bertram L, Nogueira KOPC, Silva JL, Westaway D, Cashman NR, Martins VR, Prado VF, Prado MAM. Regulation of Amyloid β Oligomer Binding to Neurons and Neurotoxicity by the Prion Protein-mGluR5 Complex. J Biol Chem 2016; 291:21945-21955. [PMID: 27563063 DOI: 10.1074/jbc.m116.738286] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 12/24/2022] Open
Abstract
The prion protein (PrPC) has been suggested to operate as a scaffold/receptor protein in neurons, participating in both physiological and pathological associated events. PrPC, laminin, and metabotropic glutamate receptor 5 (mGluR5) form a protein complex on the plasma membrane that can trigger signaling pathways involved in neuronal differentiation. PrPC and mGluR5 are co-receptors also for β-amyloid oligomers (AβOs) and have been shown to modulate toxicity and neuronal death in Alzheimer's disease. In the present work, we addressed the potential crosstalk between these two signaling pathways, laminin-PrPC-mGluR5 or AβO-PrPC-mGluR5, as well as their interplay. Herein, we demonstrated that an existing complex containing PrPC-mGluR5 has an important role in AβO binding and activity in neurons. A peptide mimicking the binding site of laminin onto PrPC (Ln-γ1) binds to PrPC and induces intracellular Ca2+ increase in neurons via the complex PrPC-mGluR5. Ln-γ1 promotes internalization of PrPC and mGluR5 and transiently decreases AβO biding to neurons; however, the peptide does not impact AβO toxicity. Given that mGluR5 is critical for toxic signaling by AβOs and in prion diseases, we tested whether mGlur5 knock-out mice would be susceptible to prion infection. Our results show mild, but significant, effects on disease progression, without affecting survival of mice after infection. These results suggest that PrPC-mGluR5 form a functional response unit by which multiple ligands can trigger signaling. We propose that trafficking of PrPC-mGluR5 may modulate signaling intensity by different PrPC ligands.
Collapse
Affiliation(s)
| | | | - Fabiana A Caetano
- From the Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7,Canada
| | - Andre L S Guimaraes
- From the Robarts Research Institute and the Universidade Estadual de Montes Claros, Montes Claros, MG 39401-089, Brazil
| | - Giulia D S Ferretti
- From the Robarts Research Institute and the Programa de Biologia Estrutural, Instituto de Bioquimica Medica Leopoldo de Meis, Instututo Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonacia Magnetica Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Nathalie Daude
- the Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Lisa Bertram
- the Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Katiane O P C Nogueira
- From the Robarts Research Institute and the Instituto de Ciências Exatas e Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro S/N, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Jerson L Silva
- the Programa de Biologia Estrutural, Instituto de Bioquimica Medica Leopoldo de Meis, Instututo Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonacia Magnetica Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - David Westaway
- the Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Neil R Cashman
- the Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vilma R Martins
- the International Center for Research and Education, A. C. Camargo Cancer Center, São Paulo, SP CEP 01509-010, Brazil, and
| | - Vania F Prado
- From the Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7,Canada, the Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Marco A M Prado
- From the Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7,Canada, the Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
26
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal neurodegenerative disorders characterised by long incubation period, short clinical duration, and transmissibility to susceptible species. Neuronal loss, spongiform changes, gliosis and the accumulation in the brain of the misfolded version of a membrane-bound cellular prion protein (PrP(C)), termed PrP(TSE), are diagnostic markers of these diseases. Compelling evidence links protein misfolding and its accumulation with neurodegenerative changes. Accordingly, several mechanisms of prion-mediated neurotoxicity have been proposed. In this paper, we provide an overview of the recent knowledge on the mechanisms of neuropathogenesis, the neurotoxic PrP species and the possible therapeutic approaches to treat these devastating disorders.
Collapse
|
27
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
28
|
Glimepiride protects neurons against amyloid-β-induced synapse damage. Neuropharmacology 2016; 101:225-36. [DOI: 10.1016/j.neuropharm.2015.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
|
29
|
Han SH, Park JC, Mook-Jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 2016; 137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
|
30
|
Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain 2015; 139:526-46. [PMID: 26667279 DOI: 10.1093/brain/awv356] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/17/2015] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.
Collapse
Affiliation(s)
- Laura T Haas
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA 2 Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, D-72074 Tuebingen, Germany
| | - Santiago V Salazar
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mikhail A Kostylev
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ji Won Um
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Adam C Kaufman
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
31
|
Bate C, Nolan W, Williams A. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation. J Biol Chem 2015; 291:160-70. [PMID: 26553874 DOI: 10.1074/jbc.m115.672394] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Indexed: 01/24/2023] Open
Abstract
The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.
Collapse
Affiliation(s)
- Clive Bate
- From the Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, United Kingdom and
| | - William Nolan
- From the Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, United Kingdom and
| | - Alun Williams
- the Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 OES, United Kingdom
| |
Collapse
|
32
|
Bate C. Enhanced neuronal degradation of amyloid-β oligomers allows synapse regeneration. Neural Regen Res 2015; 10:700-1. [PMID: 26109937 PMCID: PMC4468754 DOI: 10.4103/1673-5374.156955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| |
Collapse
|
33
|
Williams RSB, Bate C. An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling. Neuropharmacology 2015; 101:566-75. [PMID: 26116815 DOI: 10.1016/j.neuropharm.2015.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Many neurodegenerative diseases present the loss of synapses as a common pathological feature. Here we have employed an in vitro model for synaptic loss to investigate the molecular mechanism of a therapeutic treatment, valproic acid (VPA). We show that amyloid-β (Aβ), isolated from patient tissue and thought to be the causative agent of Alzheimer's disease, caused the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine-string protein from cultured mouse neurons. Aβ-induced synapse damage was reduced by pre-treatment with physiologically relevant concentrations of VPA (10 μM) and a structural variant propylisopropylacetic acid (PIA). These drugs also reduced synaptic damage induced by other neurodegenerative-associated proteins α-synuclein, linked to Lewy body dementia and Parkinson's disease, and the prion-derived peptide PrP82-146. Consistent with these effects, synaptic vesicle recycling was also inhibited by these proteins and protected by VPA and PIA. We show a mechanism for this damage through aberrant activation of cytoplasmic phospholipase A2 (cPLA2) that is reduced by both drugs. Furthermore, Aβ-dependent cPLA2 activation correlates with its accumulation in lipid rafts, and is likely to be caused by elevated cholesterol (stabilising rafts) and decreased cholesterol ester levels, and this mechanism is reduced by VPA and PIA. Such observations suggest that VPA and PIA may provide protection against synaptic damage that occurs during Alzheimer's and Parkinson's and prion diseases.
Collapse
Affiliation(s)
- Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK.
| |
Collapse
|
34
|
West E, Osborne C, Nolan W, Bate C. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage. BIOLOGY 2015; 4:367-82. [PMID: 26043272 PMCID: PMC4498305 DOI: 10.3390/biology4020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/30/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.
Collapse
Affiliation(s)
- Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL97TA, UK.
| | - Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL97TA, UK.
| | - William Nolan
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL97TA, UK.
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL97TA, UK.
| |
Collapse
|
35
|
Kostylev MA, Kaufman AC, Nygaard HB, Patel P, Haas LT, Gunther EC, Vortmeyer A, Strittmatter SM. Prion-Protein-interacting Amyloid-β Oligomers of High Molecular Weight Are Tightly Correlated with Memory Impairment in Multiple Alzheimer Mouse Models. J Biol Chem 2015; 290:17415-38. [PMID: 26018073 DOI: 10.1074/jbc.m115.643577] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer disease (AD) is characterized by amyloid-β accumulation, with soluble oligomers (Aβo) being the most synaptotoxic. However, the multivalent and unstable nature of Aβo limits molecular characterization and hinders research reproducibility. Here, we characterized multiple Aβo forms throughout the life span of various AD mice and in post-mortem human brain. Aβo exists in several populations, where prion protein (PrP(C))-interacting Aβo is a high molecular weight Aβ assembly present in multiple mice and humans with AD. Levels of PrP(C)-interacting Aβo match closely with mouse memory and are equal or superior to other Aβ measures in predicting behavioral impairment. However, Aβo metrics vary considerably between mouse strains. Deleting PrP(C) expression in mice with relatively low PrP(C)-interacting Aβo (Tg2576) results in partial rescue of cognitive performance as opposed to complete recovery in animals with a high percentage of PrP(C)-interacting Aβo (APP/PSEN1). These findings highlight the relative contributions and interplay of Aβo forms in AD.
Collapse
Affiliation(s)
- Mikhail A Kostylev
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Adam C Kaufman
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Haakon B Nygaard
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Pujan Patel
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Laura T Haas
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Erik C Gunther
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Alexander Vortmeyer
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| | - Stephen M Strittmatter
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
36
|
Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, Kaufman AC, Rosenberg BJ, Sekine-Konno T, Varma P, Chen K, Koleske AJ, Reiman EM, Strittmatter SM, van Dyck CH. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2015; 7:35. [PMID: 25874001 PMCID: PMC4396171 DOI: 10.1186/s13195-015-0119-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
Abstract
Introduction Despite significant progress, a disease-modifying therapy for Alzheimer’s disease (AD) has not yet been developed. Recent findings implicate soluble oligomeric amyloid beta as the most relevant protein conformation in AD pathogenesis. We recently described a signaling cascade whereby oligomeric amyloid beta binds to cellular prion protein on the neuronal cell surface, activating intracellular Fyn kinase to mediate synaptotoxicity. Fyn kinase has been implicated in AD pathophysiology both in in vitro models and in human subjects, and is a promising new therapeutic target for AD. Herein, we present a Phase Ib trial of the repurposed investigational drug AZD0530, a Src family kinase inhibitor specific for Fyn and Src kinase, for the treatment of patients with mild-to-moderate AD. Methods The study was a 4-week Phase Ib multiple ascending dose, randomized, double-blind, placebo-controlled trial of AZD0530 in AD patients with Mini-Mental State Examination (MMSE) scores ranging from 16 to 26. A total of 24 subjects were recruited in three sequential groups, with each randomized to receive oral AZD0530 at doses of 50 mg, 100 mg, 125 mg, or placebo daily for 4 weeks. The drug:placebo ratio was 3:1. Primary endpoints were safety, tolerability, and cerebrospinal fluid (CSF) penetration of AZD0530. Secondary endpoints included changes in clinical efficacy measures (Alzheimer’s Disease Assessment Scale – cognitive subscale, MMSE, Alzheimer’s Disease Cooperative Study – Activities of Daily Living Inventory, Neuropsychiatric Inventory, and Clinical Dementia Rating Scale – Sum of Boxes) and regional cerebral glucose metabolism measured by fluorodeoxyglucose positron emission tomography. Results AZD0530 was generally safe and well tolerated across doses. One subject receiving 125 mg of AZD0530 was discontinued from the study due to the development of congestive heart failure and atypical pneumonia, which were considered possibly related to the study drug. Plasma/CSF ratio of AZD0530 was 0.4. The 100 mg and 125 mg doses achieved CSF drug levels corresponding to brain levels that rescued memory deficits in transgenic mouse models. One-month treatment with AZD0530 had no significant effect on clinical efficacy measures or regional cerebral glucose metabolism. Conclusions AZD0530 is reasonably safe and well tolerated in patients with mild-to-moderate AD, achieving substantial central nervous system penetration with oral dosing at 100–125 mg. Targeting Fyn kinase may be a promising therapeutic approach in AD, and a larger Phase IIa clinical trial of AZD0530 for the treatment of patients with AD has recently launched. Trial registration ClinicalTrials.gov: NCT01864655. Registered 12 June 2014.
Collapse
Affiliation(s)
- Haakon B Nygaard
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA ; Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA ; Current address: University of British Columbia, Division of Neurology, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Allison F Wagner
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Garrett S Bowen
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Susan P Good
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Martha G MacAvoy
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Kurt A Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA
| | - Adam C Kaufman
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA
| | - Brian J Rosenberg
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Tomoko Sekine-Konno
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Pradeep Varma
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, Arizona USA
| | - Anthony J Koleske
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA ; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut USA
| | | | - Stephen M Strittmatter
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA ; Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
37
|
Wang ZX, Tan L, Liu J, Yu JT. The Essential Role of Soluble Aβ Oligomers in Alzheimer's Disease. Mol Neurobiol 2015; 53:1905-1924. [PMID: 25833098 DOI: 10.1007/s12035-015-9143-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaque and neurofibrillary tangles (NFT). With the finding that soluble nonfibrillar Aβ levels actually correlate strongly with the severity of the disease, the initial focus on amyloid plaques shifted to the contemporary concept that AD memory failure is caused by soluble Aβ oligomers. The soluble Aβ are known to be more neurotoxicthan fibrillar Aβ species. In this paper, we summarize the essential role of soluble Aβ oligomers in AD and discuss therapeutic strategies that target soluble Aβ oligomers.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| | - Jinyuan Liu
- Columbia College, Columbia University, New York, NY, USA
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
39
|
α-Synuclein-induced synapse damage in cultured neurons is mediated by cholesterol-sensitive activation of cytoplasmic phospholipase A2. Biomolecules 2015; 5:178-93. [PMID: 25761116 PMCID: PMC4384118 DOI: 10.3390/biom5010178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 12/20/2022] Open
Abstract
The accumulation of aggregated forms of the α-synuclein (αSN) is associated with the pathogenesis of Parkinson's disease (PD) and Dementia with Lewy Bodies. The loss of synapses is an important event in the pathogenesis of these diseases. Here we show that aggregated recombinant human αSN, but not βSN, triggered synapse damage in cultured neurons as measured by the loss of synaptic proteins. Pre-treatment with the selective cytoplasmic phospholipase A2 (cPLA2) inhibitors AACOCF3 and MAFP protected neurons against αSN-induced synapse damage. Synapse damage was associated with the αSN-induced activation of synaptic cPLA2 and the production of prostaglandin E2. The activation of cPLA2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B or Hexa-PAF) also protect neurons against αSN-induced synapse damage. αSN-induced synapse damage was also reduced in neurons pre-treated with the cholesterol synthesis inhibitor (squalestatin). These results are consistent with the hypothesis that αSN triggered synapse damage via hyperactivation of cPLA2. They also indicate that αSN-induced activation of cPLA2 is influenced by the cholesterol content of membranes. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse damage seen during PD.
Collapse
|
40
|
Béland M, Roucou X. Taking advantage of physiological proteolytic processing of the prion protein for a therapeutic perspective in prion and Alzheimer diseases. Prion 2015; 8:106-10. [PMID: 24335160 DOI: 10.4161/pri.27438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrP(C)) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrP(C) undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrP(C) molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrP(C)-derived molecules as therapeutic agents in prion and Alzheimer diseases.
Collapse
|
41
|
Ryan TM, Kirby N, Mertens HDT, Roberts B, Barnham KJ, Cappai R, Pham CLL, Masters CL, Curtain CC. Small angle X-ray scattering analysis of Cu2+-induced oligomers of the Alzheimer's amyloid β peptide. Metallomics 2015; 7:536-43. [DOI: 10.1039/c4mt00323c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ).
Collapse
Affiliation(s)
- Timothy M. Ryan
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Nigel Kirby
- SAXS/WAXS Beamline
- The Australian Synchrotron
- Clayton, Australia
| | | | - Blaine Roberts
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Kevin J. Barnham
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
| | - Roberto Cappai
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria, Australia
| | - Chi Le Lan Pham
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria, Australia
| | - Colin L. Masters
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Cyril C. Curtain
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
| |
Collapse
|
42
|
Welzel AT, Maggio JE, Shankar GM, Walker DE, Ostaszewski BL, Li S, Klyubin I, Rowan MJ, Seubert P, Walsh DM, Selkoe DJ. Secreted amyloid β-proteins in a cell culture model include N-terminally extended peptides that impair synaptic plasticity. Biochemistry 2014; 53:3908-21. [PMID: 24840308 PMCID: PMC4070750 DOI: 10.1021/bi5003053] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Evidence
for a central role of amyloid β-protein (Aβ) in the genesis
of Alzheimer’s disease (AD) has led to
advanced human trials of Aβ-lowering agents. The “amyloid
hypothesis” of AD postulates deleterious effects of small,
soluble forms of Aβ on synaptic form and function. Because selectively
targeting synaptotoxic forms of soluble Aβ could be therapeutically
advantageous, it is important to understand the full range of soluble
Aβ derivatives. We previously described a Chinese hamster ovary (CHO) cell line (7PA2 cells) that stably expresses mutant human amyloid precursor protein (APP). Here, we extend this work by purifying an sodium dodecyl sulfate
(SDS)-stable, ∼8 kDa Aβ species
from the 7PA2 medium. Mass spectrometry confirmed its identity as
a noncovalently bonded Aβ40 homodimer that impaired hippocampal
long-term potentiation (LTP) in vivo. We further report the detection
of Aβ-containing fragments of APP in the 7PA2 medium that extend
N-terminal from Asp1 of Aβ. These N-terminally extended Aβ-containing
monomeric fragments are distinct from soluble Aβ oligomers formed
from Aβ1-40/42 monomers and are bioactive synaptotoxins secreted
by 7PA2 cells. Importantly, decreasing β-secretase processing
of APP elevated these alternative synaptotoxic APP fragments. We conclude
that certain synaptotoxic Aβ-containing species can arise from
APP processing events N-terminal to the classical β-secretase
cleavage site.
Collapse
|
43
|
Garcés P, Angel Pineda-Pardo J, Canuet L, Aurtenetxe S, López ME, Marcos A, Yus M, Llanero-Luque M, Del-Pozo F, Sancho M, Maestú F. The Default Mode Network is functionally and structurally disrupted in amnestic mild cognitive impairment - a bimodal MEG-DTI study. NEUROIMAGE-CLINICAL 2014; 6:214-21. [PMID: 25379433 PMCID: PMC4215458 DOI: 10.1016/j.nicl.2014.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/19/2023]
Abstract
Over the past years, several studies on Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) have reported Default Mode Network (DMN) deficits. This network is attracting increasing interest in the AD community, as it seems to play an important role in cognitive functioning and in beta amyloid deposition. Attention has been particularly drawn to how different DMN regions are connected using functional or structural connectivity. To this end, most studies have used functional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET) or Diffusion Tensor Imaging (DTI). In this study we evaluated (1) functional connectivity from resting state magnetoencephalography (MEG) and (2) structural connectivity from DTI in 26 MCI patients and 31 age-matched controls. Compared to controls, the DMN in the MCI group was functionally disrupted in the alpha band, while no differences were found for delta, theta, beta and gamma frequency bands. In addition, structural disconnection could be assessed through a decreased fractional anisotropy along tracts connecting different DMN regions. This suggests that the DMN functional and anatomical disconnection could represent a core feature of MCI. We studied functional and structural connectivity in MCI patients and controls. We focused on the connections between regions in the Default Mode Network. Resting state alpha-band functional connectivity was decreased in MCI. The integrity of the structural connections was lower for the MCI group. Functional and structural connectivity correlated in the alpha band in both groups.
Collapse
Affiliation(s)
- Pilar Garcés
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology, Pozuelo de Alarcón, Madrid 28223, Spain ; Department of Applied Physics III, Faculty of Physics, Complutense University of Madrid, Madrid 28040, Spain
| | - José Angel Pineda-Pardo
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Leonides Canuet
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Sara Aurtenetxe
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology, Pozuelo de Alarcón, Madrid 28223, Spain ; Department of Basic Psychology II, Faculty of Psychology, Complutense University of Madrid, Madrid 28223, Spain
| | - Maria Eugenia López
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology, Pozuelo de Alarcón, Madrid 28223, Spain ; Department of Basic Psychology II, Faculty of Psychology, Complutense University of Madrid, Madrid 28223, Spain
| | - Alberto Marcos
- Neurology Department, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Miguel Yus
- Radiology Department, Hospital Clínico San Carlos, Madrid 28040, Spain
| | | | - Francisco Del-Pozo
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Miguel Sancho
- Department of Applied Physics III, Faculty of Physics, Complutense University of Madrid, Madrid 28040, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology, Pozuelo de Alarcón, Madrid 28223, Spain ; Department of Basic Psychology II, Faculty of Psychology, Complutense University of Madrid, Madrid 28223, Spain
| |
Collapse
|
44
|
Haas LT, Kostylev MA, Strittmatter SM. Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). J Biol Chem 2014; 289:28460-77. [PMID: 25148681 DOI: 10.1074/jbc.m114.584342] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrP(C)). PrP(C) interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrP(C) to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrP(C) and mGluR5 in cell lines and mouse brain. We show that the PrP(C) segment of amino acids 91-153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrP(C) interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrP(C) and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrP(C) and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrP(C) segment of amino acids 91-153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrP(C). The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrP(C) and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol.
Collapse
Affiliation(s)
- Laura T Haas
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074 Tübingen, Germany
| | - Mikhail A Kostylev
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| | - Stephen M Strittmatter
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| |
Collapse
|
45
|
Abstract
"Amyloid" is a generic term and all amyloids, irrespective of amino acid sequence, are formed in a seeded nucleation mechanism in which a small aggregate (oligomers) of a few amyloid moieties (a seed or a nucleus) seed (nucleate) normal amyloid precursor moieties to change conformation to a β-sheet. All sporadic neurodegenerative disorders are diseases of old age. This epidemiological phenomenon is consistent with a view that spontaneous conformational change from soluble, monomeric precursor protein into an insoluble amyloid aggregate is accomplished via a seeded nucleation process characterized by a long lag phase. Several predictions can be made on the basis of this assumption. First, an increase of the precursor monomer concentration may favor nucleation and, thus, shorten the lag phase. Second, an increase in the number of seeds should lead to amplification of the nucleation reaction. There are several protein misfolding disorders - the most widely known include Alzheimer's disease, Parkinson's disease and other α-synucleinopathies, amyotrophic lateral sclerosis (ALS), frontotemporal dementias in which abnormally phosphorylated MAP-τ protein accumulates and finally, polyglutamine expansion diseases such as Huntington's disease and certain spinocerebellar ataxias. The proteins involved differ in each of these disorders but the molecular mechanism is almost exactly the same, a seeding-nucleation mechanism.
Collapse
Affiliation(s)
- Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
46
|
Aβ induces its own prion protein N-terminal fragment (PrPN1)–mediated neutralization in amorphous aggregates. Neurobiol Aging 2014; 35:1537-48. [DOI: 10.1016/j.neurobiolaging.2014.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 01/24/2023]
|
47
|
Peripheral administration of a humanized anti-PrP antibody blocks Alzheimer's disease Aβ synaptotoxicity. J Neurosci 2014; 34:6140-5. [PMID: 24790184 DOI: 10.1523/jneurosci.3526-13.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is associated with pathological assembly states of amyloid-β protein (Aβ). Aβ-related synaptotoxicity can be blocked by anti-prion protein (PrP) antibodies, potentially allowing therapeutic targeting of this aspect of AD neuropathogenesis. Here, we show that intravascular administration of a high-affinity humanized anti-PrP antibody to rats can prevent the plasticity-disrupting effects induced by exposure to soluble AD brain extract. These results provide an in vivo proof of principle for such a therapeutic strategy.
Collapse
|
48
|
Hirsch TZ, Hernandez-Rapp J, Martin-Lannerée S, Launay JM, Mouillet-Richard S. PrP(C) signalling in neurons: from basics to clinical challenges. Biochimie 2014; 104:2-11. [PMID: 24952348 DOI: 10.1016/j.biochi.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023]
Abstract
The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Julia Hernandez-Rapp
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France; Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France
| | - Séverine Martin-Lannerée
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France; Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France.
| |
Collapse
|
49
|
Walsh KP, Minamide LS, Kane SJ, Shaw AE, Brown DR, Pulford B, Zabel MD, Lambeth JD, Kuhn TB, Bamburg JR. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One 2014; 9:e95995. [PMID: 24760020 PMCID: PMC3997518 DOI: 10.1371/journal.pone.0095995] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Neurites of neurons under acute or chronic stress form bundles of filaments (rods) containing 1∶1 cofilin∶actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5-30 min) in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors). In contrast, slow rod formation (50% of maximum response in ∼6 h) occurs in a subpopulation (∼20%) of hippocampal neurons upon exposure to soluble human amyloid-β dimer/trimer (Aβd/t) at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNFα, IL-1β, IL-6) also induce rods at the same rate and within the same neuronal population as Aβd/t. Neurons from prion (PrP(C))-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or Aβd/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX) activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrP(C) is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrP(C)-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrP(C)-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse Aβ-binding membrane proteins induce synaptic dysfunction.
Collapse
Affiliation(s)
- Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Bruce Pulford
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Zabel
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - J. David Lambeth
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
50
|
Nicoll AJ, Panico S, Freir DB, Wright D, Terry C, Risse E, Herron CE, O'Malley T, Wadsworth JDF, Farrow MA, Walsh DM, Saibil HR, Collinge J. Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity. Nat Commun 2014; 4:2416. [PMID: 24022506 PMCID: PMC3908552 DOI: 10.1038/ncomms3416] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/07/2013] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer’s disease with toxicities mimicked by synthetic Aβ1–42. However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ1–42 after different durations of aggregation. We show PrP-binding and PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils inhibit LTP in a PrP-independent manner. That only certain transient Aβ assemblies cause PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in Aβ-induced impairments. We show that these protofibrils contain a defined nanotubular structure with a previously unidentified triple helical conformation. Blocking the formation of Aβ nanotubes or their interaction with PrP might have a role in treatment of Alzheimer’s disease. Prion protein has been suggested to bind toxic amyloid-ß oligomers. Nicoll et al. demonstrate that binding to prion protein and prion protein-dependent synaptotoxicity correlate with the presence of a tubular form of amyloid-ß with a defined triple helical structure.
Collapse
Affiliation(s)
- Andrew J Nicoll
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|