1
|
Liu X, Xing Y, Liu X, Zeng L, Ma J. Opticin Ameliorates Hypoxia-Induced Retinal Angiogenesis by Suppression of Integrin α2-I Domain-Collagen Complex Formation and RhoA/ROCK1 Signaling. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35006271 PMCID: PMC8762695 DOI: 10.1167/iovs.63.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose It was previously demonstrated that opticin (OPTC) inhibits the collagen-induced promotion of bioactivities of human retinal vascular endothelial cells (hRVECs). The present in vivo study aimed to further investigate the regulatory role of opticin in vitreous collagen-mediated retinal neovascularization and to elucidate its regulatory mechanisms with regard to integrin α2-I domain–GXXGER complex formation and RhoA/ROCK1 signal change. The regulatory role of Mg2+ on integrin α2-I domain–GXXGER complex formation in the above process was also investigated. Methods The zebrafish model of hypoxia-induced retinopathy was established, and OPTC-overexpressing plasmids were intravitreally injected to assess the antiangiogenesis effect of opticin. The regulatory role of opticin in integrin α2-I domain–GXXGER complex formation in vivo was analyzed by mass spectrometry. The mRNA and protein expression of RhoA/ROCK1 were examined. The concentration of Mg2+ as an activator of the integrin α2-I domain–GXXGER complex was measured. Solid-phase binding assays were performed to investigate the interference of opticin in integrin α2 collagen binding and the regulatory role of Mg2+ in that process. Results Opticin and OPTC-overexpressing plasmid injection reduced retinal neovascularization in the zebrafish model of hypoxia-induced retinopathy. Mass spectrometry revealed that opticin could inhibit integrin α2-I domain–GXXGER complex formation. The Mg2+ concentration was also decreased by opticin, which was another indication of the complex activation. Injection of OPTC-overexpressing plasmids inhibited mRNA and the protein expression of RhoA/ROCK1 in the zebrafish model of hypoxia-induced retinopathy. The solid-phase binding assay revealed that opticin could block integrin α2–collagen I binding in the presence of Mg2+. Conclusions Opticin exerts its antiangiogenesis effect by interfering in the Mg2+-modulated integrin α2-I domain–collagen complex formation and suppressing the downstream RhoA/ ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoxue Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lingyan Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Nunes AM, Minetti CASA, Remeta DP, Baum J. Magnesium Activates Microsecond Dynamics to Regulate Integrin-Collagen Recognition. Structure 2018; 26:1080-1090.e5. [PMID: 29937357 DOI: 10.1016/j.str.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Integrin receptors bind collagen via metal-mediated interactions that are modulated by magnesium (Mg2+) levels in the extracellular matrix. Nuclear magnetic resonance-based relaxation experiments, isothermal titration calorimetry, and adhesion assays reveal that Mg2+ functions as both a structural anchor and dynamic switch of the α1β1 integrin I domain (α1I). Specifically, Mg2+ binding activates micro- to millisecond timescale motions of residues distal to the binding site, particularly those surrounding the salt bridge at helix 7 and near the metal ion-dependent adhesion site. Mutagenesis of these residues impacts α1I functional activity, thereby suggesting that Mg-bound α1I dynamics are important for collagen binding and consequent allosteric rearrangement of the low-affinity closed to high-affinity open conformation. We propose a multistep recognition mechanism for α1I-Mg-collagen interactions involving both conformational selection and induced-fit processes. Our findings unravel the multifaceted role of Mg2+ in integrin-collagen recognition and assist in elucidating the molecular mechanisms by which metals regulate protein-protein interactions.
Collapse
Affiliation(s)
- Ana Monica Nunes
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Conceição A S A Minetti
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - David P Remeta
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Sipilä KH, Drushinin K, Rappu P, Jokinen J, Salminen TA, Salo AM, Käpylä J, Myllyharju J, Heino J. Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms. J Biol Chem 2018; 293:7645-7658. [PMID: 29615493 DOI: 10.1074/jbc.ra118.002200] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Collagens are the most abundant extracellular matrix proteins in vertebrates and have a characteristic triple-helix structure. Hydroxylation of proline residues is critical for helix stability, and diminished prolyl hydroxylase activity causes wide-spread defects in connective tissues. Still, the role of proline hydroxylation in the binding of collagen receptors such as integrins is unclear. Here, we isolated skin collagen from genetically modified mice having reduced prolyl 4-hydroxylase activity. At room temperature, the reduced proline hydroxylation did not affect interactions with the recombinant integrin α2I domain, but at 37 °C, collagen hydroxylation correlated with the avidity of α2I domain binding. Of note, LC-MS/MS analysis of isolated skin collagens revealed no major changes in the hydroxyproline content of the main integrin-binding sites. Thus, the disrupted α2I domain binding at physiological temperatures was most likely due to structural destabilization of the collagenous helix. Integrin α2I binding to the triple-helical GFPGER motif was slightly weaker than to GFOGER (O = hydroxyproline). This phenomenon was more prominent when α1 integrin was tested. Integrin α1β1 expressed on CHO cells and recombinant α1I domain showed remarkably slower binding velocity and weaker avidity to GFPGER when compared with GFOGER. Structural modeling revealed the critical interaction between Arg-218 in α1I and the hydroxyproline residue in the integrin-binding motif. The role of Arg-218 was further validated by testing a variant R218D α1I domain in solid-phase binding assays. Thus, our results show that the lack of proline hydroxylation in collagen can affect integrin binding by a direct mechanism and via structural destabilization of the triple helix.
Collapse
Affiliation(s)
- Kalle H Sipilä
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kati Drushinin
- the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland, and
| | - Pekka Rappu
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Johanna Jokinen
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Tiina A Salminen
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Antti M Salo
- the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland, and
| | - Jarmo Käpylä
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Johanna Myllyharju
- the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland, and
| | - Jyrki Heino
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland,
| |
Collapse
|
4
|
Brown KL, Banerjee S, Feigley A, Abe H, Blackwell TS, Pozzi A, Hudson BG, Zent R. Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1- and α2-I domains. Sci Rep 2018; 8:2916. [PMID: 29440721 PMCID: PMC5811549 DOI: 10.1038/s41598-018-21231-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/31/2018] [Indexed: 11/11/2022] Open
Abstract
Integrins are transmembrane cell-extracellular matrix adhesion receptors that impact many cellular functions. A subgroup of integrins contain an inserted (I) domain within the α–subunits (αI) that mediate ligand recognition where function is contingent on binding a divalent cation at the metal ion dependent adhesion site (MIDAS). Ca2+ is reported to promote α1I but inhibit α2I ligand binding. We co-crystallized individual I-domains with MIDAS-bound Ca2+ and report structures at 1.4 and 2.15 Å resolution, respectively. Both structures are in the “closed” ligand binding conformation where Ca2+ induces minimal global structural changes. Comparisons with Mg2+-bound structures reveal Mg2+ and Ca2+ bind α1I in a manner sufficient to promote ligand binding. In contrast, Ca2+ is displaced in the α2I domain MIDAS by 1.4 Å relative to Mg2+ and unable to directly coordinate all MIDAS residues. We identified an E152-R192 salt bridge hypothesized to limit the flexibility of the α2I MIDAS, thus, reducing Ca2+ binding. A α2I E152A construct resulted in a 10,000-fold increase in Mg2+ and Ca2+ binding affinity while increasing binding to collagen ligands 20%. These data indicate the E152-R192 salt bridge is a key distinction in the molecular mechanism of differential ion binding of these two I domains.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA. .,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA. .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Northeastern Collaborative Access Team, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrew Feigley
- Leadership Alliance, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA
| | - Hanna Abe
- Aspirnaut Summer research program, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA
| | - Timothy S Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| | - Ambra Pozzi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Aspirnaut Summer research program, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232-2372, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Nunes AM, Zhu J, Jezioro J, Minetti CASA, Remeta DP, Farndale RW, Hamaia SW, Baum J. Intrinsic local destabilization of the C-terminus predisposes integrin α1 I domain to a conformational switch induced by collagen binding. Protein Sci 2016; 25:1672-81. [PMID: 27342747 DOI: 10.1002/pro.2972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022]
Abstract
Integrin-collagen interactions play a critical role in a myriad of cellular functions that include immune response, and cell development and differentiation, yet their mechanism of binding is poorly understood. There is increasing evidence that conformational flexibility assumes a central role in the molecular mechanisms of protein-protein interactions and here we employ NMR hydrogen-deuterium exchange (HDX) experiments to explore the impact of slower timescale dynamic events. To gain insight into the mechanisms underlying collagen-induced conformational switches, we have undertaken a comparative study between the wild type integrin α1 I and a gain-of-function E317A mutant. NMR HDX results suggest a relationship between regions exhibiting a reduced local stability in the unbound I domain and those that undergo significant conformational changes upon binding. Specifically, the αC and α7 helices within the C-terminus are at the center of such major perturbations and present reduced local stabilities in the unbound state relative to other structural elements. Complementary isothermal titration calorimetry experiments have been performed to derive complete thermodynamic binding profiles for association of the collagen-like triple-helical peptide with wild type α1 I and E317A mutant. The differential energetics observed for E317A are consistent with the HDX experiments and support a model in which intrinsically destabilized regions predispose conformational rearrangement in the integrin I domain. This study highlights the importance of exploring different timescales to delineate allosteric and binding events.
Collapse
Affiliation(s)
- Ana Monica Nunes
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Jie Zhu
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Jacqueline Jezioro
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Conceição A S A Minetti
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - David P Remeta
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
6
|
Salmela M, Rappu P, Lilja J, Niskanen H, Taipalus E, Jokinen J, Heino J. Tumor promoter PMA enhances kindlin-2 and decreases vimentin recruitment into cell adhesion sites. Int J Biochem Cell Biol 2016; 78:22-30. [PMID: 27373681 DOI: 10.1016/j.biocel.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/19/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
Phorbol diester PMA (phorbol 12-myristate 13-acetate) is a well-known promoter of tumor progression. PMA also regulates cell adhesion by several mechanisms including conformational activation of integrins and integrin clustering. Here, PMA was shown to induce lamellipodia formation and reorganization of the adhesion sites as well as actin and vimentin filaments independently of integrin preactivation. To further analyze the mechanism of PMA action, the protein composition in the α1β1 integrin/collagen IV adhesion sites was analyzed by mass spectrometry and proteomics. In four independent experiments we observed the reduced recruitment of vimentin in relation to integrin α1 subunit. This was in full agreement with the fact that we also detected the retraction of vimentin from cell adhesions by confocal microscopy. Furthermore, the accumulation of kindlin-2 into cell adhesions was significantly increased after PMA treatment. Kindlin-2 siRNA inhibited cell spreading as well as the formation of actin fibrils and cell adhesions, but did not prevent the effect of PMA on lamellipodia formation. Thus, kindlin-2 recruitment was considered to be a consequence rather than the primary cause for the loss of connection between vimentin and the adhesion sites.
Collapse
Affiliation(s)
- Maria Salmela
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Johanna Lilja
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Henri Niskanen
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Taipalus
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Johanna Jokinen
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Quantitative proteomic profiling of renal tissue in human chronic rejection biopsy samples after renal transplantation. Transplant Proc 2015; 47:323-31. [PMID: 25769567 DOI: 10.1016/j.transproceed.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Chronic rejection (CR) is the leading cause of late renal transplant failure and is characterized by a relatively slow but progressive loss of renal function in combination with proteinuria and hypertension >3 months after transplantation. To identify and quantify the protein profiles in renal tissues of CR patients, we used isotope tagging for relative and absolute quantification (iTRAQ)-based proteomic technology to perform global protein expression analyses in CR patients and control subjects. MATERIALS AND METHODS After protein extraction, quantitation, and digestion, samples were labeled with iTRAQ reagents and then separated by strong cation exchange and high-performance liquid chromatography. The fractions were further analyzed by tandem mass spectrometry. ProteinPilot version 4.0 software and the Swiss-Prot human database were applied for statistical analysis and database searching, respectively. Differentially expressed proteins were subjected to bioinformatic analysis by using the Gene Ontology database and the Kyoto Encyclopedia of Genes and Genomes database to further characterize their potential functional roles and related pathways in CR. RESULTS In total, 1857 distinct proteins (confidence >95%, ρ < .05) were identified and quantified. Using a strict cutoff value of 1.5-fold for expressed variation, 87 proteins showed significant differences in expression between the CR and control groups; 53 were up-regulated and 34 were down-regulated. The differentially expressed proteins were mainly involved in protein binding, structural molecule activity, and extracellular matrix structural constituent. Several proteins, such as the alpha-1 chain of collagen type IV and integrin alpha-1, may play roles in the pathogenesis of CR and were implicated in the extracellular matrix-receptor interaction pathway. CONCLUSIONS This study is the first to focus on iTRAQ-based quantitative proteomic characterization of renal tissue in CR. These insights may broaden our understanding of the molecular mechanisms underlying CR and provide potential biomarker candidates for future diagnostics.
Collapse
|
8
|
Chouhan BS, Käpylä J, Denessiouk K, Denesyuk A, Heino J, Johnson MS. Early chordate origin of the vertebrate integrin αI domains. PLoS One 2014; 9:e112064. [PMID: 25409021 PMCID: PMC4237329 DOI: 10.1371/journal.pone.0112064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/11/2014] [Indexed: 12/17/2022] Open
Abstract
Half of the 18 human integrins α subunits have an inserted αI domain yet none have been observed in species that have diverged prior to the appearance of the urochordates (ascidians). The urochordate integrin αI domains are not human orthologues but paralogues, but orthologues of human αI domains extend throughout later-diverging vertebrates and are observed in the bony fish with duplicate isoforms. Here, we report evidence for orthologues of human integrins with αI domains in the agnathostomes (jawless vertebrates) and later diverging species. Sequence comparisons, phylogenetic analyses and molecular modeling show that one nearly full-length sequence from lamprey and two additional fragments include the entire integrin αI domain region, have the hallmarks of collagen-binding integrin αI domains, and we show that the corresponding recombinant proteins recognize the collagen GFOGER motifs in a metal dependent manner, unlike the α1I domain of the ascidian C. intestinalis. The presence of a functional collagen receptor integrin αI domain supports the origin of orthologues of the human integrins with αI domains prior to the earliest diverging extant vertebrates, a domain that has been conserved and diversified throughout the vertebrate lineage.
Collapse
Affiliation(s)
- Bhanupratap Singh Chouhan
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jarmo Käpylä
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| |
Collapse
|
9
|
Sipilä K, Haag S, Denessiouk K, Käpylä J, Peters EC, Denesyuk A, Hansen U, Konttinen Y, Johnson MS, Holmdahl R, Heino J. Citrullination of collagen II affects integrin‐mediated cell adhesion in a receptor‐specific manner. FASEB J 2014; 28:3758-68. [DOI: 10.1096/fj.13-247767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kalle Sipilä
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Sabrina Haag
- Division of Medical Inflammation Research, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Department of BioscienceÅbo Akademi UniversityTurkuFinland
| | - Jarmo Käpylä
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Eric C. Peters
- Genomics Institute of the Novartis Research FoundationSan DiegoCaliforniaUSA
| | - Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Department of BioscienceÅbo Akademi UniversityTurkuFinland
| | - Uwe Hansen
- Department of Physiology, Chemistry, and PathobiochemistryMuenster University HospitalMuensterGermany
| | - Yrjö Konttinen
- Department of MedicineInstitute of Clinical Medicine, University of HelsinkiHelsinkiFinland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Department of BioscienceÅbo Akademi UniversityTurkuFinland
| | - Rikard Holmdahl
- Medicity Research LaboratoryUniversity of TurkuTurkuFinland
- Division of Medical Inflammation Research, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Jyrki Heino
- Department of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
10
|
Abstract
Integrin α1β1 is widely expressed in mesenchyme and the immune system, as well as a minority of epithelial tissues. Signaling through α1 contributes to the regulation of extracellular matrix composition, in addition to supplying in some tissues a proliferative and survival signal that appears to be unique among the collagen binding integrins. α1 provides a tissue retention function for cells of the immune system including monocytes and T cells, where it also contributes to their long-term survival, providing for peripheral T cell memory, and contributing to diseases of autoimmunity. The viability of α1 null mice, as well as the generation of therapeutic monoclonal antibodies against this molecule, have enabled studies of the role of α1 in a wide range of pathophysiological circumstances. The immune functions of α1 make it a rational therapeutic target.
Collapse
|
11
|
Madamanchi A, Santoro SA, Zutter MM. α2β1 Integrin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:41-60. [PMID: 25023166 DOI: 10.1007/978-94-017-9153-3_3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The α2β1 integrin, also known as VLA-2, GPIa-IIa, CD49b, was first identified as an extracellular matrix receptor for collagens and/or laminins [55, 56]. It is now recognized that the α2β1 integrin serves as a receptor for many matrix and nonmatrix molecules [35, 79, 128]. Extensive analyses have clearly elucidated the α2 I domain structural motifs required for ligand binding, and also defined distinct conformations that lead to inactive, partially active or highly active ligand binding [3, 37, 66, 123, 136, 137, 140]. The mechanisms by which the α2β1 integrin plays a critical role in platelet function and homeostasis have been carefully defined via in vitro and in vivo experiments [76, 104, 117, 125]. Genetic and epidemiologic studies have confirmed human physiology and disease states mediated by this receptor in immunity, cancer, and development [6, 20, 21, 32, 43, 90]. The role of the α2β1 integrin in these multiple complex biologic processes will be discussed in the chapter.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
12
|
Chin YKY, Headey SJ, Mohanty B, Patil R, McEwan PA, Swarbrick JD, Mulhern TD, Emsley J, Simpson JS, Scanlon MJ. The structure of integrin α1I domain in complex with a collagen-mimetic peptide. J Biol Chem 2013; 288:36796-809. [PMID: 24187131 PMCID: PMC3873540 DOI: 10.1074/jbc.m113.480251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/04/2013] [Indexed: 11/06/2022] Open
Abstract
We have determined the structure of the human integrin α1I domain bound to a triple-helical collagen peptide. The structure of the α1I-peptide complex was investigated using data from NMR, small angle x-ray scattering, and size exclusion chromatography that were used to generate and validate a model of the complex using the data-driven docking program, HADDOCK (High Ambiguity Driven Biomolecular Docking). The structure revealed that the α1I domain undergoes a major conformational change upon binding of the collagen peptide. This involves a large movement in the C-terminal helix of the αI domain that has been suggested to be the mechanism by which signals are propagated in the intact integrin receptor. The structure suggests a basis for the different binding selectivity observed for the α1I and α2I domains. Mutational data identify residues that contribute to the conformational change observed. Furthermore, small angle x-ray scattering data suggest that at low collagen peptide concentrations the complex exists in equilibrium between a 1:1 and 2:1 α1I-peptide complex.
Collapse
Affiliation(s)
- Yanni K.-Y. Chin
- From Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences and
| | - Stephen J. Headey
- From Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences and
| | - Biswaranjan Mohanty
- From Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences and
- Australian Research Council Centre of Excellence for Coherent X-ray Science, Monash University, Parkville, Victoria 3052, Australia
| | - Rahul Patil
- From Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences and
| | - Paul A. McEwan
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom, and
| | - James D. Swarbrick
- From Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences and
| | - Terrence D. Mulhern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jonas Emsley
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom, and
| | - Jamie S. Simpson
- From Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences and
| | - Martin J. Scanlon
- From Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences and
- Australian Research Council Centre of Excellence for Coherent X-ray Science, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
An activating mutation reveals a second binding mode of the integrin α2 I domain to the GFOGER motif in collagens. PLoS One 2013; 8:e69833. [PMID: 23922814 PMCID: PMC3726769 DOI: 10.1371/journal.pone.0069833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022] Open
Abstract
The GFOGER motif in collagens (O denotes hydroxyproline) represents a high-affinity binding site for all collagen-binding integrins. Other GxOGER motifs require integrin activation for maximal binding. The E318W mutant of the integrin α2β1 I domain displays a relaxed collagen specificity, typical of an active state. E318W binds more strongly than the wild-type α2 I domain to GMOGER, and forms a 2:1 complex with a homotrimeric, collagen-like, GFOGER peptide. Crystal structure analysis of this complex reveals two E318W I domains, A and B, bound to a single triple helix. The E318W I domains are virtually identical to the collagen-bound wild-type I domain, suggesting that the E318W mutation activates the I domain by destabilising the unligated conformation. E318W I domain A interacts with two collagen chains similarly to wild-type I domain (high-affinity mode). E318W I domain B makes favourable interactions with only one collagen chain (low-affinity mode). This observation suggests that single GxOGER motifs in the heterotrimeric collagens V and IX may support binding of activated integrins.
Collapse
|
14
|
Lahti M, Heino J, Käpylä J. Leukocyte integrins αLβ2, αMβ2 and αXβ2 as collagen receptors--receptor activation and recognition of GFOGER motif. Int J Biochem Cell Biol 2013; 45:1204-11. [PMID: 23542015 DOI: 10.1016/j.biocel.2013.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/08/2013] [Accepted: 03/20/2013] [Indexed: 01/14/2023]
Abstract
Integrins αLβ2, αMβ2 and αXβ2 are expressed on leukocytes. Their primary ligands are counter transmembrane receptors or plasma proteins, such as intercellular cell adhesion molecule-1 (ICAM-1) or components of complement system (iC3b, iC4b), respectively. Function blocking antibodies for these integrins may also reduce cell adhesion to collagens. To make the first systematical comparison of human α(L)β2, α(M)β2 and α(X)β2 as collagen receptors, we produced the corresponding integrin αI domains both in wild-type and activated form and measured their binding to collagens I-VI. In the "closed" (wild-type) conformation, the α(L)I and α(M)I domains bound with low avidity to their primary ligands, and the interaction with collagens was also very weak. Gain-of-function mutations α(L) I306G, α(L) K287C/K294C and α(M) I316G are considered to mimic "open", activated αI domains. The binding of these activated αI domains to the primary ligands was clearly stronger and they also recognized collagens with moderate avidity (K(d)400 nM). After activation, the αLI domain favored collagen I (K(d )≈ 80 nM) when compared to collagen IV. The integrin αXI domain acted in a very different manner since already in native, wild-type form it bound to collagen IV and iC3b (K(d) ≈ 200-400 nM). Antibodies against αXβ2 and αMβ2 blocked promyelocytic leukemia cell adhesion to the collagenous GFOGER motif, a binding site for the β1 integrin containing collagen receptors. In brief, leukocyte β2 integrins may act as collagen receptors in a heterodimer specific manner.
Collapse
Affiliation(s)
- Matti Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland.
| | | | | |
Collapse
|
15
|
|
16
|
Weinreb PH, Li S, Gao SX, Liu T, Pepinsky RB, Caravella JA, Lee JH, Woods VL. Dynamic structural changes are observed upon collagen and metal ion binding to the integrin α1 I domain. J Biol Chem 2012; 287:32897-912. [PMID: 22847004 PMCID: PMC3463359 DOI: 10.1074/jbc.m112.354365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
We have applied hydrogen-deuterium exchange mass spectrometry, in conjunction with differential scanning calorimetry and protein stability analysis, to examine solution dynamics of the integrin α1 I domain induced by the binding of divalent cations, full-length type IV collagen, or a function-blocking monoclonal antibody. These studies revealed features of integrin activation and α1I-ligand complexes that were not detected by static crystallographic data. Mg(2+) and Mn(2+) stabilized α1I but differed in their effects on exchange rates in the αC helix. Ca(2+) impacted α1I conformational dynamics without altering its gross thermal stability. Interaction with collagen affected the exchange rates in just one of three metal ion-dependent adhesion site (MIDAS) loops, suggesting that MIDAS loop 2 plays a primary role in mediating ligand binding. Collagen also induced changes consistent with increased unfolding in both the αC and allosteric C-terminal helices of α1I. The antibody AQC2, which binds to α1I in a ligand-mimetic manner, also reduced exchange in MIDAS loop 2 and increased exchange in αC, but it did not impact the C-terminal region. This is the first study to directly demonstrate the conformational changes induced upon binding of an integrin I domain to a full-length collagen ligand, and it demonstrates the utility of the deuterium exchange mass spectrometry method to study the solution dynamics of integrin/ligand and integrin/metal ion interactions. Based on the ligand and metal ion binding data, we propose a model for collagen-binding integrin activation that explains the differing abilities of Mg(2+), Mn(2+), and Ca(2+) to activate I domain-containing integrins.
Collapse
Affiliation(s)
| | - Sheng Li
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| | - Sharon X. Gao
- From Biogen Idec, Inc., Cambridge, Massachusetts 02142 and
| | - Tong Liu
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| | | | | | - Jun H. Lee
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| | - Virgil L. Woods
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| |
Collapse
|
17
|
Shi M, Pedchenko V, Greer BH, Van Horn WD, Santoro SA, Sanders CR, Hudson BG, Eichman BF, Zent R, Pozzi A. Enhancing integrin α1 inserted (I) domain affinity to ligand potentiates integrin α1β1-mediated down-regulation of collagen synthesis. J Biol Chem 2012; 287:35139-35152. [PMID: 22888006 DOI: 10.1074/jbc.m112.358648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α1β1 binding to collagen IV, which is mediated by the α1-inserted (I) domain, down-regulates collagen synthesis. When unligated, a salt bridge between Arg(287) and Glu(317) is thought to keep this domain in a low affinity conformation. Ligand binding opens the salt bridge leading to a high-affinity conformation. How modulating integrin α1β1 affinity alters collagen homeostasis is unknown. To address this question, we utilized a thermolysin-derived product of the α1α2α1 network of collagen IV (α1α2α1(IV) truncated protomer) that selectively binds integrin α1β1. We show that an E317A substitution enhanced binding to the truncated protomer, consistent with a previous finding that this substitution eliminates the salt bridge. Surprisingly, we show that an R287A substitution did not alter binding, whereas R287E/E317R substitutions enhanced binding to the truncated protomer. NMR spectroscopy and molecular modeling suggested that eliminating the Glu(317) negative charge is sufficient to induce a conformational change toward the open state. Thus, the role played by Glu(317) is largely independent of the salt bridge. We further show that cells expressing E317A or R287E/E317R substitutions have enhanced down-regulation of collagen IV synthesis, which is mediated by the ERK/MAPK pathway. In conclusion, we have demonstrated that modulating the affinity of the extracellular α1 I domain to collagen IV enhances outside-in signaling by potentiating ERK activation and enhancing the down-regulation of collagen synthesis.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232
| | - Vadim Pedchenko
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Briana H Greer
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232
| | - Wade D Van Horn
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Samuel A Santoro
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232
| | - Charles R Sanders
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Billy G Hudson
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Brandt F Eichman
- Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Roy Zent
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Medicine, Veterans Affairs Medical Center, Nashville, Tennessee 37212
| | - Ambra Pozzi
- Department of Medicine (Nephrology), Vanderbilt University, Nashville, Tennessee 37232; Center for Matrix Biology, Vanderbilt University, Nashville, Tennessee 37232; Department of Medicine, Veterans Affairs Medical Center, Nashville, Tennessee 37212.
| |
Collapse
|
18
|
Hamaia SW, Pugh N, Raynal N, Némoz B, Stone R, Gullberg D, Bihan D, Farndale RW. Mapping of potent and specific binding motifs, GLOGEN and GVOGEA, for integrin α1β1 using collagen toolkits II and III. J Biol Chem 2012; 287:26019-28. [PMID: 22654115 PMCID: PMC3406685 DOI: 10.1074/jbc.m112.353144] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integrins are well characterized cell surface receptors for extracellular matrix proteins. Mapping integrin-binding sites within the fibrillar collagens identified GFOGER as a high affinity site recognized by α2β1, but with lower affinity for α1β1. Here, to identify specific ligands for α1β1, we examined binding of the recombinant human α1 I domain, the rat pheochromocytoma cell line (PC12), and the rat glioma Rugli cell line to our collagen Toolkit II and III peptides using solid-phase and real-time label-free adhesion assays. We observed Mg2+-dependent binding of the α1 I domain to the peptides in the following rank order: III-7 (GLOGEN), II-28 (GFOGER), II-7 and II-8 (GLOGER), II-18 (GAOGER), III-4 (GROGER). PC12 cells showed a similar profile. Using antibody blockade, we confirmed that binding of PC12 cells to peptide III-7 was mediated by integrin α1β1. We also identified a new α1β1-binding activity within peptide II-27. The sequence GVOGEA bound weakly to PC12 cells and strongly to activated Rugli cells or to an activated α1 I domain, but not to the α2 I domain or to C2C12 cells expressing α2β1 or α11β1. Thus, GVOGEA is specific for α1β1. Although recognized by both α2β1 and α11β1, GLOGEN is a better ligand for α1β1 compared with GFOGER. Finally, using biosensor assays, we show that although GLOGEN is able to compete for the α1 I domain from collagen IV (IC50 ∼3 μm), GFOGER is much less potent (IC50 ∼90 μm), as shown previously. These data confirm the selectivity of GFOGER for α2β1 and establish GLOGEN as a high affinity site for α1β1.
Collapse
Affiliation(s)
- Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J. Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. ACTA ACUST UNITED AC 2012; 197:131-40. [PMID: 22451694 PMCID: PMC3317794 DOI: 10.1083/jcb.201111077] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The crystal structure of the α5β1 integrin reveals conformational changes and amino acids important for ligand binding. Integrin α5β1 is a major cellular receptor for the extracellular matrix protein fibronectin and plays a fundamental role during mammalian development. A crystal structure of the α5β1 integrin headpiece fragment bound by an allosteric inhibitory antibody was determined at a 2.9-Å resolution both in the absence and presence of a ligand peptide containing the Arg-Gly-Asp (RGD) sequence. The antibody-bound β1 chain accommodated the RGD ligand with very limited structural changes, which may represent the initial step of cell adhesion mediated by nonactivated integrins. Furthermore, a molecular dynamics simulation pointed to an important role for Ca2+ in the conformational coupling between the ligand-binding site and the rest of the molecule. The RGD-binding pocket is situated at the center of a trenchlike exposed surface on the top face of α5β1 devoid of glycosylation sites. The structure also enabled the precise prediction of the acceptor residue for the auxiliary synergy site of fibronectin on the α5 subunit, which was experimentally confirmed by mutagenesis and kinetic binding assays.
Collapse
Affiliation(s)
- Masamichi Nagae
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|