1
|
Struwe H, Nguyen T, Schwörer S, Droste J, Spinck H, Kirschning A. Chemoenzymatic Formation of Oxa-Terpenoids by Sesqui- and Diterpene Synthase-Mediated Biotransformations with 9-Oxy-FPP Ether Derivatives. Biochemistry 2025; 64:498-508. [PMID: 39731539 PMCID: PMC11756643 DOI: 10.1021/acs.biochem.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed. These showed improved promiscuity toward different STSs. Four new cyclized terpenoids with an embedded ether group were isolated and characterized. In the case of two cyclic enol ethers, also the corresponding "hydrolysis" products, linear hydroxyaldehydes, were isolated. Interestingly, all cyclization products originate from an initial 1 → 12 cyclization unprecedented when native farnesyl pyrophosphate serves as a substrate. We found that the most suitable FPP derivative with an additional oxygen at position 9 does not carry any methyl group on the terminal alkene, which likely reduces steric congestion when the preferred conformation for cyclization is adopted in the active site.
Collapse
Affiliation(s)
- Henry Struwe
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg 1B, Hannover 30167, Germany
| | - Trang Nguyen
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg 1B, Hannover 30167, Germany
| | - Svenja Schwörer
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg 1B, Hannover 30167, Germany
| | - Jörn Droste
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg 1B, Hannover 30167, Germany
| | - Hanke Spinck
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg 1B, Hannover 30167, Germany
| | - Andreas Kirschning
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg 1B, Hannover 30167, Germany
- Uppsala
Biomedical Center (BMC), Uppsala University, Husargatan 3, Uppsala 752 37, Sweden
| |
Collapse
|
2
|
González Requena V, Srivastava PL, Miller DJ, Allemann RK. Single Point Mutation Abolishes Water Capture in Germacradien-4-ol Synthase. Chembiochem 2024; 25:e202400290. [PMID: 39031755 PMCID: PMC11610670 DOI: 10.1002/cbic.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The high-fidelity sesquiterpene cyclase (-)-germacradien-4-ol synthase (GdolS) converts farnesyl diphosphate into the macrocyclic alcohol (-)-germacradien-4-ol. Site-directed mutagenesis was used to decipher the role of key residues in the water control mechanism. Replacement of Ala176, located in the G1/2 helix, with non-polar aliphatic residues of increasing size (valine, leucine, isoleucine and methionine) resulted in the accumulation of the non-hydroxylated products germacrene A and germacrene D. In contrast, hydroxylation was maintained when the polar residues threonine, glutamine or aspartate replaced Ala176. Additionally, although a contribution of His150 to the nucleophilic water addition could be ruled out, the imidazole ring of His150 appears to assist carbocation stabilisation. The results presented here shed light on how hydroxylating sesquiterpene synthases can be engineered to design modified sesquiterpene synthases to reduce the need for further steps in the biocatalytic production of oxygenated sesquiterpenoids.
Collapse
Affiliation(s)
| | | | - David J. Miller
- School of ChemistryMain BuildingCardiff UniversityPark Place, CardiffCF10 3ATUnited Kingdom
| | - Rudolf K. Allemann
- School of ChemistryMain BuildingCardiff UniversityPark Place, CardiffCF10 3ATUnited Kingdom
| |
Collapse
|
3
|
Kumar RP, Matos JO, Black BY, Ellenburg WH, Chen J, Patterson M, Gehtman JA, Theobald DL, Krauss IJ, Oprian DD. Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction. Biochemistry 2024; 63:2904-2915. [PMID: 39400323 PMCID: PMC12068512 DOI: 10.1021/acs.biochem.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In a continuing effort to understand reaction mechanisms of terpene synthases catalyzing initial anti-Markovnikov cyclization reactions, we solved the X-ray crystal structure of (+)-caryolan-1-ol synthase (CS) from Streptomyces griseus, with and without an inactive analog of the farnesyl diphosphate (FPP) substrate, 2-fluorofarnesyl diphosphate (2FFPP), bound in the active site of the enzyme. The CS-2FFPP structure was solved to 2.65 Å resolution and showed the ligand in an elongated orientation, incapable of undergoing the initial cyclization event to form a C1-C11 bond. Intriguingly, the apo CS structure (2.2 Å) also had electron density in the active site, in this case, well fit by a curled-up tetraethylene glycol molecule recruited, presumably, from the crystallization medium. The density was also well fit by a molecule of farnesene suggesting that the structure may mimic an intermediate along the reaction coordinate. The curled-up conformation of tetraethylene glycol was accompanied by dramatic rotation of some active-site residues in comparison to the 2FFPP-structure. Most notably, W56 and F183 undergo 90° rotations between the 2FFPP complex and apoenzyme structures, suggesting that these residues provide interactions that help curl the tetraethylene glycol molecule in the active site, and by extension perhaps also a derivative of the FPP substrate in the normal course of the cyclization reaction. In support of this proposal, the CS W56L and F183A variants were observed to be severely restricted in their ability to catalyze C1-C11 cyclization of the FPP substrate and instead produced predominantly acyclic terpene products dominated by farnesol, β-farnesene, and nerolidol.
Collapse
Affiliation(s)
- Ramasamy P. Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jason O. Matos
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Brandon Y. Black
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - William H. Ellenburg
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - MacKenzie Patterson
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jacob A. Gehtman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Douglas L. Theobald
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J. Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D. Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
4
|
Xu H, Li H, Goldfuss B, Schnakenburg G, Dickschat JS. Biosynthesis of the Non-Canonical C 17 Sesquiterpenoids Chlororaphen A and B from Pseudomonas Chlororaphis. Angew Chem Int Ed Engl 2024; 63:e202412040. [PMID: 39023217 DOI: 10.1002/anie.202412040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Chlororaphens A and B are structurally unique non-canonical C17 sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B. In addition, the uptake of up to 14 deuterium atoms from D2O was observed. These findings are explainable by a repeated late stage multistep rearrangement sequence. The absolute configurations of the chlororaphens and their biosynthetic intermediates were elucidated in stereoselective labelling experiments.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Heng Li
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
5
|
Moeller M, Dhar D, Dräger G, Özbasi M, Struwe H, Wildhagen M, Davari MD, Beutel S, Kirschning A. Sesquiterpene Cyclase BcBOT2 Promotes the Unprecedented Wagner-Meerwein Rearrangement of the Methoxy Group. J Am Chem Soc 2024; 146:17838-17846. [PMID: 38888422 PMCID: PMC11228982 DOI: 10.1021/jacs.4c03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Presilphiperfolan-8β-ol synthase (BcBOT2), a substrate-promiscuous sesquiterpene cyclase (STC) of fungal origin, is capable of converting two new farnesyl pyrophosphate (FPP) derivatives modified at C7 of farnesyl pyrophosphate (FPP) bearing either a hydroxymethyl group or a methoxymethyl group. These substrates were chosen based on a computationally generated model. Biotransformations yielded five new oxygenated terpenoids. Remarkably, the formation of one of these tricyclic products can only be explained by a cationically induced migration of the methoxy group, presumably via a Meerwein-salt intermediate, unprecedented in synthetic chemistry and biosynthesis. The results show the great principle and general potential of terpene cyclases for mechanistic studies of unusual cation chemistry and for the creation of new terpene skeletons.
Collapse
Affiliation(s)
- Malte Moeller
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Dipendu Dhar
- Department
of Bioorganic Chemistry, Leibniz Institute
of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle, Germany
| | - Gerald Dräger
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Mikail Özbasi
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Henry Struwe
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Maik Wildhagen
- Institute
for Technical Chemistry, Leibniz University
Hannover, Callinstr.
5, 30167 Hannover, Germany
| | - Mehdi D. Davari
- Department
of Bioorganic Chemistry, Leibniz Institute
of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle, Germany
| | - Sascha Beutel
- Institute
for Technical Chemistry, Leibniz University
Hannover, Callinstr.
5, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
- Uppsala
Biomedical Center (BMC), University Uppsala, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
6
|
Kumar RP, Matos JO, Black BY, Ellenburg WH, Chen J, Patterson M, Gehtman JA, Theobald DL, Krauss IJ, Oprian DD. Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592530. [PMID: 38746203 PMCID: PMC11092760 DOI: 10.1101/2024.05.04.592530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In a continuing effort to understand reaction mechanisms of terpene synthases catalyzing initial anti-Markovnikov cyclization reactions, we solved the X-ray crystal structure of (+)-caryolan-1-ol synthase (CS) from Streptomyces griseus , with and without an inactive analog of the FPP substrate, 2-fluorofarnesyl diphosphate (2FFPP), bound in the active site of the enzyme. The CS-2FFPP complex was solved to 2.65 Å resolution and showed the ligand in a linear, elongated orientation, incapable of undergoing the initial cyclization event to form a bond between carbons C1 and C11. Intriguingly, the apo CS structure (2.2 Å) also had electron density in the active site, in this case density that was well fit with a curled-up tetraethylene glycol molecule presumably recruited from the crystallization medium. The density was also well fit by a molecule of farnesene suggesting that the structure may mimic an intermediate along the reaction coordinate. The curled-up conformation of tetraethylene glycol was accompanied by dramatic rotamer shifts among active-site residues. Most notably, W56 was observed to undergo a 90° rotation between the 2FFPP complex and apo-enzyme structures, suggesting that it contributes to steric interactions that help curl the tetraethylene glycol molecule in the active site, and by extension perhaps also a derivative of the FPP substrate in the normal course of the cyclization reaction. In support of this proposal, the CS W56L variant lost the ability to cyclize the FPP substrate and produced only the linear terpene products farnesol and α- and β-farnesene.
Collapse
|
7
|
Struwe H, Schrödter F, Spinck H, Kirschning A. Sesquiterpene Backbones Generated by Sesquiterpene Cyclases: Formation of iso-Caryolan-1-ol and an Isoclovane. Org Lett 2023; 25:8575-8579. [PMID: 38011332 PMCID: PMC10714441 DOI: 10.1021/acs.orglett.3c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
New sesquiterpene backbones are accessible after incubation of caryolan-synthase (GcoA) and presilphiperfolan-8-β-ol synthase (BcBOT2) with a non-natural farnesyldiphosphate in which the central olefinic double bond is isomerized toward the methyl group. Two newly formed sesquiterpenoids are reported, a constitutional isomer of caryolan-1-ol (3), which we name iso-caryolan-1-ol (17), and the first terpenoid based on the isoclovane ring skeleton generated enzymatically thus far.
Collapse
Affiliation(s)
- Henry Struwe
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Finn Schrödter
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Hanke Spinck
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
8
|
Chhalodia AK, Xu H, Tabekoueng GB, Gu B, Taizoumbe KA, Lauterbach L, Dickschat JS. Functional characterisation of twelve terpene synthases from actinobacteria. Beilstein J Org Chem 2023; 19:1386-1398. [PMID: 37736393 PMCID: PMC10509563 DOI: 10.3762/bjoc.19.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Fifteen type I terpene synthase homologs from diverse actinobacteria that were selected based on a phylogenetic analysis of more than 4000 amino acid sequences were investigated for their products. For four enzymes with functions not previously reported from bacterial terpene synthases the products were isolated and their structures were elucidated by NMR spectroscopy, resulting in the discovery of the first terpene synthases for (+)-δ-cadinol and (+)-α-cadinene, besides the first two bacterial (-)-amorpha-4,11-diene synthases. For other terpene synthases with functions reported from bacteria before the products were identified by GC-MS. The characterised enzymes include a new epi-isozizaene synthase with monoterpene synthase side activity, a 7-epi-α-eudesmol synthase that also produces hedycaryol and germacrene A, and four more sesquiterpene synthases that produce mixtures of hedycaryol and germacrene A. Three phylogenetically related enzymes were in one case not expressed and in two cases inactive, suggesting pseudogenisation in the respective branch of the phylogenetic tree. Furthermore, a diterpene synthase for allokutznerene and a sesterterpene synthase for sesterviolene were identified.
Collapse
Affiliation(s)
- Anuj K Chhalodia
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Georges B Tabekoueng
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Binbin Gu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Kizerbo A Taizoumbe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
9
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
10
|
Stakanovs G, Belyakov S, Jirgensons A, Rasina D. Convergent biomimetic semisynthesis of disesquiterpenoid rumphellolide J. Org Biomol Chem 2022; 20:2455-2461. [PMID: 35254363 DOI: 10.1039/d2ob00238h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The convergent biomimetic gram-scale synthesis of disesquiterpenoid ester rumphellolide J is described. 4β,8β-Epoxycaryophyllan-5-ol was prepared in 67% yield (1.4 g) from naturally ambudant (-)-β-caryophyllene. (+)-Rumphellaoic acid A was obtained in 46% yield (2.2 g) from (-)-caryophyllene oxide. The synthesised (+)-rumphellaoic acid had an opposite specific rotation compared to that of (-)-rumphellaoic acid A isolated from nature, indicating possible occurrence of (+)-β-caryophyllene in Rumphella antipathies and Psidium guajava. Esterification of (+)-rumphellaoic acid A via acyl fluoride and alkoxide of 4β,8β-epoxycaryophyllan-5-ol gave rumphellolide J in 70% yield (1.65 g). The same structure for the synthesized product and natural isolate was proven despite the opposite specific rotation value of the intermediate acid. The short access to the terpenoids provides a material for further investigations of biological activities and valuable reference standards for the analysis of the chemical composition of various natural sources.
Collapse
Affiliation(s)
- Georgijs Stakanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV-1006, Riga, Latvia.
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV-1006, Riga, Latvia.
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV-1006, Riga, Latvia.
| | - Dace Rasina
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV-1006, Riga, Latvia.
| |
Collapse
|
11
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
12
|
Hou A, Goldfuss B, Dickschat JS. Functional Switch and Ethyl Group Formation in the Bacterial Polytrichastrene Synthase from Chryseobacterium polytrichastri. Angew Chem Int Ed Engl 2021; 60:20781-20785. [PMID: 34318977 PMCID: PMC8518897 DOI: 10.1002/anie.202109465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Indexed: 12/19/2022]
Abstract
A reinvestigation of the linalool synthase from Chryseobacterium polytrichastri uncovered its diterpene synthase activity, yielding polytrichastrene A and polytrichastrol A with new skeletons, besides known wanju-2,5-diene and thunbergol. The enzyme mechanism was investigated by isotopic labeling experiments and DFT calculations to explain an unusual ethyl group formation. Rationally designed exchanges of active site residues showed major functional switches, resulting for I66F in the production of five more new compounds, including polytrichastrene B and polytrichastrol B, while A87T, A192V and the double exchange A87T, A192V gave a product shift towards wanju-2,5-diene.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
13
|
Hou A, Goldfuss B, Dickschat JS. Funktionaler Schalter und Ethylgruppenbildung der Bakteriellen Polytrichastrensynthase aus
Chryseobacterium polytrichastri. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Bernd Goldfuss
- Department Chemie Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
14
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
15
|
Wu J, Zhu Y, Zhang M, Li H, Sun P. Micaryolanes A and B, Two New Caryolane-Type Sesquiterpenoids from Marine Streptomyces sp. AH25. Chem Biodivers 2020; 17:e2000769. [PMID: 33140544 DOI: 10.1002/cbdv.202000769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/02/2020] [Indexed: 11/07/2022]
Abstract
Caryolanes, known as β-caryophyllene alcohols, are widely occurring sesquiterpenes in plants. From the cultures of marine Streptomyces sp. AH25, two new caryolane sesquiterpenes, micaryolanes A and B (1 and 2), together with caryolan-1,9β-diol (3) were isolated. Their structures were elucidated by extensive analyses of HR-MS and NMR spectroscopic data. The absolute configurations were assigned via the CD data of the in situ formed [Rh2 (OCOCF3 )4 ] complex and supported by comparison of experimental and calculated specific rotation values. Compounds 1-3 exhibited no activities against Hep3B or MG-63 cell lines or against Gram-positive and Gram-negative bacteria. The results not only enriched the caryolane family, but also proved bacteria as a productive source of terpene metabolites.
Collapse
Affiliation(s)
- Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Yuqin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Mengxue Zhang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai, 200433, P. R. China
| | - Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai, 200433, P. R. China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai, 200433, P. R. China
| |
Collapse
|
16
|
Ali HS, Henchman RH, de Visser SP. Lignin Biodegradation by a Cytochrome P450 Enzyme: A Computational Study into Syringol Activation by GcoA. Chemistry 2020; 26:13093-13102. [PMID: 32613677 PMCID: PMC7590115 DOI: 10.1002/chem.202002203] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/12/2022]
Abstract
A recently characterized cytochrome P450 isozyme GcoA activates lignin components through a selective O-demethylation or alternatively an acetal formation reaction. These are important reactions in biotechnology and, because lignin is readily available; it being the main component in plant cell walls. In this work we present a density functional theory study on a large active site model of GcoA to investigate syringol activation by an iron(IV)-oxo heme cation radical oxidant (Compound I) leading to hemiacetal and acetal products. Several substrate-binding positions were tested and full energy landscapes calculated. The study shows that substrate positioning determines the product distributions. Thus, with the phenol group pointing away from the heme, an O-demethylation is predicted, whereas an initial hydrogen-atom abstraction of the weak phenolic O-H group would trigger a pathway leading to ring-closure to form acetal products. Predictions on how to engineer P450 GcoA to get more selective product distributions are given.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Richard H. Henchman
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Sam P. de Visser
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| |
Collapse
|
17
|
Matos JO, Kumar RP, Ma AC, Patterson M, Krauss IJ, Oprian DD. Mechanism Underlying Anti-Markovnikov Addition in the Reaction of Pentalenene Synthase. Biochemistry 2020; 59:3271-3283. [PMID: 32786410 DOI: 10.1021/acs.biochem.0c00518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most terpene synthase reactions follow Markovnikov rules for formation of high-energy carbenium ion intermediates. However, there are notable exceptions. For example, pentalenene synthase (PS) undergoes an initial anti-Markovnikov cyclization reaction followed by a 1,2-hydride shift to form an intermediate humulyl cation with positive charge on the secondary carbon C9 atom of the farnesyl diphosphate substrate. The mechanism by which these enzymes stabilize and guide the regioselectivity of secondary carbocations has not heretofore been elucidated. In an effort to better understand these reactions, we grew crystals of apo-PS, soaked them with the nonreactive substrate analogue 12,13-difluorofarnesyl diphosphate, and determined the X-ray structure of the resulting complex at 2.2 Å resolution. The most striking feature of the active site structure is that C9 is perfectly positioned to make a C-H···π interaction with the side chain benzene ring of residue F76; this would enhance hyperconjugation to stabilize a developing cation at C10 and thus support the anti-Markovnikov regioselectivity of the cyclization. The benzene ring is also positioned to catalyze the migration of H to C10 and stabilize a C9 carbocation. On the opposite face of C9, further cation stabilization is possible via interactions with the main chain carbonyl of I177 and the neighboring intramolecular C6═C7 bond. Mutagenesis experiments also support a role for residue 76 in these interactions, but most interesting is the F76W mutant, whose crystal structure clearly shows C9 and C10 centered above the fused benzene and pyrrole rings of the indole side chain, respectively, such that a carbocation at either position could be stabilized in this complex, and two anti-Markovnikov products, pentalenene and humulene, are formed. Finally, we show that there is a rough correlation (although not absolute) of an aromatic side chain (F or Y) at position 76 in related terpene synthases from Streptomyces that catalyze similar anti-Markovnikov addition reactions.
Collapse
Affiliation(s)
- Jason O Matos
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Alison C Ma
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - MacKenzie Patterson
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
18
|
Lauterbach L, Dickschat JS. Sesquiterpene synthases for bungoene, pentalenene and epi-isozizaene from Streptomyces bungoensis. Org Biomol Chem 2020; 18:4547-4550. [PMID: 32253407 DOI: 10.1039/d0ob00606h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A sesquiterpene synthase from Streptomyces bungoensis was characterised and produces the new compound bungoene. The enzyme mechanism was deeply investigated using isotopically labelled substrates. Two other enzymes from S. bungoensis made epi-isozizaene and pentalenene. Synthetic oxidative chemistry towards structurally related fusagramineol and pentalenal was explored.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
19
|
Lyu A, Yang L, Wu M, Zhang J, Li G. High Efficacy of the Volatile Organic Compounds of Streptomyces yanglinensis 3-10 in Suppression of Aspergillus Contamination on Peanut Kernels. Front Microbiol 2020; 11:142. [PMID: 32117161 PMCID: PMC7015977 DOI: 10.3389/fmicb.2020.00142] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus and Aspergillus parasiticus are saprophytic fungi which can infect and contaminate preharvest and postharvest food/feed with production of aflatoxins (B1, B2, and G). They are also an opportunistic pathogen causing aspergillosis diseases of animals and humans. In this study, the volatile organic compounds (VOCs) from Streptomyces yanglinensis 3-10 were found to be able to inhibit mycelial growth, sporulation, conidial germination, and expression of aflatoxin biosynthesis genes in A. flavus and A. parasiticus in vitro. On peanut kernels, the VOCs can also reduce the disease severity and inhibit the aflatoxins production by A. flavus and A. parasiticus under the storage conditions. Scanning electron microscope (SEM) observation showed that high dosage of the VOCs can inhibit conidial germination and colonization by the two species of Aspergillus on peanut kernels. The VOCs also showed suppression of mycelial growth on 18 other plant pathogenic fungi and one Oomycetes organism. By using SPME-GC-MS, 19 major VOCs were detected, like in other Streptomyces, 2-MIB was found as the main volatile component among the detected VOCs. Three standard chemicals, including methyl 2-methylbutyrate (M2M), 2-phenylethanol (2-PE), and β-caryophyllene (β-CA), showed antifungal activity against A. flavus and A. parasiticus. Among them, M2M showed highest inhibitory effect than other two standard compounds against conidial germination of A. flavus and A. parasiticus. To date, this is the first record about the antifungal activity of M2M against A. flavus and A. parasiticus. The VOCs from S. yanglinensis 3-10 did not affect growth of peanut seedlings. In conclusion, our results indicate that S. yanglinensis 3-10 may has a potential to become a promising biofumigant in for control of A. flavus and A. parasiticus.
Collapse
Affiliation(s)
- Ang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
- School of Life Sciences and Technology, Hubei Engineering University, Xiaogan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
20
|
Harms V, Kirschning A, Dickschat JS. Nature-driven approaches to non-natural terpene analogues. Nat Prod Rep 2020; 37:1080-1097. [DOI: 10.1039/c9np00055k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reactions catalysed by terpene synthases belong to the most complex and fascinating cascade-type transformations in Nature.
Collapse
Affiliation(s)
- Vanessa Harms
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
21
|
Martín-Sánchez L, Singh KS, Avalos M, van Wezel GP, Dickschat JS, Garbeva P. Phylogenomic analyses and distribution of terpene synthases among Streptomyces. Beilstein J Org Chem 2019; 15:1181-1193. [PMID: 31293665 PMCID: PMC6604706 DOI: 10.3762/bjoc.15.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
Terpene synthases are widely distributed among microorganisms and have been mainly studied in members of the genus Streptomyces. However, little is known about the distribution and evolution of the genes for terpene synthases. Here, we performed whole-genome based phylogenetic analysis of Streptomyces species, and compared the distribution of terpene synthase genes among them. Overall, our study revealed that ten major types of terpene synthases are present within the genus Streptomyces, namely those for geosmin, 2-methylisoborneol, epi-isozizaene, 7-epi-α-eudesmol, epi-cubenol, caryolan-1-ol, cyclooctat-9-en-7-ol, isoafricanol, pentalenene and α-amorphene. The Streptomyces species divide in three phylogenetic groups based on their whole genomes for which the distribution of the ten terpene synthases was analysed. Geosmin synthases were the most widely distributed and were found to be evolutionary positively selected. Other terpene synthases were found to be specific for one of the three clades or a subclade within the genus Streptomyces. A phylogenetic analysis of the most widely distributed classes of Streptomyces terpene synthases in comparison to the phylogenomic analysis of this genus is discussed.
Collapse
Affiliation(s)
- Lara Martín-Sánchez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Mariana Avalos
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
22
|
Takino J, Kozaki T, Sato Y, Liu C, Ozaki T, Minami A, Oikawa H. Unveiling Biosynthesis of the Phytohormone Abscisic Acid in Fungi: Unprecedented Mechanism of Core Scaffold Formation Catalyzed by an Unusual Sesquiterpene Synthase. J Am Chem Soc 2018; 140:12392-12395. [PMID: 30226766 DOI: 10.1021/jacs.8b08925] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abscisic acid (ABA) is a well-known phytohormone that regulates abiotic stresses. ABA produced by fungi is also proposed to be a virulence factor of fungal pathogens. Although its biosynthetic pathway in fungi was proposed by a series of feeding experiments, the enzyme catalyzing the reaction from farnesyl diphosphate to α-ionylideneethane remains to be identified. In this work, we identified the novel type of sesquiterpene synthase BcABA3 and its unprecedented three-step reaction mechanism involving two neutral intermediates, β-farnesene and allofarnesene. Database searches showed that BcABA3 has no homology with typical sesquiterpene synthases and that the homologous enzyme genes are found in more than 100 bacteria, suggesting that these enzymes form a new family of sesquiterpene synthases.
Collapse
Affiliation(s)
- Junya Takino
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita-ku Kita 10 Jo Nishi 8 Chome , Sapporo 060-0810 , Japan
| | - Takuto Kozaki
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita-ku Kita 10 Jo Nishi 8 Chome , Sapporo 060-0810 , Japan
| | - Yoshiro Sato
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita-ku Kita 10 Jo Nishi 8 Chome , Sapporo 060-0810 , Japan
| | - Chengwei Liu
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita-ku Kita 10 Jo Nishi 8 Chome , Sapporo 060-0810 , Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita-ku Kita 10 Jo Nishi 8 Chome , Sapporo 060-0810 , Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita-ku Kita 10 Jo Nishi 8 Chome , Sapporo 060-0810 , Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita-ku Kita 10 Jo Nishi 8 Chome , Sapporo 060-0810 , Japan
| |
Collapse
|
23
|
Oberhauser C, Harms V, Seidel K, Schröder B, Ekramzadeh K, Beutel S, Winkler S, Lauterbach L, Dickschat JS, Kirschning A. Exploiting the Synthetic Potential of Sesquiterpene Cyclases for Generating Unnatural Terpenoids. Angew Chem Int Ed Engl 2018; 57:11802-11806. [DOI: 10.1002/anie.201805526] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Clara Oberhauser
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Vanessa Harms
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Katja Seidel
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Benjamin Schröder
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Kimia Ekramzadeh
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Callinstr. 5 30167 Hannover Germany
| | - Sascha Beutel
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Callinstr. 5 30167 Hannover Germany
| | - Sven Winkler
- Symrise AG Mühlenfeldstrasse 1 37603 Holzminden Germany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
24
|
Oberhauser C, Harms V, Seidel K, Schröder B, Ekramzadeh K, Beutel S, Winkler S, Lauterbach L, Dickschat JS, Kirschning A. Erweiterung des synthetischen Potenzials von Sesquiterpencyclasen zur Erzeugung von nichtnatürlichen Terpenoiden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Clara Oberhauser
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Vanessa Harms
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Katja Seidel
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Benjamin Schröder
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Kimia Ekramzadeh
- Institut für Technische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Callinstr. 5 30167 Hannover Deutschland
| | - Sascha Beutel
- Institut für Technische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Callinstr. 5 30167 Hannover Deutschland
| | - Sven Winkler
- Symrise AG; Mühlenfeldstraße 1 37603 Holzminden Deutschland
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
25
|
Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum. Appl Environ Microbiol 2018; 84:AEM.00036-18. [PMID: 29625976 DOI: 10.1128/aem.00036-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023] Open
Abstract
The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters.IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide access to this chemodiversity for the discovery and synthesis of molecules with new bioactivities. The identification and successful cloning of the previously elusive hirsutene synthase from the S. hirsutum provide important insights and strategies for biosynthetic gene discovery in Basidiomycota. The finding of a terpene synthase-HMGS fusion, the discovery of other sesquiterpenoid biosynthetic gene clusters with dedicated HMGS genes, and HMGS gene duplications in fungal genomes give new importance to the role of HMGS as a key regulatory enzyme in isoprenoid and sterol biosynthesis that should be exploited for metabolic engineering.
Collapse
|
26
|
Cho G, Kim J, Park CG, Nislow C, Weller DM, Kwak YS. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi. Open Biol 2018; 7:rsob.170075. [PMID: 28724695 PMCID: PMC5541347 DOI: 10.1098/rsob.170075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 11/25/2022] Open
Abstract
Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4–7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi.
Collapse
Affiliation(s)
- Gyeongjun Cho
- Division of Applied Life Science (BK21Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Junheon Kim
- Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Chung Gyoo Park
- Division of Applied Life Science (BK21Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Weller
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research, Pullman, WA, USA
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
27
|
Wu W, Liu F, Davis RW. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds. Metab Eng Commun 2018; 6:13-21. [PMID: 29349039 PMCID: PMC5767561 DOI: 10.1016/j.meteno.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 11/26/2022] Open
Abstract
Recent studies have revealed that caryophyllene and its stereoisomers not only exhibit multiple biological activities but also have desired properties as renewable candidates for ground transportation and jet fuel applications. This study presents the first significant production of caryophyllene and caryolan-1-ol by an engineered E. coli with heterologous expression of mevalonate pathway genes with a caryophyllene synthase and a caryolan-1-ol synthase. By optimizing metabolic flux and fermentation parameters, the engineered strains yielded 449 mg/L of total terpene, including 406 mg/L sesquiterpene with 100 mg/L caryophyllene and 10 mg/L caryolan-1-ol. Furthermore, a marine microalgae hydrolysate was used as the sole carbon source for the production of caryophyllene and other terpene compounds. Under the optimal fermentation conditions, 360 mg/L of total terpene, 322 mg/L of sesquiterpene, and 75 mg/L caryophyllene were obtained from the pretreated algae hydrolysates. The highest yields achieved on the biomass basis were 48 mg total terpene/g algae and 10 mg caryophyllene/g algae and the caryophyllene yield is approximately ten times higher than that from plant tissues by solvent extraction. The study provides a sustainable alternative for production of caryophyllene and its alcohol from microalgae biomass as potential candidates for next generation aviation fuels. E. coli was engineered to yield terpene enriched in caryophyllene and caryolan-1-ol. Yields were improved through metabolic flux and culture parameters optimization. Algae hydrolysate was converted to terpene at high yields using engineered strains.
Collapse
Affiliation(s)
- Weihua Wu
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, USA
| | - Fang Liu
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, USA
| | - Ryan W Davis
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, USA
| |
Collapse
|
28
|
Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum). Arch Biochem Biophys 2018; 638:35-40. [DOI: 10.1016/j.abb.2017.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022]
|
29
|
He J, Zhou S, Li X, Wang C, Yu Y, Chen X, Lu Y. Pharmacokinetic evaluation of β-caryophyllene alcohol in rats and beagle dogs. Xenobiotica 2017; 48:845-850. [PMID: 28891397 DOI: 10.1080/00498254.2017.1367441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. β-caryophyllene alcohol (BCPA) has shown therapeutic promise in the treatment of asthma and inflammation with low toxicity. The aim of the current study was to report the pharmacokinetic profiles of BCPA in rats and dogs. 2. Following intravenous administration, BCPA exhibited moderate volumes of distribution (Vz) ranging from 5.63 to 8.97 L/kg in rats and low Vz (2.89 ± 1.12 L/kg) in dogs. Systemic plasma clearance was high in both species, resulting in a short elimination half-life ranging from 29.6 to 48.3 min. In rats, the intravenous pharmacokinetics was dose dependent. The measured oral bioavailability was low in rats for BCPA solution (1.17 ± 0.78%), suspension (1.21 ± 0.33%) and PEG formulation (6.22 ± 2.63%). The bioavailability was lower in dogs for BCPA solution (0.12 ± 0.05%) and PEG formulation (0.25 ± 0.07%), indicating significant species difference. However, treatment of plasma samples with β-glucuronidase increased the systematic exposure of BCPA as assessed from AUC (0-∞) by 24.7- or 2.62-fold in rats and dogs, respectively, which suggested glucuronidation was a significant metabolic pathway for BCPA possibly due to first-pass metabolism. 3. In summary, this was the first preclinical pharmacokinetic investigation of BCPA in animals, providing vital knowledge for further preclinical research and subsequent clinical trials.
Collapse
Affiliation(s)
- Jiake He
- a Department of Pharmacy , The Second Affiliated Hospital to Nanchang University , Nanchang , China and.,b Clinical Pharmacokinetics Laboratory , School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University , Nanjing , China
| | - Sufeng Zhou
- b Clinical Pharmacokinetics Laboratory , School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University , Nanjing , China
| | - Xiaonan Li
- b Clinical Pharmacokinetics Laboratory , School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University , Nanjing , China
| | - Chunfeng Wang
- b Clinical Pharmacokinetics Laboratory , School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University , Nanjing , China
| | - Yang Yu
- a Department of Pharmacy , The Second Affiliated Hospital to Nanchang University , Nanchang , China and
| | - Xijing Chen
- b Clinical Pharmacokinetics Laboratory , School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University , Nanjing , China
| | - Yang Lu
- b Clinical Pharmacokinetics Laboratory , School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
30
|
Ding N, Jiang Y, Liu J, Li Q, Wang X, Mu Y, Han L, Huang X. Structure determination of two new sesquiterpenoids from Streptomyces sanglieri. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:930-932. [PMID: 27417917 DOI: 10.1002/mrc.4473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Nan Ding
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, China.
| | - Jiang Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qinyuan Li
- Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Xingbo Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China.
| |
Collapse
|
31
|
Rabe P, Schmitz T, Dickschat JS. Mechanistic investigations on six bacterial terpene cyclases. Beilstein J Org Chem 2016; 12:1839-1850. [PMID: 27829890 PMCID: PMC5082573 DOI: 10.3762/bjoc.12.173] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/01/2016] [Indexed: 11/26/2022] Open
Abstract
The products obtained by incubation of farnesyl diphosphate (FPP) with six purified bacterial terpene cyclases were characterised by one- and two-dimensional NMR spectroscopic methods, allowing for a full structure elucidation. The absolute configurations of four terpenes were determined based on their optical rotary powers. Incubation experiments with 13C-labelled isotopomers of FPP in buffers containing water or deuterium oxide allowed for detailed insights into the cyclisation mechanisms of the bacterial terpene cyclases.
Collapse
Affiliation(s)
- Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Thomas Schmitz
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
32
|
Sun MW, Zhang XM, Bi HL, Li WJ, Lu CH. Two new sesquiterpenoids produced by halophilic Nocardiopsis chromatogenes YIM 90109. Nat Prod Res 2016; 31:77-83. [DOI: 10.1080/14786419.2016.1214831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ming-Wei Sun
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Mei Zhang
- College of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Hui-Li Bi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chun-Hua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
33
|
Rabe P, Klapschinski TA, Dickschat JS. Position-Specific Mass Shift Analysis: A Systematic Method for Investigating the EI-MS Fragmentation Mechanism of epi-Isozizaene. Chembiochem 2016; 17:1333-7. [PMID: 27123899 DOI: 10.1002/cbic.201600237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 11/10/2022]
Abstract
The EI-MS fragmentation mechanism of the bacterial sesquiterpene epi-isozizaene was investigated through enzymatic conversion of all 15 synthetic ((13) C1 )FPP isotopomers with the epi-isozizaene synthase from Streptomyces albus and GC-MS and GC-QTOF analysis including MS-MS. A systematic method, which we wish to call position-specific mass shift analysis, for the identification of the full set of fragmentation reactions was developed.
Collapse
Affiliation(s)
- Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Tim A Klapschinski
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.
| |
Collapse
|
34
|
Ding N, Jiang Y, Han L, Chen X, Ma J, Qu X, Mu Y, Liu J, Li L, Jiang C, Huang X. Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces. JOURNAL OF NATURAL PRODUCTS 2016; 79:799-805. [PMID: 26933756 DOI: 10.1021/acs.jnatprod.5b00827] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
From a fermentation broth of Streptomyces albolongus obtained from Elephas maximus feces, nine bafilomycins (1-9) and seven odoriferous sesquiterpenoids (10-16) were isolated. The structures of the new compounds, including three bafilomycins, 19-methoxybafilomycin C1 amide (1), 21-deoxybafilomycin A1 (2), and 21-deoxybafilomycin A2 (3), and two sesquiterpenoid degradation products, (1β,4β,4aβ,8aα)-4,8a-dimethyloctahydronaphthalene-1,4a(2H)-diol (10) and (1β,4β,4aβ,7α,8aα)-4,8a-dimethyloctahydronaphthalene-1,4a,7(2H)-triol (11), were elucidated by comprehensive spectroscopic data analysis. The cytotoxicity activity against four human cancer cell lines and antimicrobial activities against a panel of bacteria and fungi of all compounds isolated were evaluated. Compounds 1, 7, and 8 were cytotoxic, with IC50 values ranging from 0.54 to 5.02 μM. Compounds 2, 7, 8, and 10 showed strong antifungal activity against Candida parapsilosis, with MIC values of 3.13, 1.56, 1.56, and 3.13 μg/mL respectively.
Collapse
Affiliation(s)
- Nan Ding
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
- Laboratory of Metabolic Disease Research and Drug Development, China Medical University , Shenyang 110001, People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University , Kunming 650091, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Xiu Chen
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Jian Ma
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Xiaodan Qu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Jiang Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Chenglin Jiang
- Yunnan Institute of Microbiology, Yunnan University , Kunming 650091, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| |
Collapse
|
35
|
Abstract
This review summarises the characterised bacterial terpene cyclases and their products and discusses the enzyme mechanisms.
Collapse
Affiliation(s)
- Jeroen S. Dickschat
- University of Bonn
- Kekulé-Institute of Organic Chemistry and Biochemistry
- 53121 Bonn
- Germany
| |
Collapse
|
36
|
Rabe P, Rinkel J, Klapschinski TA, Barra L, Dickschat JS. A method for investigating the stereochemical course of terpene cyclisations. Org Biomol Chem 2016; 14:158-64. [DOI: 10.1039/c5ob01998b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The products of three bacterial terpene cyclases were characterised and the mechanisms of their formations were investigated using isotopic labellings.
Collapse
Affiliation(s)
- Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Tim A. Klapschinski
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Lena Barra
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
37
|
Ding L, Goerls H, Dornblut K, Lin W, Maier A, Fiebig HH, Hertweck C. Bacaryolanes A-C, Rare Bacterial Caryolanes from a Mangrove Endophyte. JOURNAL OF NATURAL PRODUCTS 2015; 78:2963-2967. [PMID: 26611524 DOI: 10.1021/acs.jnatprod.5b00674] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Caryolanes are known as typical plant-derived sesquiterpenes. Here we describe the isolation and full structure elucidation of three caryolanes, bacaryolane A-C (1-3), that are produced by a bacterial endophyte (Streptomyces sp. JMRC:ST027706) of the mangrove plant Bruguiera gymnorrhiza. By 2D NMR, analysis of the first X-ray crystallographic data of a caryolane (bacaryolane C), CD spectroscopy, and comparison with data for plant-derived caryolanes, we rigorously established the absolute configuration of the bacaryolanes and related compounds from bacteria. Bacterial caryolanes appear as the mirror images of typical plant caryolanes. Apparently plant and bacteria harbor stereodivergent biosynthetic pathways, which may be used as metabolic signatures. The discovery of plant-like volatile terpenes in endophytes not only is an important addition to the bacterial terpenome but may also point to complex molecular interactions in the plant-microbe association.
Collapse
Affiliation(s)
- Ling Ding
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) , Beutenbergstraße 11a, 07745 Jena, Germany
| | - Helmar Goerls
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University , Humboldtstraße 8, 07743 Jena, Germany
| | - Katharina Dornblut
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) , Beutenbergstraße 11a, 07745 Jena, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, People's Republic of China
| | - Armin Maier
- Oncotest GmbH , Am Flughafen 12-14, 79108 Freiburg, Germany
| | | | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) , Beutenbergstraße 11a, 07745 Jena, Germany
- Friedrich Schiller University , 07737 Jena, Germany
| |
Collapse
|
38
|
Rabe P, Barra L, Rinkel J, Riclea R, Citron CA, Klapschinski TA, Janusko A, Dickschat JS. Konformationsanalyse, thermische Umlagerung und EI‐MS‐Fragmentierungsmechanismus von (1(10)
E
,4
E
,6
S
,7
R
)‐Germacradien‐6‐ol durch
13
C‐Markierungsexperimente. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507615] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patrick Rabe
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Lena Barra
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Jan Rinkel
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Ramona Riclea
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Christian A. Citron
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Tim A. Klapschinski
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Aron Janusko
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Jeroen S. Dickschat
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| |
Collapse
|
39
|
Rabe P, Barra L, Rinkel J, Riclea R, Citron CA, Klapschinski TA, Janusko A, Dickschat JS. Conformational Analysis, Thermal Rearrangement, and EI-MS Fragmentation Mechanism of (1(10)E,4E,6S,7R)-Germacradien-6-ol by (13)C-Labeling Experiments. Angew Chem Int Ed Engl 2015; 54:13448-51. [PMID: 26361082 DOI: 10.1002/anie.201507615] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/07/2022]
Abstract
An uncharacterized terpene cyclase from Streptomyces pratensis was identified as (+)-(1(10)E,4E,6S,7R)-germacradien-6-ol synthase. The enzyme product exists as two interconvertible conformers, resulting in complex NMR spectra. For the complete assignment of NMR data, all fifteen ((13)C1)FPP isotopomers (FPP=farnesyl diphosphate) and ((13)C15)FPP were synthesized and enzymatically converted. The products were analyzed using various NMR techniques, including (13)C, (13)C COSY experiments. The ((13)C)FPP isotopomers were also used to investigate the thermal rearrangement and EI fragmentation of the enzyme product.
Collapse
Affiliation(s)
- Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | - Lena Barra
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | - Ramona Riclea
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | - Christian A Citron
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | - Tim A Klapschinski
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | - Aron Janusko
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany).
| |
Collapse
|
40
|
Rabe P, Pahirulzaman KAK, Dickschat JS. Structures and Biosynthesis of Corvol Ethers--Sesquiterpenes from the Actinomycete Kitasatospora setae. Angew Chem Int Ed Engl 2015; 54:6041-5. [PMID: 25809275 DOI: 10.1002/anie.201501119] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 11/10/2022]
Abstract
Here we present the functional characterization of a sesquiterpene cyclase from Kitasatospora setae. The enzyme converts the sesquiterpene precursor farnesyl diphosphate (FPP) into two previously unknown and unstable sesquiterpene ethers for which we propose the trivial names corvol ethers A and B. Both compounds were purified and their structures were determined by one- and two-dimensional NMR spectroscopy. A biosynthetic mechanism for the FPP cyclization by the corvol ether synthase was proposed. The results from the incubation experiments of the corvol ether synthase with isotopically labeled precursors were in line with this mechanism, while alternative mechanisms could clearly be ruled out.
Collapse
Affiliation(s)
- Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany); Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
| | | | | |
Collapse
|
41
|
Rabe P, Pahirulzaman KAK, Dickschat JS. Strukturen und Biosynthese der Corvolether - Sesquiterpene aus dem ActinomycetenKitasatospora setae. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Lindh JM, Okal MN, Herrera-Varela M, Borg-Karlson AK, Torto B, Lindsay SW, Fillinger U. Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex. Malar J 2015; 14:119. [PMID: 25885703 PMCID: PMC4404675 DOI: 10.1186/s12936-015-0636-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New strategies are needed to manage malaria vector populations that resist insecticides and bite outdoors. This study describes a breakthrough in developing 'attract and kill' strategies targeting gravid females by identifying and evaluating an oviposition attractant for Anopheles gambiae s.l. METHODS Previously, the authors found that gravid An. gambiae s.s. females were two times more likely to lay eggs in lake water infused for six days with soil from a natural oviposition site in western Kenya compared to lake water alone or to the same but autoclaved infusion. Here, the volatile chemicals released from these substrates were analysed with a gas-chromatograph coupled to a mass-spectrometer (GC-MS). Furthermore, the behavioural responses of gravid females to one of the compounds identified were evaluated in dual choice egg-count bioassays, in dual-choice semi-field experiments with odour-baited traps and in field bioassays. RESULTS One of the soil infusion volatiles was readily identified as the sesquiterpene alcohol cedrol. Its widespread presence in natural aquatic habitats in the study area was confirmed by analysing the chemical headspace of 116 water samples collected from different aquatic sites in the field and was therefore selected for evaluation in oviposition bioassays. Twice as many gravid females were attracted to cedrol-treated water than to water alone in two choice cage bioassays (odds ratio (OR) 1.84; 95% confidence interval (CI) 1.16-2.91) and in experiments conducted in large-screened cages with free-flying mosquitoes (OR 1.92; 95% CI 1.63-2.27). When tested in the field, wild malaria vector females were three times more likely to be collected in the traps baited with cedrol than in the traps containing water alone (OR 3.3; 95% CI 1.4-7.9). CONCLUSION Cedrol is the first compound confirmed as an oviposition attractant for gravid An. gambiae s.l. This finding paves the way for developing new 'attract and kill strategies' for malaria vector control.
Collapse
Affiliation(s)
- Jenny M Lindh
- Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Michael N Okal
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | - Manuela Herrera-Varela
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | | | - Baldwyn Torto
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | - Steven W Lindsay
- School of Biological & Biomedical Sciences, Durham University, Durham, DH1 3LE, UK.
| | - Ulrike Fillinger
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| |
Collapse
|
43
|
Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S, Cane DE, Ikeda H. Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci U S A 2015; 112:857-62. [PMID: 25535391 PMCID: PMC4311827 DOI: 10.1073/pnas.1422108112] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes.
Collapse
Affiliation(s)
- Yuuki Yamada
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, University of Tokyo, Tokyo 113-8657, Japan
| | - Mamoru Komatsu
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Satoshi Omura
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8461, Japan; and
| | - David E Cane
- Department of Chemistry, Brown University, Providence, RI 02912-9108
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Kanagawa 252-0373, Japan;
| |
Collapse
|
44
|
Citron CA, Barra L, Wink J, Dickschat JS. Volatiles from nineteen recently genome sequenced actinomycetes. Org Biomol Chem 2015; 13:2673-83. [DOI: 10.1039/c4ob02609h] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The volatiles from nineteen genome sequenced actinobacteria were analysed by GC/MS and the identified terpenes were correlated to genome data.
Collapse
Affiliation(s)
- Christian A. Citron
- Kekulé-Institut für Organische Chemie und Biochemie
- Universität Bonn
- 53121 Bonn
- Germany
| | - Lena Barra
- Kekulé-Institut für Organische Chemie und Biochemie
- Universität Bonn
- 53121 Bonn
- Germany
| | - Joachim Wink
- Helmholtz-Zentrum für Infektionsforschung GmbH
- 38124 Braunschweig
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Universität Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
45
|
Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP. Biogenic volatile emissions from the soil. PLANT, CELL & ENVIRONMENT 2014; 37:1866-91. [PMID: 24689847 DOI: 10.1111/pce.12340] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 05/18/2023]
Abstract
Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed.
Collapse
Affiliation(s)
- J Peñuelas
- Global Ecology Unit CREAF-CEAB-CSIC-UAB, CSIC, Catalonia, Spain; CREAF, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Grishko VV, Nogovitsina YM, Ivshina IB. Bacterial transformation of terpenoids. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n04abeh004396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Dickschat JS, Pahirulzaman KAK, Rabe P, Klapschinski TA. An improved technique for the rapid chemical characterisation of bacterial terpene cyclases. Chembiochem 2014; 15:810-4. [PMID: 24573945 DOI: 10.1002/cbic.201300763] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 11/06/2022]
Abstract
A derivative of the pET28c(+) expression vector was constructed. It contains a yeast replication system (2μ origin of replication) and a yeast selectable marker (URA3), and can be used for gene cloning in yeast by efficient homologous recombination, and for heterologous expression in E. coli. The vector was used for the expression and chemical characterisation of three bacterial terpene cyclases.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig (Germany).
| | | | | | | |
Collapse
|
48
|
Baer P, Rabe P, Citron CA, de Oliveira Mann CC, Kaufmann N, Groll M, Dickschat JS. Hedycaryol Synthase in Complex with Nerolidol Reveals Terpene Cyclase Mechanism. Chembiochem 2014; 15:213-6. [DOI: 10.1002/cbic.201300708] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Indexed: 11/12/2022]
|
49
|
|
50
|
Citron CA, Dickschat JS. [(2)H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus. Beilstein J Org Chem 2013; 9:2841-5. [PMID: 24367448 PMCID: PMC3869315 DOI: 10.3762/bjoc.9.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/05/2013] [Indexed: 11/23/2022] Open
Abstract
During growth on fully deuterated medium the volatile terpene [(2)H26]-1-epi-cubenol was released by the actinomycete Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known to slow down all metabolic processes in living organisms. Potential applications of completely labelled compounds from natural sources in structure elucidation, biosynthetic or pharmacokinetic investigations are discussed.
Collapse
Affiliation(s)
- Christian A Citron
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jeroen S Dickschat
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|