1
|
Liu YS, Zhang C, Khoo BL, Hao P, Chua SL. Dual-species proteomics and targeted intervention of animal-pathogen interactions. J Adv Res 2024:S2090-1232(24)00383-7. [PMID: 39233003 DOI: 10.1016/j.jare.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Host-microbe interactions are important to human health and ecosystems globally, so elucidating the complex host-microbe interactions and associated protein expressions drives the need to develop sensitive and accurate biochemical techniques. Current proteomics techniques reveal information from the point of view of either the host or microbe, but do not provide data on the corresponding partner. Moreover, it remains challenging to simultaneously study host-microbe proteomes that reflect the direct competition between host and microbe. This raises the need to develop a dual-species proteomics method for host-microbe interactions. OBJECTIVES We aim to establish a forward + reverse Stable Isotope Labeling with Amino acids in Cell culture (SILAC) proteomics approach to simultaneously label and quantify newly-expressed proteins of host and microbe without physical isolation, for investigating mechanisms in direct host-microbe interactions. METHODS Using Caenorhabditis elegans-Pseudomonas aeruginosa infection model as proof-of-concept, we employed SILAC proteomics and molecular pathway analysis to characterize the differentially-expressed microbial and host proteins. We then used molecular docking and chemical characterization to identify chemical inhibitors that intercept host-microbe interactions and eliminate microbial infection. RESULTS Based on our proteomics results, we studied the iron competition between pathogen iron scavenger and host iron uptake protein, where P. aeruginosa upregulated pyoverdine synthesis protein (PvdA) (fold-change of 5.2313) and secreted pyoverdine, and C. elegans expressed ferritin (FTN-2) (fold-change of 3.4057). Targeted intervention of iron competition was achieved using Galangin, a ginger-derived phytochemical that inhibited pyoverdine production and biofilm formation in P. aeruginosa. The Galangin-ciprofloxacin combinatorial therapy could eliminate P. aeruginosa biofilms in a fish wound infection model, and enabled animal survival. CONCLUSION Our work provides a novel SILAC-based proteomics method that can simultaneously evaluate host and microbe proteomes, with future applications in higher host organisms and other microbial species. It also provides insights into the mechanisms dictating host-microbe interactions, offering novel strategies for anti-infective therapy.
Collapse
Affiliation(s)
- Yang Sylvia Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Chengqian Zhang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Special Administrative Region; City University of Hong Kong-Shenzhen Futian Research Institute, Shenzhen, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Johnson SB, Valentino H, Sobrado P. Kinetic Characterization and Identification of Key Active Site Residues of the L-Aspartate N-Hydroxylase, CreE. Chembiochem 2024; 25:e202400350. [PMID: 38775737 DOI: 10.1002/cbic.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Indexed: 07/04/2024]
Abstract
CreE is a flavin-dependent monooxygenase (FMO) that catalyzes three sequential nitrogen oxidation reactions of L-aspartate to produce nitrosuccinate, contributing to the biosynthesis of the antimicrobial and antiproliferative nautral product, cremeomycin. This compound contains a highly reactive diazo functional group for which the reaction of CreE is essential to its formation. Nitro and diazo functional groups can serve as potent electrophiles, important in some challenging nucleophilic addition reactions. Formation of these reactive groups positions CreE as a promising candidate for biomedical and synthetic applications. Here, we present the catalytic mechanism of CreE and the identification of active site residues critical to binding L-aspartate, aiding in future enzyme engineering efforts. Steady-state analysis demonstrated that CreE is very specific for NADPH over NADH and performs a highly coupled reaction with L-aspartate. Analysis of the rapid-reaction kinetics showed that flavin reduction is very fast, along with the formation of the oxygenating species, the C4a-hydroperoxyflavin. The slowest step observed was the dehydration of the flavin. Structural analysis and site-directed mutagenesis implicated T65, R291, and R440 in the binding L-aspartate. The data presented describes the catalytic mechanism and the active site architecture of this unique FMO.
Collapse
Affiliation(s)
- Sydney B Johnson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Hannah Valentino
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409
| |
Collapse
|
3
|
Pierdominici‐Sottile G, Palma J, Ferrelli ML, Sobrado P. The dynamics of the flavin, NADPH, and active site loops determine the mechanism of activation of class B flavin-dependent monooxygenases. Protein Sci 2024; 33:e4935. [PMID: 38501462 PMCID: PMC10962481 DOI: 10.1002/pro.4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Flavin-dependent monooxygenases (FMOs) constitute a diverse enzyme family that catalyzes crucial hydroxylation, epoxidation, and Baeyer-Villiger reactions across various metabolic pathways in all domains of life. Due to the intricate nature of this enzyme family's mechanisms, some aspects of their functioning remain unknown. Here, we present the results of molecular dynamics computations, supplemented by a bioinformatics analysis, that clarify the early stages of their catalytic cycle. We have elucidated the intricate binding mechanism of NADPH and L-Orn to a class B monooxygenase, the ornithine hydroxylase fromAspergillus $$ Aspergillus $$ fumigatus $$ fumigatus $$ known as SidA. Our investigation involved a comprehensive characterization of the conformational changes associated with the FAD (Flavin Adenine Dinucleotide) cofactor, transitioning from the out to the in position. Furthermore, we explored the rotational dynamics of the nicotinamide ring of NADPH, shedding light on its role in facilitating FAD reduction, supported by experimental evidence. Finally, we also analyzed the extent of conservation of two Tyr-loops that play critical roles in the process.
Collapse
Affiliation(s)
- Gustavo Pierdominici‐Sottile
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CABAArgentina
| | - Juliana Palma
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CABAArgentina
| | - María Leticia Ferrelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CABAArgentina
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP‐CONICET), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Pablo Sobrado
- Department of BiochemistryVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
4
|
Martín JF, Liras P. Targeting of Specialized Metabolites Biosynthetic Enzymes to Membranes and Vesicles by Posttranslational Palmitoylation: A Mechanism of Non-Conventional Traffic and Secretion of Fungal Metabolites. Int J Mol Sci 2024; 25:1224. [PMID: 38279221 PMCID: PMC10816013 DOI: 10.3390/ijms25021224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
In nature, the formation of specialized (secondary) metabolites is associated with the late stages of fungal development. Enzymes involved in the biosynthesis of secondary metabolites in fungi are located in distinct subcellular compartments including the cytosol, peroxisomes, endosomes, endoplasmic reticulum, different types of vesicles, the plasma membrane and the cell wall space. The enzymes traffic between these subcellular compartments and the secretion through the plasma membrane are still unclear in the biosynthetic processes of most of these metabolites. Recent reports indicate that some of these enzymes initially located in the cytosol are later modified by posttranslational acylation and these modifications may target them to membrane vesicle systems. Many posttranslational modifications play key roles in the enzymatic function of different proteins in the cell. These modifications are very important in the modulation of regulatory proteins, in targeting of proteins, intracellular traffic and metabolites secretion. Particularly interesting are the protein modifications by palmitoylation, prenylation and miristoylation. Palmitoylation is a thiol group-acylation (S-acylation) of proteins by palmitic acid (C16) that is attached to the SH group of a conserved cysteine in proteins. Palmitoylation serves to target acylated proteins to the cytosolic surface of cell membranes, e.g., to the smooth endoplasmic reticulum, whereas the so-called toxisomes are formed in trichothecene biosynthesis. Palmitoylation of the initial enzymes involved in the biosynthesis of melanin serves to target them to endosomes and later to the conidia, whereas other non-palmitoylated laccases are secreted directly by the conventional secretory pathway to the cell wall space where they perform the last step(s) of melanin biosynthesis. Six other enzymes involved in the biosynthesis of endocrosin, gliotoxin and fumitremorgin believed to be cytosolic are also targeted to vesicles, although it is unclear if they are palmitoylated. Bioinformatic analysis suggests that palmitoylation may be frequent in the modification and targeting of polyketide synthetases and non-ribosomal peptide synthetases. The endosomes may integrate other small vesicles with different cargo proteins, forming multivesicular bodies that finally fuse with the plasma membrane during secretion. Another important effect of palmitoylation is that it regulates calcium metabolism by posttranslational modification of the phosphatase calcineurin. Mutants defective in the Akr1 palmitoyl transferase in several fungi are affected in calcium transport and homeostasis, thus impacting on the biosynthesis of calcium-regulated specialized metabolites. The palmitoylation of secondary metabolites biosynthetic enzymes and their temporal distribution respond to the conidiation signaling mechanism. In summary, this posttranslational modification drives the spatial traffic of the biosynthetic enzymes between the subcellular organelles and the plasma membrane. This article reviews the molecular mechanism of palmitoylation and the known fungal palmitoyl transferases. This novel information opens new ways to improve the biosynthesis of the bioactive metabolites and to increase its secretion in fungi.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain;
| | | |
Collapse
|
5
|
Phintha A, Chaiyen P. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin. J Biol Chem 2023; 299:105413. [PMID: 37918809 PMCID: PMC10696468 DOI: 10.1016/j.jbc.2023.105413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
Flavin-dependent monooxygenases (FDMOs) are known for their remarkable versatility and for their crucial roles in various biological processes and applications. Extensive research has been conducted to explore the structural and functional relationships of FDMOs. The majority of reported FDMOs utilize C4a-(hydro)peroxyflavin as a reactive intermediate to incorporate an oxygen atom into a wide range of compounds. This review discusses and analyzes recent advancements in our understanding of the structural and mechanistic features governing the enzyme functions. State-of-the-art discoveries related to common and distinct structural properties governing the catalytic versatility of the C4a-(hydro)peroxyflavin intermediate in selected FDMOs are discussed. Specifically, mechanisms of hydroxylation, dehalogenation, halogenation, and light-emitting reactions by FDMOs are highlighted. We also provide new analysis based on the structural and mechanistic features of these enzymes to gain insights into how the same intermediate can be harnessed to perform a wide variety of reactions. Challenging questions to obtain further breakthroughs in the understanding of FDMOs are also proposed.
Collapse
Affiliation(s)
- Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand.
| |
Collapse
|
6
|
Rotilio L, Boverio A, Nguyen QT, Mannucci B, Fraaije MW, Mattevi A. A biosynthetic aspartate N-hydroxylase performs successive oxidations by holding intermediates at a site away from the catalytic center. J Biol Chem 2023; 299:104904. [PMID: 37302552 PMCID: PMC10404684 DOI: 10.1016/j.jbc.2023.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Nitrosuccinate is a biosynthetic building block in many microbial pathways. The metabolite is produced by dedicated L-aspartate hydroxylases that use NADPH and molecular oxygen as co-substrates. Here, we investigate the mechanism underlying the unusual ability of these enzymes to perform successive rounds of oxidative modifications. The crystal structure of Streptomyces sp. V2 L-aspartate N-hydroxylase outlines a characteristic helical domain wedged between two dinucleotide-binding domains. Together with NADPH and FAD, a cluster of conserved arginine residues forms the catalytic core at the domain interface. Aspartate is found to bind in an entry chamber that is close to but not in direct contact with the flavin. It is recognized by an extensive H-bond network that explains the enzyme's strict substrate-selectivity. A mutant designed to create steric and electrostatic hindrance to substrate binding disables hydroxylation without perturbing the NADPH oxidase side-activity. Critically, the distance between the FAD and the substrate is far too long to afford N-hydroxylation by the C4a-hydroperoxyflavin intermediate whose formation is confirmed by our work. We conclude that the enzyme functions through a catch-and-release mechanism. L-aspartate slides into the catalytic center only when the hydroxylating apparatus is formed. It is then re-captured by the entry chamber where it waits for the next round of hydroxylation. By iterating these steps, the enzyme minimizes the leakage of incompletely oxygenated products and ensures that the reaction carries on until nitrosuccinate is formed. This unstable product can then be engaged by a successive biosynthetic enzyme or undergoes spontaneous decarboxylation to produce 3-nitropropionate, a mycotoxin.
Collapse
Affiliation(s)
- Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Boverio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Quoc-Thai Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Marco W Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics (Basel) 2023; 12:antibiotics12010159. [PMID: 36671360 PMCID: PMC9854754 DOI: 10.3390/antibiotics12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bacteria, filamentous fungi, and plants synthesize thousands of secondary metabolites with important biological and pharmacological activities. The biosynthesis of these metabolites is performed by networks of complex enzymes such as non-ribosomal peptide synthetases, polyketide synthases, and terpenoid biosynthetic enzymes. The efficient production of these metabolites is dependent upon the supply of precursors that arise from primary metabolism. In the last decades, an impressive array of biosynthetic enzymes that provide specific precursors and intermediates leading to secondary metabolites biosynthesis has been reported. Suitable knowledge of the elaborated pathways that synthesize these precursors or intermediates is essential for advancing chemical biology and the production of natural or semisynthetic biological products. Two of the more prolific routes that provide key precursors in the biosynthesis of antitumor, immunosuppressant, antifungal, or antibacterial compounds are the lysine and ornithine pathways, which are involved in the biosynthesis of β-lactams and other non-ribosomal peptides, and bacterial and fungal siderophores. Detailed analysis of the molecular genetics and biochemistry of the enzyme system shows that they are formed by closely related components. Particularly the focus of this study is on molecular genetics and the enzymatic steps that lead to the formation of intermediates of the lysine pathway, such as α-aminoadipic acid, saccharopine, pipecolic acid, and related compounds, and of ornithine-derived molecules, such as N5-Acetyl-N5-Hydroxyornithine and N5-anhydromevalonyl-N5-hydroxyornithine, which are precursors of siderophores. We provide evidence that shows interesting functional relationships between the genes encoding the enzymes that synthesize these products. This information will contribute to a better understanding of the possibilities of advancing the industrial applications of synthetic biology.
Collapse
|
8
|
Zhang Y, Shu H, Mumtaz MA, Hao Y, Li L, He Y, Jin W, Li C, Zhou Y, Lu X, Fu H, Wang Z. Transcriptome and Metabolome Analysis of Color Changes during Fruit Development of Pepper ( Capsicum baccatum). Int J Mol Sci 2022; 23:12524. [PMID: 36293402 PMCID: PMC9604368 DOI: 10.3390/ijms232012524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Fruit color is one of the most critical characteristics of pepper. In this study, pepper (Capsicum baccatum L.) fruits with four trans-coloring periods were used as experimental materials to explore the color conversion mechanism of pepper fruit. By transcriptome and metabolome analysis, we identified a total of 307 flavonoid metabolites, 68 carotenoid metabolites, 29 DEGs associated with flavonoid biosynthesis, and 30 DEGs related to carotenoid biosynthesis. Through WGCNA (weighted gene co-expression network analysis) analysis, positively correlated modules with flavonoids and carotenoids were identified, and hub genes associated with flavonoid and carotenoid synthesis and transport were anticipated. We identified Pinobanksin, Naringenin Chalcone, and Naringenin as key metabolites in the flavonoid biosynthetic pathway catalyzed by the key genes chalcone synthase (CHS CQW23_29123, CQW23_29380, CQW23_12748), cinnamic acid 4-hydroxylase (C4H CQW23_16085, CQW23_16084), cytochrome P450 (CYP450 CQW23_19845, CQW23_24900). In addition, phytoene synthase (PSY CQW23_09483), phytoene dehydrogenase (PDS CQW23_11317), zeta-carotene desaturase (ZDS CQW23_19986), lycopene beta cyclase (LYC CQW23_09027), zeaxanthin epoxidase (ZEP CQW23_05387), 9-cis-epoxycarotenoid dioxygenase (NCED CQW23_17736), capsanthin/capsorubin synthase (CCS CQW23_30321) are key genes in the carotenoid biosynthetic pathway, catalyzing the synthesis of key metabolites such as Phytoene, Lycopene, β-carotene and ε-carotene. We also found that transcription factor families such as p450 and NBARC could play important roles in the biosynthesis of flavonoids and carotenoids in pepper fruits. These results provide new insights into the interaction mechanisms of genes and metabolites involved in the biosynthesis of flavonoids and carotenoids in pepper fruit leading to color changes in pepper fruit.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Lin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yongjie He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Weiheng Jin
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Caichao Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yan Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
9
|
Dell’Anno F, Vitale GA, Buonocore C, Vitale L, Palma Esposito F, Coppola D, Della Sala G, Tedesco P, de Pascale D. Novel Insights on Pyoverdine: From Biosynthesis to Biotechnological Application. Int J Mol Sci 2022; 23:ijms231911507. [PMID: 36232800 PMCID: PMC9569983 DOI: 10.3390/ijms231911507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes’ survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs’ use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.
Collapse
|
10
|
Ma SR, Tong Q, Lin Y, Pan LB, Fu J, Peng R, Zhang XF, Zhao ZX, Li Y, Yu JB, Cong L, Han P, Zhang ZW, Yu H, Wang Y, Jiang JD. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduct Target Ther 2022; 7:207. [PMID: 35794102 PMCID: PMC9259588 DOI: 10.1038/s41392-022-01027-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) derived from the gut microbiota is an atherogenic metabolite. This study investigates whether or not berberine (BBR) could reduce TMAO production in the gut microbiota and treat atherosclerosis. Effects of BBR on TMAO production in the gut microbiota, as well as on plaque development in atherosclerosis were investigated in the culture of animal intestinal bacterial, HFD-fed animals and atherosclerotic patients, respectively. We found that oral BBR in animals lowers TMAO biosynthesis in intestine through interacting with the enzyme/co-enzyme of choline-trimethylamine lyase (CutC) and flavin-containing monooxygenase (FMO) in the gut microbiota. This action was performed by BBR’s metabolite dihydroberberine (a reductive BBR by nitroreductase in the gut microbiota), via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway. Oral BBR decreased TMAO production in animal intestine, lowered blood TMAO and interrupted plaque formation in blood vessels in the HFD-fed hamsters. Moreover, 21 patients with atherosclerosis exhibited the average decrease of plaque score by 3.2% after oral BBR (0.5 g, bid) for 4 months (*P < 0.05, n = 21); whereas the plaque score in patients treated with rosuvastatin plus aspirin, or clopidogrel sulfate or ticagrelor (4 months, n = 12) increased by 1.9%. TMA and TMAO in patients decreased by 38 and 29% in faeces (*P < 0.05; *P < 0.05), and 37 and 35% in plasma (***P < 0.001; *P < 0.05), after 4 months on BBR. BBR might treat atherosclerotic plaque at least partially through decreasing TMAO in a mode of action similar to that of vitamins.
Collapse
Affiliation(s)
- Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qian Tong
- The First Hospital of Jilin University, Changchun, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | | | - Zhen-Xiong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Li
- The First Hospital of Jilin University, Changchun, China
| | - Jin-Bo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Rosy JC, Babkiewicz E, Maszczyk P, Mrówka P, Kumar BK, Murugesan S, Kunjiappan S, Sundar K. l-Ornithine-N5-monooxygenase (PvdA) Substrate Analogue Inhibitors for Pseudomonas aeruginosa Infections Treatment: Drug Repurposing Computational Studies. Biomolecules 2022; 12:biom12070887. [PMID: 35883443 PMCID: PMC9313252 DOI: 10.3390/biom12070887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause acute and severe infections. Increasing resistance to antibiotics has given rise to the urgent need for an alternative antimicrobial agent. A promising strategy is the inhibition of iron sequestration in the bacteria. The current work aimed to screen for inhibitors of pyoverdine-mediated iron sequestration in P. aeruginosa. As a drug target, we choose l-ornithine-N5-monooxygenase (PvdA), an enzyme involved in the biosynthesis of pyoverdine that catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine. As drug repurposing is a fast and cost-efficient way of discovering new applications for known drugs, the approach may help to solve emerging clinical problems. In this study, we use data about molecules from drug banks for screening. A total of 15 drugs that are similar in structure to l-ornithine, the substrate of PvdA, and 30 drugs that are sub-structures of l-ornithine were virtually docked against PvdA. N-2-succinyl ornithine and cilazapril were found to be the top binders with a binding energy of -12.8 and -9.1 kcal mol-1, respectively. As the drug-likeness and ADME properties of the drugs were also found to be promising, molecular dynamics studies were performed to further confirm the stability of the complexes. The results of this in silico study indicate that N-2-succinyl ornithine could potentially be explored as a drug for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Joseph Christina Rosy
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (J.C.R.); (S.K.)
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland; (E.B.); (P.M.)
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland; (E.B.); (P.M.)
| | - Piotr Mrówka
- Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, 5 Chalubinskiego Street, 02-004 Warsaw, Poland;
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 5 Chocimska Street, 00-791 Warsaw, Poland
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India; (B.K.K.); (S.M.)
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India; (B.K.K.); (S.M.)
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (J.C.R.); (S.K.)
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (J.C.R.); (S.K.)
- Correspondence: ; Tel.: +91-948-963-6442
| |
Collapse
|
12
|
Liu YS, Deng Y, Chen CK, Khoo BL, Chua SL. Rapid detection of microorganisms in a fish infection microfluidics platform. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128572. [PMID: 35278965 DOI: 10.1016/j.jhazmat.2022.128572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Inadequate access to clean water is detrimental to human health and aquatic industries. Waterborne pathogens can survive prolonged periods in aquatic bodies, infect commercially important seafood, and resist water disinfection, resulting in human infections. Environmental agencies and research laboratories require a relevant, portable, and cost-effective platform to monitor microbial pathogens and assess their risk of infection on a large scale. Advances in microfluidics enable better control and higher precision than traditional culture-based pathogen monitoring approaches. We demonstrated a rapid, high-throughput fish-based teleost (fish)-microbe (TelM) microfluidic-based device that simultaneously monitors waterborne pathogens in contaminated waters and assesses their infection potential under well-defined settings. A chamber-associated port allows direct access to the animal, while the transparency of the TelM platform enables clear observation of sensor readouts. As proof-of-concept, we established a wound infection model using Pseudomonas aeruginosa-contaminated water in the TelM platform, where bacteria formed biofilms on the wound and secreted a biofilm metabolite, pyoverdine. Pyoverdine was used as fluorescent sensor to correlate P. aeruginosa contamination to infection. The TelM platform was validated with environmental waterborne microbes from marine samples. Overall, the TelM platform can be readily applied to assess microbial and chemical risk in aquatic bodies in resource-constrained settings.
Collapse
Affiliation(s)
- Yang Sylvia Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chun Kwan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China; City University of Hong Kong - Futian Shenzhen Research Institute, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Research Centre for Deep Space Explorations, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; Shenzhen Key Laboratory of Food Biological Safety Control, China.
| |
Collapse
|
13
|
Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. Int J Mol Sci 2022; 23:ijms23052622. [PMID: 35269764 PMCID: PMC8910399 DOI: 10.3390/ijms23052622] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products are usually highly complicated organic molecules with special scaffolds, and they are an important resource in medicine. Natural products with complicated structures are produced by enzymes, and this is still a challenging research field, its mechanisms requiring detailed methods for elucidation. Flavin adenine dinucleotide (FAD)-dependent monooxygenases (FMOs) catalyze many oxidation reactions with chemo-, regio-, and stereo-selectivity, and they are involved in the synthesis of many natural products. In this review, we introduce the mechanisms for different FMOs, with the classical FAD (C4a)-hydroperoxide as the major oxidant. We also summarize the difference between FMOs and cytochrome P450 (CYP450) monooxygenases emphasizing the advantages of FMOs and their specificity for substrates. Finally, we present examples of FMO-catalyzed synthesis of natural products. Based on these explanations, this review will expand our knowledge of FMOs as powerful enzymes, as well as implementation of the FMOs as effective tools for biosynthesis.
Collapse
|
14
|
Valentino H, Sobrado P. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis. Biochemistry 2021; 60:2851-2864. [PMID: 34516102 DOI: 10.1021/acs.biochem.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-hydroxylating monooxygenases (NMOs) are a subclass of flavin-dependent enzymes that hydroxylate nitrogen atoms. Recently, unique NMOs that perform multiple reactions on one substrate molecule have been identified. Fosfazinomycin M (FzmM) is one such NMO, forming nitrosuccinate from aspartate (Asp) in the fosfazinomycin biosynthetic pathway in some Streptomyces sp. This work details the biochemical and kinetic analysis of FzmM. Steady-state kinetic investigation shows that FzmM performs a coupled reaction with Asp (kcat, 3.0 ± 0.01 s-1) forming nitrosuccinate, which can be converted to fumarate and nitrite by the action of FzmL. FzmM displays a 70-fold higher kcat/KM value for NADPH compared to NADH and has a narrow optimal pH range (7.5-8.0). Contrary to other NMOs where the kred is rate-limiting, FzmM exhibits a very fast kred (50 ± 0.01 s-1 at 4 °C) with NADPH. NADPH binds at a KD value of ∼400 μM, and hydride transfer occurs with pro-R stereochemistry. Oxidation of FzmM in the absence of Asp exhibits a spectrum with a shoulder at ∼370 nm, consistent with the formation of a C(4a)-hydroperoxyflavin intermediate, which decays into oxidized flavin and hydrogen peroxide at a rate 100-fold slower than the kcat. This reaction is enhanced in the presence of Asp with a slightly faster kox than the kcat, suggesting that flavin dehydration or Asp oxidation is partially rate limiting. Multiple sequence analyses of FzmM to NMOs identified conserved residues involved in flavin binding but not for NADPH. Additional sequence analysis to related monooxygenases suggests that FzmM shares sequence motifs absent in other NMOs.
Collapse
Affiliation(s)
- Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Overview of structurally homologous flavoprotein oxidoreductases containing the low M r thioredoxin reductase-like fold - A functionally diverse group. Arch Biochem Biophys 2021; 702:108826. [PMID: 33684359 DOI: 10.1016/j.abb.2021.108826] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/12/2023]
Abstract
Structural studies show that enzymes have a limited number of unique folds, although structurally related enzymes have evolved to perform a large variety of functions. In this review, we have focused on enzymes containing the low molecular weight thioredoxin reductase (low Mr TrxR) fold. This fold consists of two domains, both containing a three-layer ββα sandwich Rossmann-like fold, serving as flavin adenine dinucleotide (FAD) and, in most cases, pyridine nucleotide (NAD(P)H) binding-domains. Based on a search of the Protein Data Bank for all published structures containing the low Mr TrxR-like fold, we here present a comprehensive overview of enzymes with this structural architecture. These range from TrxR-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases, through glutathione reductase, to NADH peroxidase. Some enzymes are solely composed of the low Mr TrxR-like fold, while others contain one or two additional domains. In this review, we give a detailed description of selected enzymes containing only the low Mr TrxR-like fold, however, catalyzing a diversity of chemical reactions. Our overview of this structurally similar, yet functionally distinct group of flavoprotein oxidoreductases highlights the fascinating and increasing number of studies describing the diversity among these enzymes, especially during the last decade(s).
Collapse
|
16
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
17
|
Association of Fungal Siderophores in Human Diseases: Roles and Treatments. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Campbell AC, Robinson R, Mena-Aguilar D, Sobrado P, Tanner JJ. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase. Biochemistry 2020; 59:4609-4616. [PMID: 33226785 DOI: 10.1021/acs.biochem.0c00783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ornithine hydroxylase known as SidA is a class B flavin monooxygenase that catalyzes the first step in the biosynthesis of hydroxamate-containing siderophores in Aspergillus fumigatus. Crystallographic studies of SidA revealed that the FAD undergoes dramatic conformational changes between out and in states during the catalytic cycle. We sought insight into the origins and purpose of flavin motion in class B monooxygenases by probing the function of Met101, a residue that contacts the pyrimidine ring of the in FAD. Steady-state kinetic measurements showed that the mutant variant M101A has a 25-fold lower turnover number. Pre-steady-state kinetic measurements, pH profiles, and solvent kinetic isotope effect measurements were used to isolate the microscopic step that is responsible for the reduced steady-state activity. The data are consistent with a bottleneck in the final step of the mechanism, which involves flavin dehydration and the release of hydroxy-l-ornithine and NADP+. Crystal structures were determined for M101A in the resting state and complexed with NADP+. The resting enzyme structure is similar to that of wild-type SidA, consistent with M101A exhibiting normal kinetics for flavin reduction by NADPH and wild-type affinity for NADPH. In contrast, the structure of the M101A-NADP+ complex unexpectedly shows the FAD adopting the out conformation and may represent a stalled conformation that is responsible for the slow kinetics. Altogether, our data support a previous proposal that one purpose of the FAD conformational change from in to out in class B flavin monooxygenases is to eject spent NADP+ in preparation for a new catalytic cycle.
Collapse
Affiliation(s)
- Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Reeder Robinson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Didier Mena-Aguilar
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States.,Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
19
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
20
|
Campbell AC, Stiers KM, Martin Del Campo JS, Mehra-Chaudhary R, Sobrado P, Tanner JJ. Trapping conformational states of a flavin-dependent N-monooxygenase in crystallo reveals protein and flavin dynamics. J Biol Chem 2020; 295:13239-13249. [PMID: 32723870 DOI: 10.1074/jbc.ra120.014750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Indexed: 11/06/2022] Open
Abstract
The siderophore biosynthetic enzyme A (SidA) ornithine hydroxylase from Aspergillus fumigatus is a fungal disease drug target involved in the production of hydroxamate-containing siderophores, which are used by the pathogen to sequester iron. SidA is an N-monooxygenase that catalyzes the NADPH-dependent hydroxylation of l-ornithine through a multistep oxidative mechanism, utilizing a C4a-hydroperoxyflavin intermediate. Here we present four new crystal structures of SidA in various redox and ligation states, including the first structure of oxidized SidA without NADP(H) or l-ornithine bound (resting state). The resting state structure reveals a new out active site conformation characterized by large rotations of the FAD isoalloxazine around the C1-'C2' and N10-C1' bonds, coupled to a 10-Å movement of the Tyr-loop. Additional structures show that either flavin reduction or the binding of NADP(H) is sufficient to drive the FAD to the in conformation. The structures also reveal protein conformational changes associated with the binding of NADP(H) and l-ornithine. Some of these residues were probed using site-directed mutagenesis. Docking was used to explore the active site of the out conformation. These calculations identified two potential ligand-binding sites. Altogether, our results provide new information about conformational dynamics in flavin-dependent monooxygenases. Understanding the different active site conformations that appear during the catalytic cycle may allow fine-tuning of inhibitor discovery efforts.
Collapse
Affiliation(s)
- Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Kyle M Stiers
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA; Department of Chemistry, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
21
|
Fürst MJLJ, Fiorentini F, Fraaije MW. Beyond active site residues: overall structural dynamics control catalysis in flavin-containing and heme-containing monooxygenases. Curr Opin Struct Biol 2019; 59:29-37. [DOI: 10.1016/j.sbi.2019.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
|
22
|
Kenjić N, Hoag MR, Moraski GC, Caperelli CA, Moran GR, Lamb AL. PvdF of pyoverdin biosynthesis is a structurally unique N 10-formyltetrahydrofolate-dependent formyltransferase. Arch Biochem Biophys 2019; 664:40-50. [PMID: 30689984 DOI: 10.1016/j.abb.2019.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/17/2022]
Abstract
The hydroxyornithine transformylase from Pseudomonas aeruginosa is known by the gene name pvdF, and has been hypothesized to use N10-formyltetrahydrofolate (N10-fTHF) as a co-substrate formyl donor to convert N5-hydroxyornithine (OHOrn) to N5-formyl- N5-hydroxyornithine (fOHOrn). PvdF is in the biosynthetic pathway for pyoverdin biosynthesis, a siderophore generated under iron-limiting conditions that has been linked to virulence, quorum sensing and biofilm formation. The structure of PvdF was determined by X-ray crystallography to 2.3 Å, revealing a formyltransferase fold consistent with N10-formyltetrahydrofolate dependent enzymes, such as the glycinamide ribonucleotide transformylases, N-sugar transformylases and methionyl-tRNA transformylases. Whereas the core structure, including the catalytic triad, is conserved, PvdF has three insertions of 18 or more amino acids, which we hypothesize are key to binding the OHOrn substrate. Steady state kinetics revealed a non-hyperbolic rate curve, promoting the hypothesis that PvdF uses a random-sequential mechanism, and favors folate binding over OHOrn.
Collapse
Affiliation(s)
- Nikola Kenjić
- Department of Molecular Biosciences, 1200 Sunnyside Ave, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew R Hoag
- Department of Chemistry and Biochemistry, 3210 N Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry Building, Montana State University, Bozeman, MT, 59717, USA
| | - Carol A Caperelli
- Winkle College of Pharmacy, University of Cincinnati, ML 0514, 231 Albert Sabin Way, MSB 3109B, Cincinnati, OH, 45267, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Audrey L Lamb
- Department of Molecular Biosciences, 1200 Sunnyside Ave, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
23
|
Saroja NR, Mohan AHS, Srividya D, Supreetha K. Chaperone-assisted expression and purification of putrescine monooxygenase from Shewanella putrefaciens-95. Protein Expr Purif 2019; 157:9-16. [PMID: 30654014 DOI: 10.1016/j.pep.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/22/2023]
Abstract
A putrescine monooxygenase from Shewanella putrefaciens 95 (SpPMO) is the initial enzyme catalyzing the hydroxylation of putrescine to N-hydroxyl putrescine, the precursor for the synthesis of a siderophore putrebactin was identified. This PMO clustered together with known characterized NMOs from Shewanella baltica, Bordetella pertussis, Erwinia amylovora, Streptomyces sp. Gordonia rubripertincta, Pseudomonas aeruginosa and outgrouped from Escherichia coli, Nocardia farcinica, and Rhodococcus erythropolis. The deduced SpPMO protein showed 53% and 36% sequence identity with other characterized bacterial NMOs from Erwinia amylovora and Gordonia rubripertincta respectively. In this investigation, we have cloned the complete 1518bp coding sequence of pubA from Shewanella putrefaciens 95 encoding the corresponding protein SpPMO. It comprises 505 amino acid residues in length and has approximately a molecular weight of 54 kDa. Chaperone-assisted heterologous expression of SpPMO in pET151Topo expression vector under the control of bacteriophage T7 promoter permitted a stringent IPTG dependent expression. It has been successfully cloned, overexpressed and purified as a soluble His6 -tagged enzyme using E. coli as a cloning and expression host. The expression of recombinant SpPMO was confirmed by Western blotting using anti-His6 antibody. The purified protein showed FAD and NADPH dependent N-hydroxylation activity. This study has paved a way to understand the hydroxylation step of putrebactin synthesis which can be further investigated by studying its kinetic mechanism and physiological role.
Collapse
Affiliation(s)
- Narsing Rao Saroja
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, 584104, Karnataka, India.
| | - Anil H Shyam Mohan
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Shavige Malleswara Hills, Bengaluru, 78, Karnataka, India
| | - D Srividya
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, 584104, Karnataka, India
| | - K Supreetha
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Shavige Malleswara Hills, Bengaluru, 78, Karnataka, India
| |
Collapse
|
24
|
Fordwour OB, Wolthers KR. Active site arginine controls the stereochemistry of hydride transfer in cyclohexanone monooxygenase. Arch Biochem Biophys 2018; 659:47-56. [PMID: 30287236 DOI: 10.1016/j.abb.2018.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/01/2022]
Abstract
Cyclohexanone monooxygenase (CHMO) uses NADPH and O2 to insert oxygen into an array of (a)cyclic ketones to form esters or lactones. Herein, the role of two conserved active site residues (R327 and D57) in controlling the binding mode of NADP(H) was investigated. Wild type CHMO elicits a kinetic isotope effect (KIE) of 4.7 ± 0.1 and 1.1 ± 0.1 with 4(R)-[4-2H]NADPH and 4(S)-[4-2H]NADPH, respectively, consistent with transfer of the proR hydrogen to FAD. Strikingly, the R327K variant appears to lack stereospecificity for hydride transfer as a KIE of 1.5 ± 0.1 and 2.5 ± 0.1 was observed for the proR and proS deuterated forms of NADPH. 1H NMR of the NADP+ products confirmed that the R327K variant abstracts either the proR or proS hydrogen from NADPH. While the D57A variant retained stereospecificity for the proR hydrogen, this substitution resulted in slow decomposition of the C4a-peroxyflavin intermediate in the presence of cyclohexanone. Based on published structures of a related flavin monooxygenase, we suggest that elimination of the hydrogen bond between D57 and R327 in the D57A variant causes R327 to adopt a substrate-induced conformation that slows substrate access to the active site, thereby prolonging the lifetime of the C4a-peroxyflavin intermediate.
Collapse
Affiliation(s)
- Osei Boakye Fordwour
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
25
|
Active site variants provide insight into the nature of conformational changes that accompany the cyclohexanone monooxygenase catalytic cycle. Arch Biochem Biophys 2018; 654:85-96. [DOI: 10.1016/j.abb.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023]
|
26
|
A complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora. J Struct Biol 2018; 202:236-249. [DOI: 10.1016/j.jsb.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
|
27
|
Kubitza C, Faust A, Gutt M, Gäth L, Ober D, Scheidig AJ. Crystal structure of pyrrolizidine alkaloid N-oxygenase from the grasshopper Zonocerus variegatus. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:422-432. [PMID: 29717713 DOI: 10.1107/s2059798318003510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 11/10/2022]
Abstract
The high-resolution crystal structure of the flavin-dependent monooxygenase (FMO) from the African locust Zonocerus variegatus is presented and the kinetics of structure-based protein variants are discussed. Z. variegatus expresses three flavin-dependent monooxygenase (ZvFMO) isoforms which contribute to a counterstrategy against pyrrolizidine alkaloids (PAs). PAs are protoxic compounds produced by some angiosperm lineages as a chemical defence against herbivores. N-Oxygenation of PAs and the accumulation of PA N-oxides within their haemolymph result in two evolutionary advantages for these insects: (i) they circumvent the defence mechanism of their food plants and (ii) they can use PA N-oxides to protect themselves against predators, which cannot cope with the toxic PAs. Despite a high degree of sequence identity and a similar substrate spectrum, the three ZvFMO isoforms differ greatly in enzyme activity. Here, the crystal structure of the Z. variegatus PA N-oxygenase (ZvPNO), the most active ZvFMO isoform, is reported at 1.6 Å resolution together with kinetic studies of a second isoform, ZvFMOa. This is the first available crystal structure of an FMO from class B (of six different FMO subclasses, A-F) within the family of flavin-dependent monooxygenases that originates from a more highly developed organism than yeast. Despite the differences in sequence between family members, their overall structure is very similar. This indicates the need for high conservation of the three-dimensional structure for this type of reaction throughout all kingdoms of life. Nevertheless, this structure provides the closest relative to the human enzyme that is currently available for modelling studies. Of note, the crystal structure of ZvPNO reveals a unique dimeric arrangement as well as small conformational changes within the active site that have not been observed before. A newly observed kink within helix α8 close to the substrate-binding path might indicate a potential mechanism for product release. The data show that even single amino-acid exchanges in the substrate-entry path, rather than the binding site, have a significant impact on the specific enzyme activity of the isoforms.
Collapse
Affiliation(s)
- Christian Kubitza
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Annette Faust
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Miriam Gutt
- Biochemical Ecology and Molecular Evolution, Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Luzia Gäth
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Dietrich Ober
- Biochemical Ecology and Molecular Evolution, Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Axel J Scheidig
- Structural Biology, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
28
|
Contrasting roles of fungal siderophores in maintaining iron homeostasis in Epichloë festucae. Fungal Genet Biol 2018; 111:60-72. [DOI: 10.1016/j.fgb.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
|
29
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
30
|
Gao J, Yao L, Xia T, Liao X, Zhu D, Xiang Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048. FASEB J 2018; 32:2036-2045. [PMID: 29208702 DOI: 10.1096/fj.201700397rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human kynurenine 3-monooxygenase (hKMO) is a potential therapeutic target for neurodegenerative and neurologic disorders. Inhibition of KMO by Ro 61-8048, a potent, selective, and the most widely used inhibitor of KMO, was shown effective in various models of neurodegenerative or neurologic disorders. However, the molecular basis of hKMO inhibition by Ro 61-8048 is not clearly understood. Here, we report biochemistry studies on hKMO and crystal structures of an hKMO homolog, pfKMO from Pseudomonas fluorescens, in complex with the substrate l-kynurenine and Ro 61-8048. We found that the C-terminal ∼110 aa are essential for the enzymatic activity of hKMO and the homologous C-terminal region of pfKMO folds into a distinct, all-α-helical domain, which associates with the N-terminal catalytic domain to form a unique tunnel in proximity to the substrate-binding pocket. The tunnel binds the Ro 61-8048 molecule, which fills most of the tunnel, and Ro 61-8048 is hydrogen bonded with several completely conserved residues, including an essential catalytic residue. Modification of Ro 61-8048 and biochemical studies of the modified Ro 61-8048 derivatives suggested that Ro 61-8048 inhibits the enzyme in an allosteric manner by affecting the conformation of the essential catalytic residue and by blocking entry of the substrate or product release. The unique binding sites distinguish Ro 61-8048 as a noncompetitive and highly selective inhibitor from other competitive inhibitors, which should facilitate further optimization of Ro 61-8048 and the development of new inhibitory drugs to hKMO.-Gao, J., Yao, L., Xia, T., Liao, X., Zhu, D., Xiang, Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Medicine, Center for Infectious Disease Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology
| | - Licheng Yao
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China; and
| | - Tingting Xia
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China; and
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China; and
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ye Xiang
- School of Medicine, Center for Infectious Disease Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology
| |
Collapse
|
31
|
Hutchinson JP, Rowland P, Taylor MRD, Christodoulou EM, Haslam C, Hobbs CI, Holmes DS, Homes P, Liddle J, Mole DJ, Uings I, Walker AL, Webster SP, Mowat CG, Chung CW. Structural and mechanistic basis of differentiated inhibitors of the acute pancreatitis target kynurenine-3-monooxygenase. Nat Commun 2017; 8:15827. [PMID: 28604669 PMCID: PMC5477544 DOI: 10.1038/ncomms15827] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design. Kynurenine-3-monooxygenase (KMO) is an emerging clinical target for treatment of neurodegenerative diseases and acute pancreatitis. Here, the authors report potent inhibitors that bind KMO in an unexpected conformation, offering structural and mechanistic insights for future drug discovery ventures.
Collapse
Affiliation(s)
| | - Paul Rowland
- Platform Technologies and Science, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Mark R D Taylor
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | | | - Carl Haslam
- Platform Technologies and Science, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Clare I Hobbs
- Platform Technologies and Science, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Duncan S Holmes
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, UK
| | - Paul Homes
- Platform Technologies and Science, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - John Liddle
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, UK
| | - Damian J Mole
- Medical Research Council Centre for Inflammation Research, Edinburgh EH16 4TJ, UK.,Clinical Surgery, University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Iain Uings
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, UK
| | - Ann L Walker
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, UK
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Christopher G Mowat
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Chun-Wa Chung
- Platform Technologies and Science, GlaxoSmithKline, Stevenage SG1 2NY, UK
| |
Collapse
|
32
|
Moran GR, Hoag MR. The enzyme: Renalase. Arch Biochem Biophys 2017; 632:66-76. [PMID: 28558965 DOI: 10.1016/j.abb.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
Within the last two years catalytic substrates for renalase have been identified, some 10 years after its initial discovery. 2- and 6-dihydronicotinamide (2- and 6-DHNAD) isomers of β-NAD(P)H (4-dihydroNAD(P)) are rapidly oxidized by renalase to form β-NAD(P)+. The two electrons liberated are then passed to molecular oxygen by the renalase FAD cofactor forming hydrogen peroxide. This activity would appear to serve an intracellular detoxification/metabolite repair function that alleviates inhibition of primary metabolism dehydrogenases by 2- and 6-DHNAD molecules. This activity is supported by the complete structural assignment of the substrates, comprehensive kinetic analyses, defined species specific substrate specificity profiles and X-ray crystal structures that reveal ligand complexation consistent with this activity. This apparently intracellular function for the renalase enzyme is not allied with the majority of the renalase research that holds renalase to be a secreted mammalian protein that functions in blood to elicit a broad array of profound physiological changes. In this review a description of renalase as an enzyme is presented and an argument is offered that its enzymatic function can now reasonably be assumed to be uncoupled from whole organism physiological influences.
Collapse
Affiliation(s)
- Graham R Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States.
| | - Matthew R Hoag
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States
| |
Collapse
|
33
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
34
|
Clevenger KD, Mascarenhas R, Catlin D, Wu R, Kelleher NL, Drake EJ, Gulick AM, Liu D, Fast W. Substrate Trapping in the Siderophore Tailoring Enzyme PvdQ. ACS Chem Biol 2017; 12:643-647. [PMID: 28186406 DOI: 10.1021/acschembio.7b00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Siderophore biosynthesis by Pseudomonas aeruginosa enhances virulence and represents an attractive drug target. PvdQ functions in the type-1 pyoverdine biosynthetic pathway by removing a myristoyl anchor from a pyoverdine precursor, allowing eventual release from the periplasm. A circularly permuted version of PvdQ bypasses the self-processing step of this Ntn-hydrolase and retains the activity, selectivity, and structure of wild-type PvdQ, as revealed by a 1.8 Å resolution X-ray crystal structure. A 2.55 Å resolution structure of the inactive S1A/N269D-cpPvdQ mutant in complex with the pyoverdine precursor PVDIq reveals a specific binding pocket for the d-Tyr of this modified peptide substrate. To our knowledge, this structure is the first of a pyoverdine precursor peptide bound to a biosynthetic enzyme. Details of the observed binding interactions have implications for control of pyoverdine biosynthesis and inform future drug design efforts.
Collapse
Affiliation(s)
- Kenneth D. Clevenger
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Romila Mascarenhas
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Daniel Catlin
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Rui Wu
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric J. Drake
- Hauptman-Woodward
Medical Research Institute and Department of Structural Biology, SUNY University at Buffalo, Buffalo, New York 14203, United States
| | - Andrew M. Gulick
- Hauptman-Woodward
Medical Research Institute and Department of Structural Biology, SUNY University at Buffalo, Buffalo, New York 14203, United States
| | - Dali Liu
- Department
of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | |
Collapse
|
35
|
Li B, Lowe-Power T, Kurihara S, Gonzales S, Naidoo J, MacMillan JB, Allen C, Michael AJ. Functional Identification of Putrescine C- and N-Hydroxylases. ACS Chem Biol 2016; 11:2782-2789. [PMID: 27541336 DOI: 10.1021/acschembio.6b00629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The small polyamine putrescine (1,4-diaminobutane) is ubiquitously and abundantly found in all three domains of life. It is a precursor, through N-aminopropylation or N-aminobutylation, for biosynthesis of the longer polyamines spermidine, sym-homospermidine, spermine, and thermospermine and longer and branched chain polyamines. Putrescine is also biochemically modified for purposes of metabolic regulation and catabolism, e.g. N-acetylation and N-glutamylation, and for incorporation into specialized metabolites, e.g. N-methylation, N-citrylation, N-palmitoylation, N-hydroxylation, and N-hydroxycinnamoylation. Only one example is known where putrescine is modified on a methylene carbon: the formation of 2-hydroxyputrescine by an unknown C-hydroxylase. Here, we report the functional identification of a previously undescribed putrescine 2-hydroxylase, a Rieske-type nonheme iron sulfur protein from the β-proteobacteria Bordetella bronchiseptica and Ralstonia solanacearum. Identification of the putrescine 2-hydroxylase will facilitate investigation of the physiological functions of 2-hydroxyputrescine. One known role of 2-hydroxyputrescine has direct biomedical relevance: its role in the biosynthesis of the cyclic hydroxamate siderophore alcaligin, a potential virulence factor of the causative agent of whooping cough, Bordetella pertussis. We also report the functional identification of a putrescine N-hydroxylase from the γ-proteobacterium Shewanella oneidensis, which is homologous to FAD- and NADPH-dependent ornithine and lysine N-monooxygenases involved in siderophore biosynthesis. Heterologous expression of the putrescine N-hydroxylase in E. coli produced free N-hydroxyputrescine, never detected previously in a biological system. Furthermore, the putrescine C- and N-hydroxylases identified here could contribute new functionality to polyamine structural scaffolds, including C-H bond functionalization in synthetic biology strategies.
Collapse
Affiliation(s)
| | - Tiffany Lowe-Power
- Deptartment of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States
| | | | | | | | | | - Caitilyn Allen
- Deptartment of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States
| | | |
Collapse
|
36
|
Abdelwahab H, Robinson R, Rodriguez P, Adly C, El-Sohaimy S, Sobrado P. Identification of structural determinants of NAD(P)H selectivity and lysine binding in lysine N(6)-monooxygenase. Arch Biochem Biophys 2016; 606:180-8. [PMID: 27503802 DOI: 10.1016/j.abb.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 11/26/2022]
Abstract
l-lysine (l-Lys) N(6)-monooxygenase (NbtG), from Nocardia farcinica, is a flavin-dependent enzyme that catalyzes the hydroxylation of l-Lys in the presence of oxygen and NAD(P)H in the biosynthetic pathway of the siderophore nocobactin. NbtG displays only a 3-fold preference for NADPH over NADH, different from well-characterized related enzymes, which are highly selective for NADPH. The structure of NbtG with bound NAD(P)(+) or l-Lys is currently not available. Herein, we present a mutagenesis study targeting M239, R301, and E216. These amino acids are conserved and located in either the NAD(P)H binding domain or the l-Lys binding pocket. M239R resulted in high production of hydrogen peroxide and little hydroxylation with no change in coenzyme selectivity. R301A caused a 300-fold decrease on kcat/Km value with NADPH but no change with NADH. E216Q increased the Km value for l-Lys by 30-fold with very little change on the kcat value or in the binding of NAD(P)H. These results suggest that R301 plays a major role in NADPH selectivity by interacting with the 2'-phosphate of the adenine-ribose moiety of NADPH, while E216 plays a role in l-Lys binding.
Collapse
Affiliation(s)
- Heba Abdelwahab
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; Department of Chemistry, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Reeder Robinson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pedro Rodriguez
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Camelia Adly
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Sohby El-Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
Robinson R, Qureshi IA, Klancher CA, Rodriguez PJ, Tanner JJ, Sobrado P. Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase. Arch Biochem Biophys 2015; 585:25-31. [PMID: 26375201 PMCID: PMC6467063 DOI: 10.1016/j.abb.2015.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/22/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
The SidA ornithine N5-monooxygenase from Aspergillus fumigatus is a flavin monooxygenase that catalyzes the NADPH-dependent hydroxylation of ornithine. Herein we report a mutagenesis study targeting four residues that contact ornithine in crystal structures of SidA: Lys107, Asn293, Asn323, and Ser469. Mutation of Lys107 to Ala abolishes activity as measured in steady-state oxygen consumption and ornithine hydroxylation assays, indicating that the ionic interaction of Lys107 with the carboxylate of ornithine is essential for catalysis. Mutation of Asn293, Asn323, or Ser469 individually to Ala results in >14-fold increases in Km values for ornithine. Asn323 to Ala also increases the rate constant for flavin reduction by NADPH by 18-fold. Asn323 is unique among the four ornithine binding residues in that it also interacts with NADPH by forming a hydrogen bond with the nicotinamide ribose. The crystal structure of N323A complexed with NADP(+) and ornithine shows that the nicontinamide riboside group of NADP is disordered. This result suggests that the increase in flavin reduction rate results from an increase in conformational space available to the enzyme-bound NADP(H). Asn323 thus facilitates ornithine binding at the expense of hindering flavin reduction, which demonstrates the delicate balance that exists within protein-ligand interaction networks in enzyme active sites.
Collapse
Affiliation(s)
- Reeder Robinson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Insaf A Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | - Pedro J Rodriguez
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J Tanner
- Departments of Biochemistry and Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
38
|
Binda C, Robinson RM, Martin Del Campo JS, Keul ND, Rodriguez PJ, Robinson HH, Mattevi A, Sobrado P. An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation. J Biol Chem 2015; 290:12676-88. [PMID: 25802330 DOI: 10.1074/jbc.m114.629485] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 01/01/2023] Open
Abstract
N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This "occluded" structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed.
Collapse
Affiliation(s)
- Claudia Binda
- From the Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Reeder M Robinson
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| | | | - Nicholas D Keul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| | - Pedro J Rodriguez
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| | - Howard H Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Andrea Mattevi
- From the Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy,
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| |
Collapse
|
39
|
Badieyan S, Bach RD, Sobrado P. Mechanism of N-Hydroxylation Catalyzed by Flavin-Dependent Monooxygenases. J Org Chem 2015; 80:2139-47. [DOI: 10.1021/jo502651v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Somayesadat Badieyan
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robert D. Bach
- Departments
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Pablo Sobrado
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
40
|
Setser JW, Heemstra JR, Walsh CT, Drennan CL. Crystallographic evidence of drastic conformational changes in the active site of a flavin-dependent N-hydroxylase. Biochemistry 2014; 53:6063-77. [PMID: 25184411 PMCID: PMC4179590 DOI: 10.1021/bi500655q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
The soil actinomycete Kutzneria sp. 744 produces
a class of highly decorated hexadepsipeptides, which represent a new
chemical scaffold that has both antimicrobial and antifungal properties.
These natural products, known as kutznerides, are created via nonribosomal
peptide synthesis using various derivatized amino acids. The piperazic
acid moiety contained in the kutzneride scaffold, which is vital for
its antibiotic activity, has been shown to derive from the hydroxylated
product of l-ornithine, l-N5-hydroxyornithine. The production of this hydroxylated species
is catalyzed by the action of an FAD- and NAD(P)H-dependent N-hydroxylase known as KtzI. We have been able to structurally
characterize KtzI in several states along its catalytic trajectory,
and by pairing these snapshots with the biochemical and structural
data already available for this enzyme class, we propose a structurally
based reaction mechanism that includes novel conformational changes
of both the protein backbone and the flavin cofactor. Further, we
were able to recapitulate these conformational changes in the protein
crystal, displaying their chemical competence. Our series of structures,
with corroborating biochemical and spectroscopic data collected by
us and others, affords mechanistic insight into this relatively new
class of flavin-dependent hydroxylases and adds another layer to the
complexity of flavoenzymes.
Collapse
Affiliation(s)
- Jeremy W Setser
- Department of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
41
|
Robinson RM, Rodriguez PJ, Sobrado P. Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis. Arch Biochem Biophys 2014; 550-551:58-66. [PMID: 24769337 DOI: 10.1016/j.abb.2014.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
The mechanism of Mycobacterium smegmatis G (MbsG), a flavin-dependent l-lysine monooxygenase, was investigated under steady-state and rapid reaction conditions using primary and solvent kinetic isotope effects, substrate analogs, pH and solvent viscosity effects as mechanistic probes. The results suggest that l-lysine binds before NAD(P)H, which leads to a decrease in the rate constant for flavin reduction. l-lysine binding has no effect on the rate of flavin oxidation, which occurs in a one-step process without the observation of a C4a-hydroperoxyflavin intermediate. Similar effects were determined with several substrate analogs. Flavin oxidation is pH independent while the kcat/Km and kred/KD pH profiles for NAD(P)H exhibit single pKa values of ∼6.0, with increasing activity as the pH decreases. At lower pH, the enzyme becomes more uncoupled, producing more hydrogen peroxide and superoxide. Hydride transfer is partially rate-limiting at neutral pH and becomes more rate-limiting at low pH. An inverse solvent viscosity effect on kcat/Km for NAD(P)H was observed at neutral pH whereas a normal solvent viscosity effect was observed at lower pH. Together, the results indicate a unique mechanism where a rate-limiting and pH-sensitive conformational change occurs in the reductive half-reaction, which affects the efficiency of lysine hydroxylation.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pedro J Rodriguez
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
42
|
Frederick RE, Ojha S, Lamb A, Dubois JL. How pH modulates the reactivity and selectivity of a siderophore-associated flavin monooxygenase. Biochemistry 2014; 53:2007-16. [PMID: 24490904 PMCID: PMC3985866 DOI: 10.1021/bi401256b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Flavin-containing
monooxygenases (FMOs) catalyze the oxygenation
of diverse organic molecules using O2, NADPH, and the flavin
adenine dinucleotide (FAD) cofactor. The fungal FMO SidA initiates
peptidic siderophore biosynthesis via the highly selective hydroxylation
of l-ornithine, while the related amino acid l-lysine
is a potent effector of reaction uncoupling to generate H2O2. We hypothesized that protonation states could critically
influence both substrate-selective hydroxylation and H2O2 release, and therefore undertook a study of SidA’s
pH-dependent reaction kinetics. Consistent with other FMOs that stabilize
a C4a-OO(H) intermediate, SidA’s reductive half reaction is
pH independent. The rate constant for the formation of the reactive
C4a-OO(H) intermediate from reduced SidA and O2 is likewise
independent of pH. However, the rate constants for C4a-OO(H) reactions,
either to eliminate H2O2 or to hydroxylate l-Orn, were strongly pH-dependent and influenced by the nature
of the bound amino acid. Solvent kinetic isotope effects of 6.6 ±
0.3 and 1.9 ± 0.2 were measured for the C4a-OOH/H2O2 conversion in the presence and absence of l-Lys, respectively. A model is proposed in which l-Lys accelerates
H2O2 release via an acid–base mechanism
and where side-chain position determines whether H2O2 or the hydroxylation product is observed.
Collapse
Affiliation(s)
- Rosanne E Frederick
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
43
|
Robinson R, Franceschini S, Fedkenheuer M, Rodriguez PJ, Ellerbrock J, Romero E, Echandi MP, Martin Del Campo JS, Sobrado P. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:778-84. [PMID: 24534646 DOI: 10.1016/j.bbapap.2014.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
Siderophore A (SidA) is a flavin-dependent monooxygenase that catalyzes the NAD(P)H- and oxygen-dependent hydroxylation of ornithine in the biosynthesis of siderophores in Aspergillus fumigatus and is essential for virulence. SidA can utilize both NADPH or NADH for activity; however, the enzyme is selective for NADPH. Structural analysis shows that R279 interacts with the 2'-phosphate of NADPH. To probe the role of electrostatic interactions in coenzyme selectivity, R279 was mutated to both an alanine and a glutamate. The mutant proteins were active but highly uncoupled, oxidizing NADPH and producing hydrogen peroxide instead of hydroxylated ornithine. For wtSidA, the catalytic efficiency was 6-fold higher with NADPH as compared to NADH. For the R279A mutant the catalytic efficiency was the same with both coenyzmes, while for the R279E mutant the catalytic efficiency was 5-fold higher with NADH. The effects are mainly due to an increase in the KD values, as no major changes on the kcat or flavin reduction values were observed. Thus, the absence of a positive charge leads to no coenzyme selectivity while introduction of a negative charge leads to preference for NADH. Flavin fluorescence studies suggest altered interaction between the flavin and NADP⁺ in the mutant enzymes. The effects are caused by different binding modes of the coenzyme upon removal of the positive charge at position 279, as no major conformational changes were observed in the structure for R279A. The results indicate that the positive charge at position 279 is critical for tight binding of NADPH and efficient hydroxylation.
Collapse
Affiliation(s)
- Reeder Robinson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Stefano Franceschini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Italy
| | - Michael Fedkenheuer
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Pedro J Rodriguez
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Jacob Ellerbrock
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elvira Romero
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | | | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
44
|
Ceccoli RD, Bianchi DA, Rial DV. Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications. Front Microbiol 2014; 5:25. [PMID: 24567729 PMCID: PMC3915288 DOI: 10.3389/fmicb.2014.00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022] Open
Abstract
External flavoprotein monooxygenases comprise a group of flavin-dependent oxidoreductases that catalyze the insertion of one atom of molecular oxygen into an organic substrate and the second atom is reduced to water. These enzymes are involved in a great number of metabolic pathways both in prokaryotes and eukaryotes. Flavoprotein monooxygenases have attracted the attention of researchers for several decades and the advent of recombinant DNA technology caused a great progress in the field. These enzymes are subjected to detailed biochemical and structural characterization and some of them are also regarded as appealing oxidative biocatalysts for the production of fine chemicals and valuable intermediates toward active pharmaceutical ingredients due to their high chemo-, stereo-, and regioselectivity. Here, we review the most representative reactions catalyzed both in vivo and in vitro by prototype flavoprotein monooxygenases, highlighting the strategies employed to produce them recombinantly, to enhance the yield of soluble proteins, and to improve cofactor regeneration in order to obtain versatile biocatalysts. Although we describe the most outstanding features of flavoprotein monooxygenases, we mainly focus on enzymes that were cloned, expressed and used for biocatalysis during the last years.
Collapse
Affiliation(s)
- Romina D Ceccoli
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| | - Dario A Bianchi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Área Análisis de Medicamentos, Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Argentina
| | - Daniela V Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| |
Collapse
|
45
|
Sørensen JL, Knudsen M, Hansen FT, Olesen C, Fuertes PR, Lee TV, Sondergaard TE, Pedersen CNS, Brodersen DE, Giese H. Fungal NRPS-Dependent Siderophores: From Function to Prediction. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1191-2_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
46
|
Martinoli C, Dudek HM, Orru R, Edmondson DE, Fraaije MW, Mattevi A. Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction. ACS Catal 2013; 3:3058-3062. [PMID: 24443704 DOI: 10.1021/cs400837z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP+ and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically-modified cofactor analogues. Like pieces of a jigsaw puzzle, the enzyme active site juxtaposes the flavin and nicotinamide rings, harnessing their H-bonding and steric properties to finely construct an oxygen-reacting center that restrains the flavin-peroxide intermediate in a catalytically-competent orientation. Strikingly, the regio- and stereoselectivities of the reaction are essentially unaffected by cofactor modifications. These observations indicate a remarkable robustness of this complex multi-cofactor active site, which has implications for enzyme design based on cofactor engineering approaches.
Collapse
Affiliation(s)
- Christian Martinoli
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
9, 27100 Pavia, Italy
| | - Hanna M. Dudek
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Roberto Orru
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
9, 27100 Pavia, Italy
| | - Dale E. Edmondson
- Departments
of Biochemistry and Chemistry, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Marco W. Fraaije
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
9, 27100 Pavia, Italy
| |
Collapse
|
47
|
Shirey C, Badieyan S, Sobrado P. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA. J Biol Chem 2013; 288:32440-32448. [PMID: 24072704 DOI: 10.1074/jbc.m113.487181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N(5)-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP(+) is the last product to be released. The presence of NADP(+) is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP(+) to slide into position for stabilization of the C4a-hydroperoxyflavin.
Collapse
Affiliation(s)
| | | | - Pablo Sobrado
- From the Department of Biochemistry; the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061.
| |
Collapse
|
48
|
Franke J, Ishida K, Ishida-Ito M, Hertweck C. Nitro versus Hydroxamate in Siderophores of Pathogenic Bacteria: Effect of Missing Hydroxylamine Protection in Malleobactin Biosynthesis. Angew Chem Int Ed Engl 2013; 52:8271-5. [DOI: 10.1002/anie.201303196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 01/13/2023]
|
49
|
Franke J, Ishida K, Ishida-Ito M, Hertweck C. Nitro versus Hydroxamate in Siderophores of Pathogenic Bacteria: Effect of Missing Hydroxylamine Protection in Malleobactin Biosynthesis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Gründlinger M, Yasmin S, Lechner BE, Geley S, Schrettl M, Hynes M, Haas H. Fungal siderophore biosynthesis is partially localized in peroxisomes. Mol Microbiol 2013; 88:862-75. [PMID: 23617799 PMCID: PMC3709128 DOI: 10.1111/mmi.12225] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 11/28/2022]
Abstract
Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein-tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl-CoA ligase), SidH (mevalonyl-CoA hydratase) and SidF (anhydromevalonyl-CoA transferase), while elimination of the peroxisomal targeting signal (PTS) impaired both, peroxisomal SidH-targeting and TAFC biosynthesis. The analysis of A. nidulans mutants deficient in peroxisomal biogenesis, ATP import or protein import revealed that cytosolic mislocalization of one or two but, interestingly, not all three enzymes impairs TAFC production during iron starvation. The PTS motifs are conserved in fungal orthologues of SidF, SidH and SidI. In agreement with the evolutionary conservation of the partial peroxisomal compartmentalization of fungal siderophore biosynthesis, the SidI orthologue of coprogen-type siderophore-producing Neurospora crassa was confirmed to be peroxisomal. Taken together, this study identified and characterized a novel, evolutionary conserved metabolic function of peroxisomes.
Collapse
Affiliation(s)
- Mario Gründlinger
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|