1
|
Zhang J, Gao J, Zeng X, Wang Z, Chen C, Rong C, Li S, Cai L, Wang L, Zhang L, Tian Z. A novel Cdc42-YAP-fibronectin signaling axis regulates ameloblast differentiation during early enamel formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167570. [PMID: 39547518 DOI: 10.1016/j.bbadis.2024.167570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Enamel formation is a developmental event governed by intricate molecular signal pathways. Cdc42 is proven to regulate enamel development yet its underlying role and molecular mechanism in early amelogenesis remain elusive. The extracellular matrix of tooth germ basement membrane is critical for the regulation of ameloblast differentiation. Present study investigated whether Cdc42 influences amelogenesis by affecting ECM synthesis and how Cdc42 regulates ameloblasts differentiation. Epithelial-specific knockout of Cdc42 (Cdc42-cKO) mice model was employed to study the ECM expression including Fibronectin (Fn) and amelogenesis markers. Cdc42-cKO mice results in retarded ameloblast differentiation and enamel matrix decrease. Fn synthesis in the enamel organ and basal membrane was totally diminished along with Cdc42 knockdown. YAP acting as the Cdc42 downstream transcription factor, its distribution in ameloblasts was synchronously attenuated by Cdc42 knockdown and nuclear localization progressively decreased with tooth germ development. Cdc42 unidirectionally controls the Fn synthesis via YAP regulation. Overall, ameloblast differentiation inhibition by silencing of Cdc42 was successfully rescued by YAP activation. We demonstrated that Cdc42 as an initiator, mediated downstream pathway through transcriptional activator YAP, thereby affecting ameloblast differentiation by controlling Fn synthesis. The Cdc42-YAP-Fn signaling axis are elucidated to act critical role during the early amelogenesis.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingyi Gao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiangliang Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Rong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaowei Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingxuan Cai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Luchen Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Sofroniou MM, Lemmon CA. Differential regulation of fibronectin expression and fibrillogenesis by autocrine TGF-β1 signaling in malignant and benign mammary epithelial cells. Int J Biochem Cell Biol 2023; 165:106478. [PMID: 37866655 PMCID: PMC10775780 DOI: 10.1016/j.biocel.2023.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Remodeling of the extracellular matrix (ECM) is a key hallmark of cancer progression. A critical component of ECM remodeling is the assembly of the glycoprotein fibronectin (FN) into insoluble fibrils, which provide a scaffold for invading vascular endothelial cells and escaping cancer cells, as well as a framework for collagen deposition and oncogenic cytokine tethering. FN fibril assembly is induced by Transforming Growth Factor-β1 (TGF-β1), which was originally identified for its role in malignant transformation. Addition of exogenous TGF-β1 drives FN fibril assembly while also upregulating endogenous TGF-β1 expression and autocrine signaling. In the current study, we sought to determine if autocrine TGF-β1 signaling plays a role in FN fibril formation in either MCF10A mammary epithelial cells, which behave similarly to healthy epithelia, or malignant MDA- MB-231 breast cancer cells. Our results show two interesting findings: first, malignant MDA-MB- 231 cells assemble less FN into fibrils, despite expressing and secreting more soluble FN; second, autocrine TGF-β1 signaling is required for FN fibril formation in MCF10A epithelial cells, even in the presence of exogenous, active TGF-β1. This suggests that autocrine TGF-β1 is signaling through distinct pathways from active exogenous TGF-β1. We hypothesized that this signaling was mediated by interactions between the TGF-β1 latency associated peptide (LAP) and αv integrins; indeed, incubating MCF10As with soluble LAP, even in the absence of the active TGF-β1 ligand, partially recovered FN fibril assembly. Taken together, these data suggests that autocrine TGF-β1 plays a critical role in FN fibril assembly, and this interaction is mediated by LAP-integrin signaling.
Collapse
Affiliation(s)
- Michael M Sofroniou
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA 23284, USA
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA 23284, USA.
| |
Collapse
|
3
|
Higgins G, Higgins F, Peres J, Lang DM, Abdalrahman T, Zaman MH, Prince S, Franz T. Intracellular mechanics and TBX3 expression jointly dictate the spreading mode of melanoma cells in 3D environments. Exp Cell Res 2023; 428:113633. [PMID: 37172754 DOI: 10.1016/j.yexcr.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Cell stiffness and T-box transcription factor 3 (TBX3) expression have been identified as biomarkers of melanoma metastasis in 2D environments. This study aimed to determine how mechanical and biochemical properties of melanoma cells change during cluster formation in 3D environments. Vertical growth phase (VGP) and metastatic (MET) melanoma cells were embedded in 3D collagen matrices of 2 and 4 mg/ml collagen concentrations, representing low and high matrix stiffness. Mitochondrial fluctuation, intracellular stiffness, and TBX3 expression were quantified before and during cluster formation. In isolated cells, mitochondrial fluctuation decreased and intracellular stiffness increased with increase in disease stage from VGP to MET and increased matrix stiffness. TBX3 was highly expressed in soft matrices but diminished in stiff matrices for VGP and MET cells. Cluster formation of VGP cells was excessive in soft matrices but limited in stiff matrices, whereas for MET cells it was limited in soft and stiff matrices. In soft matrices, VGP cells did not change the intracellular properties, whereas MET cells exhibited increased mitochondrial fluctuation and decreased TBX3 expression. In stiff matrices, mitochondrial fluctuation and TBX3 expression increased in VGP and MET, and intracellular stiffness increased in VGP but decreased in MET cells. The findings suggest that soft extracellular environments are more favourable for tumour growth, and high TBX3 levels mediate collective cell migration and tumour growth in the earlier VGP disease stage but play a lesser role in the later metastatic stage of melanoma.
Collapse
Affiliation(s)
- Ghodeejah Higgins
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Faatiemah Higgins
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Dirk M Lang
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa; Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Heinrich MA, Uboldi I, Kuninty PR, Ankone MJ, van Baarlen J, Zhang YS, Jain K, Prakash J. Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioact Mater 2023; 22:18-33. [PMID: 36203956 PMCID: PMC9516389 DOI: 10.1016/j.bioactmat.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 10/26/2022] Open
Abstract
Fibrotic tumors, such as pancreatic ductal adenocarcinoma (PDAC), are characterized for high desmoplastic reaction, which results in high intra-tumoral solid stress leading to the compression of blood vessels. These microarchitectural alterations cause loss of blood flow and poor intra-tumoral delivery of therapeutics. Currently, there is a lack of relevant in vitro models capable of replicating these mechanical characteristics and to test anti-desmoplastic compounds. Here, a multi-layered vascularized 3D PDAC model consisting of primary human pancreatic stellate cells (PSCs) embedded in collagen/fibrinogen (Col/Fib), mimicking tumor tissue within adjunct healthy tissue, is presented to study the fibrosis-induced compression of vasculature in PDAC. It is demonstrated how the mechanical and biological stimulation induce PSC activation, extracellular matrix production and eventually vessel compression. The clinical relevance is confirmed by correlating with patient transcriptomic data. Furthermore, the effects of gradual vessel compression on the fluid dynamics occurring within the channel is evaluated in silico. Finally, it is demonstrated how cancer-associated fibroblast (CAF)-modulatory therapeutics can inhibit the cell-mediated compression of blood vessels in PDAC in vitro, in silico and in vivo. It is envisioned that this 3D model is used to improve the understanding of mechanical characteristics in tumors and for evaluating novel anti-desmoplastic therapeutics.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Irene Uboldi
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Praneeth Reddy Kuninty
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Marc J.K. Ankone
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Joop van Baarlen
- Laboratorium Pathologie Oost-Nederland (LabPON), 7550 AM, Hengelo, the Netherlands
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, Biofluid Dynamics Section, University of Twente, 7500 AE Enschede, the Netherlands
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
5
|
Li L, Wen Z, Kou N, Liu J, Jin D, Wang L, Wang F, Gao L. LIS1 interacts with CLIP170 to promote tumor growth and metastasis via the Cdc42 signaling pathway in salivary gland adenoid cystic carcinoma. Int J Oncol 2022; 61:129. [PMID: 36102310 PMCID: PMC9477107 DOI: 10.3892/ijo.2022.5419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Salivary gland adenoid cystic carcinoma (SACC) is one of the most common malignant tumors, with high aggressive potential in the oral and maxillofacial regions. Lissencephaly 1 (LIS1) is a microtubule-organizing center-associated protein that regulates the polymerization and stability of microtubules by mediating the motor function of dynein. Recent studies have suggested that LIS1 plays a potential role in the malignant development of tumors, such as in mitosis and migration. However, the role of LIS1 in SACC development and its related molecular mechanisms remain unclear. Thus, the effects of LIS1 on the proliferation, apoptosis, invasion and metastasis of SACC were studied, in vivo and in vitro. The results of immunohistochemical staining showed that LIS1 was highly expressed in SACC tissues, and its expression level was associated with malignant progression. In vitro, the results of CCK-8, TUNEL, wound healing and Transwell assays demonstrated that LIS1 promotes proliferation, inhibits apoptosis, and enhances the migration and invasion of SACC-LM cells. In vivo, knockdown of LIS1 effectively suppressed the growth of subcutaneous tumors in a mouse xenograft and distant metastasis of tumor cells in the metastasis model. The co-immunoprecipitation, immunofluorescence and western blot results also revealed that LIS1 binds to cytoplasmic linker protein 170 (CLIP170) to form a protein complex (LIS1/CLIP170), which activates the cell division control protein 42 homolog (Cdc42) signaling pathway to modulate the proliferation and anti-apoptosis of tumor cells, and enhanced invasion and metastasis by regulating the formation of invadopodia and the expression of MMPs in SACC-LM cells. Therefore, the present study demonstrated that LIS1 is a cancer promoter in SACC, and the molecular mechanism of the LIS1/CLIP170/Cdc42 signaling pathway is involved in the malignant progression, which offers a promising strategy for targeted therapy of SACC.
Collapse
Affiliation(s)
- Lijun Li
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ni Kou
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jing Liu
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Dong Jin
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
6
|
Pleiotropic Effects of Statins: New Therapeutic Approaches to Chronic, Recurrent Infection by Staphylococcus aureus. Pharmaceutics 2021; 13:pharmaceutics13122047. [PMID: 34959329 PMCID: PMC8706520 DOI: 10.3390/pharmaceutics13122047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
An emergent approach to bacterial infection is the use of host rather than bacterial-directed strategies. This approach has the potential to improve efficacy in especially challenging infection settings, including chronic, recurrent infection due to intracellular pathogens. For nearly two decades, the pleiotropic effects of statin drugs have been examined for therapeutic usefulness beyond the treatment of hypercholesterolemia. Interest originated after retrospective studies reported decreases in the risk of death due to bacteremia or sepsis for those on a statin regimen. Although subsequent clinical trials have yielded mixed results and earlier findings have been questioned for biased study design, in vitro and in vivo studies have provided clear evidence of protective mechanisms that include immunomodulatory effects and the inhibition of host cell invasion. Ultimately, the benefits of statins in an infection setting appear to require attention to the underlying host response and to the timing of the dosage. From this examination of statin efficacy, additional novel host-directed strategies may produce adjunctive therapeutic approaches for the treatment of infection where traditional antimicrobial therapy continues to yield poor outcomes. This review focuses on the opportunistic pathogen, Staphylococcus aureus, as a proof of principle in examining the promise and limitations of statins in recalcitrant infection.
Collapse
|
7
|
Zeng RJ, Zheng CW, Chen WX, Xu LY, Li EM. Rho GTPases in cancer radiotherapy and metastasis. Cancer Metastasis Rev 2020; 39:1245-1262. [PMID: 32772212 DOI: 10.1007/s10555-020-09923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Despite treatment advances, radioresistance and metastasis markedly impair the benefits of radiotherapy to patients with malignancies. Functioning as molecular switches, Rho guanosine triphosphatases (GTPases) have well-recognized roles in regulating various downstream signaling pathways in a wide range of cancers. In recent years, accumulating evidence indicates the involvement of Rho GTPases in cancer radiotherapeutic efficacy and metastasis, as well as radiation-induced metastasis. The functions of Rho GTPases in radiotherapeutic efficacy are divergent and context-dependent; thereby, a comprehensive integration of their roles and correlated mechanisms is urgently needed. This review integrates current evidence supporting the roles of Rho GTPases in mediating radiotherapeutic efficacy and the underlying mechanisms. In addition, their correlations with metastasis and radiation-induced metastasis are discussed. Under the prudent application of Rho GTPase inhibitors based on critical evaluations of biological contexts, targeting Rho GTPases can be a promising strategy in overcoming radioresistance and simultaneously reducing the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
8
|
Huang S, Zhu Y, Wang C, Li X, Cui X, Tu S, You L, Fu J, Chen Z, Hu W, Gong W. PAK5 facilitates the proliferation, invasion and migration in colorectal cancer cells. Cancer Med 2020; 9:4777-4790. [PMID: 32383357 PMCID: PMC7333859 DOI: 10.1002/cam4.3084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third-most common cancer around the world, accounting for approximately 10% of cancer-related mortality. Deeper molecular understanding of colorectal carcinogenesis will provide evidences for identification of early diagnostic indicators and novel therapeutic strategies for CRC treatment. The p21cdc42/rac1 -activated kinase 5 (PAK5) has been reported to be involved in a variety of tumor-promoting behaviors, whereas the underlying mechanisms of PAK5 in CRC progression are still obscure. Our current study revealed an upregulated expression of PAK5 in human CRC tissues as compared with normal adjacent biopsies, which was associated with tumor progression and metastasis. We further unraveled that inhibition of PAK5 was correlated with restrained proliferation, migration, and invasion of CRC cells in vitro and in vivo. Moreover, we showed an indispensable role of PAK5 in interacting with Cdc42 and Integrin β1, β3, thus, to facilitate the migration and invasion of CRC cells. Collectively, we pointed out a potential of PAK5 to serve as a novel therapeutic target in restricting CRC proliferation and metastasis. The uncovered mechanisms will deepen the comprehension with regard to the mechanisms of CRC progression, as well as providing new insights for therapeutic intervention in colorectal cancer.
Collapse
Affiliation(s)
- Silin Huang
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Ying Zhu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Chunfei Wang
- Endoscopy CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Xiaxi Li
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Xiaobing Cui
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Sufang Tu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Lijuan You
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - JingWen Fu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Zemin Chen
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Wei Hu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong Kong
| | - Wei Gong
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| |
Collapse
|
9
|
Ma LL, Guo LL, Luo Y, Liu GL, Lei Y, Jing FY, Zhang YL, Tong GH, Jing ZL, Shen L, Tang MS, Ding YQ, Deng YJ. Cdc42 subcellular relocation in response to VEGF/NRP1 engagement is associated with the poor prognosis of colorectal cancer. Cell Death Dis 2020; 11:171. [PMID: 32139668 PMCID: PMC7058620 DOI: 10.1038/s41419-020-2370-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Microscopic indications of malignancy and hallmark molecules of cancer are pivotal to determining cancer patient prognosis and subsequent medical intervention. Here, we found that compared to apical expression of Cdc42, which indicated that basal expression of Cdc42 occurred at the migrating cell front, glandular basal expression of Cdc42 (cell division cycle 42) in tissues indicated poorer prognoses for colorectal cancer (CRC) patients. The current study shows that activated Cdc42 was rapidly recruited to the migrating CRC cell front after VEGF stimulation through engagement of membrane-anchored neuropilin-1 (NRP1). When VEGF signalling was blocked with NRP1 knockdown or ATWLPPR (A7R, antagonist of VEGF/NRP1 interaction), Cdc42 activation and relocation to the cell front was attenuated, and filopodia and invadopodia formation was inhibited. The VEGF/NRP1 axis regulates directional migration, invasion, and metastasis through Cdc42 activation and relocation resulting from actin filament polymerisation of the extensions of membrane protrusions. Collectively, the immuno-micromorphological pattern of subcellular Cdc42 at the cell front indicated aggressive behaviours and predicted poor prognosis in CRC patients. Disruption of the intra- and extracellular interactions of the VEGF/NRP1 axis or Cdc42 relocation could be performed in clinical practice because it might inhibit cancer cell motility and metastasis.
Collapse
Affiliation(s)
- Li-Li Ma
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
- Department of Pathology, Guang dong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510515, Guangzhou, China
| | - Li-Li Guo
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
- Department of Pathology, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, 471000, Luoyang, Henan Province, China
| | - Yang Luo
- Department of Urinary Surgery, the Fifth Affiliated Hospital of Southern Medical University, 510900, Guangzhou, China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Yan Lei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Fang-Yan Jing
- Department of Anorectal Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yun-Li Zhang
- Department of Oncology, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Gui-Hui Tong
- Department of Pathology, General Hospital of Southern military Command, 510010, Guangzhou, China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Lan Shen
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China.
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, China.
| |
Collapse
|
10
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 474] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Caffo L, Sneed BL, Burcham C, Reed K, Hahn NC, Bell S, Downham O, Evans MD, Fullenkamp CR, Drinnon TK, Bishop D, Bruns HA, McKillip JL, Sammelson RE, McDowell SA. Simvastatin and ML141 Decrease Intracellular Streptococcus pyogenes Infection. Curr Pharm Biotechnol 2019; 20:733-744. [PMID: 31258074 DOI: 10.2174/1389201020666190618115154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/20/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recurrent pharyngotonsillitis due to Streptococcus pyogenes develops regardless of whether infecting strains are resistant or susceptible to first-line antimicrobials. Causation for recurrent infection is associated with the use of first-line antimicrobials that fail to penetrate deep tissue and host cell membranes, enabling intracellular S. pyogenes to survive throughout repeated rounds of antimicrobial therapy. OBJECTIVE To determine whether simvastatin, a therapeutic approved for use in the treatment of hypercholesterolemia, and ML141, a first-in-class small molecule inhibitor with specificity for human CDC42, limit host cell invasion by S. pyogenes. METHODS Assays to assess host cell invasion, bactericidal activity, host cell viability, actin depolymerization, and fibronectin binding were performed using the RAW 267.4 macrophage cell line and Human Umbilical Vein Endothelial Cells (HUVEC) infected with S. pyogenes (90-226) and treated with simvastatin, ML141, structural analogs of ML141, or vehicle control. RESULTS Simvastatin and ML141 decreased intracellular infection by S. pyogenes in a dose-dependent manner. Inhibition by simvastatin persisted following 1 h washout whereas inhibition by ML141 was reversed. During S. pyogenes infection, actin stress fibers depolymerized in vehicle control treated cells, yet remained intact in simvastatin and in ML141 treated cells. Consistent with the previous characterization of ML141, simvastatin decreased host cell binding to fibronectin. Structural analogs of ML141, designated as the RSM series, decreased intracellular infection through non-cytotoxic, nonbactericidal mechanisms. CONCLUSION Our findings demonstrate the potential of repurposing simvastatin and of developing CDC42-targeted therapeutics for eradicating intracellular S. pyogenes infection to break the cycle of recurrent infection through a host-directed approach.
Collapse
Affiliation(s)
- Lindy Caffo
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Bria L Sneed
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Caroline Burcham
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Katie Reed
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Nathan C Hahn
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Samantha Bell
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Olivia Downham
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Melissa D Evans
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | | | - Teague K Drinnon
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Derron Bishop
- Indiana University School of Medicine - Muncie Campus, Muncie, IN, 47306, United States
| | - Heather A Bruns
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - John L McKillip
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Robert E Sammelson
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| | - Susan A McDowell
- Ball State University, RH 105, 2100 West Riverside Avenue, Muncie, Indiana 47306, United States
| |
Collapse
|
12
|
Romano B, Elangovan S, Erreni M, Sala E, Petti L, Kunderfranco P, Massimino L, Restelli S, Sinha S, Lucchetti D, Anselmo A, Colombo FS, Stravalaci M, Arena V, D'Alessio S, Ungaro F, Inforzato A, Izzo AA, Sgambato A, Day AJ, Vetrano S. TNF-Stimulated Gene-6 Is a Key Regulator in Switching Stemness and Biological Properties of Mesenchymal Stem Cells. Stem Cells 2019; 37:973-987. [PMID: 30942926 DOI: 10.1002/stem.3010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are well established to have promising therapeutic properties. TNF-stimulated gene-6 (TSG-6), a potent tissue-protective and anti-inflammatory factor, has been demonstrated to be responsible for a significant part of the tissue-protecting properties mediated by MSCs. Nevertheless, current knowledge about the biological function of TSG-6 in MSCs is limited. Here, we demonstrated that TSG-6 is a crucial factor that influences many functional properties of MSCs. The transcriptomic sequencing analysis of wild-type (WT) and TSG-6-/- -MSCs shows that the loss of TSG-6 expression leads to the perturbation of several transcription factors, cytokines, and other key biological pathways. TSG-6-/- -MSCs appeared morphologically different with dissimilar cytoskeleton organization, significantly reduced size of extracellular vesicles, decreased cell proliferative rate, and loss of differentiation abilities compared with the WT cells. These cellular effects may be due to TSG-6-mediated changes in the extracellular matrix (ECM) environment. The supplementation of ECM with exogenous TSG-6, in fact, rescued cell proliferation and changes in morphology. Importantly, TSG-6-deficient MSCs displayed an increased capacity to release interleukin-6 conferring pro-inflammatory and pro-tumorigenic properties to the MSCs. Overall, our data provide strong evidence that TSG-6 is crucial for the maintenance of stemness and other biological properties of murine MSCs.
Collapse
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sudharshan Elangovan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Emanuela Sala
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Luciana Petti
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Restelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Shruti Sinha
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - Donatella Lucchetti
- Institute of General Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Catholic University, Rome, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Matteo Stravalaci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS
| | - Silvia D'Alessio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Catholic University, Rome, Italy
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
13
|
Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, DeCamp MM, Winn RA, Sznajder JI, Zhou G. Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 2017; 38:49-59. [PMID: 28652146 PMCID: PMC5555371 DOI: 10.1016/j.cellsig.2017.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Atypical protein kinase C ζ (PKCζ) forms an apico-basal polarity complex with Partitioning Defective (Pard) 3 and Pard6 to regulate normal epithelial cell apico-basolateral polarization. The dissociation of the PKCζ/Pard3/Pard6 complex is essential for the disassembly of the tight/adherens junction and epithelial-mesenchymal transition (EMT) that is critical for tumor spreading. Loss of cell polarity and epithelial organization is strongly correlated with malignancy and tumor progression in some other cancer types. However, it is unclear whether the PKCζ/Pard3/Pard6 complex plays a role in the progression of non-small-cell lung cancer (NSCLC). We found that hypoxia downregulated the PKCζ/Pard3/Pard6 complex, correlating with induction of lung cancer cell migration and invasion. Silencing of the PKCζ/Pard3/Pard6 polarity complex components induced lung cancer cell EMT, invasion, and colonization in vivo. Suppression of Pard3 was associated with altered expression of genes regulating wound healing, cell apoptosis/death and cell motility, and particularly upregulation of MAP3K1 and fibronectin which are known to contribute to lung cancer progression. Human lung adenocarcinoma tissues expressed less Pard6b and PKCζ than the adjacent normal tissues and in experimental mouse lung adenocarcinoma, the levels of Pard3 and PKCζ were also decreased. In addition, we showed that a methylation locus in the gene body of Pard3 is positively associated with the expression of Pard3 and that methylation of the Pard3 gene increased cellular sensitivity to carboplatin, a common chemotherapy drug. Suppression of Pard3 increased chemoresistance in lung cancer cells. Together, these results suggest that reduced expression of PKCζ/Pard3/Pard6 contributes to NSCLC EMT, invasion, and chemoresistance.
Collapse
Affiliation(s)
- Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xu Zhang
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malcolm M DeCamp
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert A Winn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Pinto V, Mohammadi H, Lee W, Cheung A, McCulloch C. PAK1 is involved in sensing the orientation of collagen stiffness gradients in mouse fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2526-38. [DOI: 10.1016/j.bbamcr.2015.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/01/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023]
|
15
|
Yin PQ, Sun YY, Chen HP, Li GZ, Zhong D. Genome-wide gene expression analysis of peripheral leukocytes in relation to the male predominance of Guillain-Barre syndrome: differential gene expression between male and female patients. Int J Neurosci 2015; 126:531-541. [PMID: 26000914 DOI: 10.3109/00207454.2015.1044088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Guillain-Barre syndrome (GBS) fulfils most of the clinical features of an autoimmune disease except for its male predominance. No previous studies have evaluated the differential genome-wide expression between male and female GBS patients. OBJECTIVE This study sought to identify differences between male and female GBS patients in the gene expression profiles of peripheral leukocytes. METHODS We downloaded gene chip data-sets pertaining to peripheral leukocyte samples from GBS patients using the gene expression omnibus (submitted by Chang et al.) and applied hierarchical cluster analysis to detect whether there was a gender difference in genome-wide gene expression levels. Then, we identified the sexually differentially expressed genes using a bioinformatic approach and applied enrichment analysis to the gene ontology and Kyoto Encyclopaedia of Genes and Genomes terms to identify significant pathways related to these genes. RESULTS We observed gender stratification among GBS patients. Twenty genes were expressed more highly in male patients and were enriched for functions, such as macrophage differentiation, leukocyte migration, bladder cancer, pathogenic Escherichia coli infection. In female patients, 62 genes were more highly expressed and were enriched for responses to viral infection and defence, retinoic acid-inducible gene I (RIG-I)-like receptors, cytoplasmic DNA sensing. Matrix metalloproteinase 9 (MMP9) seem to play an important role in the male predominance of GBS. CONCLUSIONS This study demonstrated gender differences in the genome-wide gene expression of patients with GBS. Bioinformatic approaches offer new means for identifying candidate genes and pathways relevant to the pathophysiology of GBS.
Collapse
Affiliation(s)
- Peng-Qi Yin
- a The First Department of Neurology , the First Affiliated Hospital of Harbin Medical University , Harbin, China
| | - Yan-Yan Sun
- a The First Department of Neurology , the First Affiliated Hospital of Harbin Medical University , Harbin, China
| | - Hong-Ping Chen
- a The First Department of Neurology , the First Affiliated Hospital of Harbin Medical University , Harbin, China
| | - Guo-Zhong Li
- a The First Department of Neurology , the First Affiliated Hospital of Harbin Medical University , Harbin, China
| | - Di Zhong
- a The First Department of Neurology , the First Affiliated Hospital of Harbin Medical University , Harbin, China
| |
Collapse
|
16
|
Palmi C, Fazio G, Savino AM, Procter J, Howell L, Cazzaniga V, Vieri M, Longinotti G, Brunati I, Andrè V, Della Mina P, Villa A, Greaves M, Biondi A, D'Amico G, Ford A, Cazzaniga G. Cytoskeletal regulatory gene expression and migratory properties of B-cell progenitors are affected by the ETV6-RUNX1 rearrangement. Mol Cancer Res 2014; 12:1796-806. [PMID: 25061103 DOI: 10.1158/1541-7786.mcr-14-0056-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Although the ETV6-RUNX1 fusion is a frequent initiating event in childhood leukemia, its role in leukemogenesis is only partly understood. The main impact of the fusion itself is to generate and sustain a clone of clinically silent preleukemic B-cell progenitors (BCP). Additional oncogenic hits, occurring even several years later, are required for overt disease. The understanding of the features and interactions of ETV6-RUNX1-positive cells during this "latency" period may explain how these silent cells can persist and whether they could be prone to additional genetic changes. In this study, two in vitro murine models were used to investigate whether ETV6-RUNX1 alters the cellular adhesion and migration properties of BCP. ETV6-RUNX1-expressing cells showed a significant defect in the chemotactic response to CXCL12, caused by a block in CXCR4 signaling, as demonstrated by inhibition of CXCL12-associated calcium flux and lack of ERK phosphorylation. Moreover, the induction of ETV6-RUNX1 caused changes in the expression of cell-surface adhesion molecules. The expression of genes regulating the cytoskeleton was also affected, resulting in a block of CDC42 signaling. The abnormalities described here could alter the interaction of ETV6-RUNX1 preleukemic BCP with the microenvironment and contribute to the pathogenesis of the disease. IMPLICATIONS Alterations in the expression of cytoskeletal regulatory genes and migration properties of BCP represent early events in the evolution of the disease, from the preleukemic phase to the clinical onset, and suggest new strategies for effective eradication of leukemia.
Collapse
Affiliation(s)
- Chiara Palmi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Angela M Savino
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Julia Procter
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Louise Howell
- Haemato-Oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Valeria Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Margherita Vieri
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Giulia Longinotti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Ilaria Brunati
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Valentina Andrè
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Pamela Della Mina
- Microscopy and Image Analysis Consortium, Università di Milano-Bicocca, Monza, Italy
| | - Antonello Villa
- Microscopy and Image Analysis Consortium, Università di Milano-Bicocca, Monza, Italy
| | - Mel Greaves
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy.
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| | - Anthony Ford
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Monza, Italy
| |
Collapse
|
17
|
Kim SJ, Wan Q, Cho E, Han B, Yoder MC, Voytik-Harbin SL, Na S. Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells. Biochem Biophys Res Commun 2014; 443:1280-5. [PMID: 24393843 DOI: 10.1016/j.bbrc.2013.12.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/26/2013] [Indexed: 12/15/2022]
Abstract
Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs.
Collapse
Affiliation(s)
- Seung Joon Kim
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Eunhye Cho
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Abstract
p21-Activated kinases (PAKs) are positioned at the nexus of several oncogenic signalling pathways. Overexpression or mutational activation of PAK isoforms frequently occurs in various human tumours, and recent data suggest that excessive PAK activity drives many of the cellular processes that are the hallmarks of cancer. In this Review, we discuss the mechanisms of PAK activation in cancer, the key substrates that mediate the developmental and oncogenic effects of this family of kinases, and how small-molecule inhibitors of these enzymes might be best developed and deployed for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Radu
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Galina Semenova
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Rachelle Kosoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- Cancer Biology program, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- To whom correspondence should be addressed: Jonathan Chernoff, Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA, Tel.: (215) 728 5319; Fax: (215) 728 3616;
| |
Collapse
|
19
|
Dimensions in cell migration. Curr Opin Cell Biol 2013; 25:642-9. [PMID: 23850350 DOI: 10.1016/j.ceb.2013.06.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
The importance of cell migration for both normal physiological functions and disease processes has been clear for the past 50 years. Although investigations of two-dimensional (2D) migration in regular tissue culture have elucidated many important molecular mechanisms, recent evidence suggests that cell migration depends profoundly on the dimensionality of the extracellular matrix (ECM). Here we review a number of evolving concepts revealed when cell migration is examined in different dimensions.
Collapse
|
20
|
Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci 2013; 71:575-97. [PMID: 23771628 PMCID: PMC3901929 DOI: 10.1007/s00018-013-1386-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
Stem and progenitor cells are characterized by their ability to self-renew and produce differentiated progeny. A fine balance between these processes is achieved through controlled asymmetric divisions and is necessary to generate cellular diversity during development and to maintain adult tissue homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor cell pool, or abnormal growth. In many tissues, including the brain, dysregulated asymmetric divisions are associated with cancer. Whether there is a causal relationship between asymmetric cell division defects and cancer initiation is as yet not known. Here, we review the cellular and molecular mechanisms that regulate asymmetric cell divisions in the neural lineage and discuss the potential connections between this regulatory machinery and cancer.
Collapse
|
21
|
Ruiz-Ontañon P, Orgaz JL, Aldaz B, Elosegui-Artola A, Martino J, Berciano MT, Montero JA, Grande L, Nogueira L, Diaz-Moralli S, Esparís-Ogando A, Vazquez-Barquero A, Lafarga M, Pandiella A, Cascante M, Segura V, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL. Cellular Plasticity Confers Migratory and Invasive Advantages to a Population of Glioblastoma-Initiating Cells that Infiltrate Peritumoral Tissue. Stem Cells 2013; 31:1075-85. [DOI: 10.1002/stem.1349] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/19/2013] [Indexed: 01/28/2023]
|
22
|
Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal 2013; 25:1955-61. [PMID: 23669310 DOI: 10.1016/j.cellsig.2013.04.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 01/17/2023]
Abstract
The last decades have witnessed an exponential increase in our knowledge of Rho GTPase signaling network which further highlighted the cross talk between these proteins and the complexity of their signaling pathways. In this review, we summarize the upstream and downstream players from Rho GTPases that are mainly involved in actin polymerization leading to cell motility and potentially playing a role in cancer cell metastasis.
Collapse
Affiliation(s)
- Samer Hanna
- Department of Natural Science, The Lebanese American University, Beirut 1102 2801, Lebanon
| | | |
Collapse
|