1
|
Denkiewicz-Kruk M, Chaudhry D, Krasilia A, Jedrychowska M, Fijalkowska IJ, Dmowski M. Effects of CDC45 mutations on DNA replication and genome stability. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119936. [PMID: 40139510 DOI: 10.1016/j.bbamcr.2025.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Cdc45 is a non-catalytic subunit of the CMG helicase complex that is recruited to the autonomously replicating sequence at the onset of DNA replication. The Cdc45 protein is required for the initiation of DNA replication as well as for nascent DNA strand synthesis. It interacts with Mcm2 and Psf1 elements of CMG helicase, as well as with Sld3, an initiation factor, and Pol2, the catalytic subunit of DNA polymerase epsilon (Pol ε). In this study, we analyzed the effects of amino acid substitutions in the Cdc45 region involved in the interaction of this protein with Mcm2-7 (Cdc45-1), Psf1 (Cdc45-26), and Sld3 (Cdc45-25, Cdc45-35). We found that mutations in CDC45 resulted in defective DNA replication. Under permissive conditions, delayed DNA synthesis was observed. At restrictive temperatures, the mutant cells were unable to efficiently replicate DNA. However, after the initiation of DNA replication under permissive conditions, the four analyzed CDC45 mutants exhibited DNA synthesis under the restrictive conditions. Moreover, we observed increased mutation rates, mainly dependent on DNA polymerase zeta (Pol ζ), as well as increased incidence of replication errors. These findings confirm the essential function of Cdc45 in DNA replication initiation and demonstrate that impaired Cdc45 subunit has an impact on the fidelity of the nascent DNA strand synthesis. The changes in cell function observed in this study, related to defects in Cdc45 function, may help understand some diseases associated with CDC45.
Collapse
Affiliation(s)
- Milena Denkiewicz-Kruk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Deepali Chaudhry
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Alina Krasilia
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Malgorzata Jedrychowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Michal Dmowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
De March M. Crystal structure of the 3'→5' exonuclease from Methanocaldococcus jannaschii. Biochem Biophys Res Commun 2024; 712-713:149893. [PMID: 38657529 DOI: 10.1016/j.bbrc.2024.149893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.
Collapse
Affiliation(s)
- Matteo De March
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.c.p.A., 34149, Trieste, Italy; Department of Environmental and Biological Sciences, University of Nova Gorica, SI-5000, Nova Gorica, Slovenia.
| |
Collapse
|
3
|
Wang WW, Yi GS, Zhou H, Zhao YX, Wang QS, He JH, Yu F, Xiao X, Liu XP. The structure of the archaeal nuclease RecJ2 implicates its catalytic mechanism and inability to interact with GINS. J Biol Chem 2024; 300:107379. [PMID: 38762184 PMCID: PMC11193018 DOI: 10.1016/j.jbc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Xuan Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China
| | - Qi-Sheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China; The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Arakawa J, Kondoh H, Matsushita T, Ogino Y, Asai M, Tanuma SI, Uchiumi F. Induction of the human CDC45 gene promoter activity by natural compound trans‑resveratrol. Mol Med Rep 2024; 29:92. [PMID: 38577929 PMCID: PMC11025027 DOI: 10.3892/mmr.2024.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
GGAA motifs in the human TP53 and HELB gene promoters play a part in responding to trans‑resveratrol (Rsv) in HeLa S3 cells. This sequence is also present in the 5'‑upstream region of the human CDC45 gene, which encodes a component of CMG DNA helicase protein complex. The cells were treated with Rsv (20 µM), then transcripts and the translated protein were analyzed by quantitative RT‑PCR and western blotting, respectively. The results showed that the CDC45 gene and protein expression levels were induced after the treatment. To examine whether they were due to the activation of transcription, a 5'‑upstream 556‑bp of the CDC45 gene was cloned and inserted into a multi‑cloning site of the Luciferase (Luc) expression vector. In the present study, various deletion/point mutation‑introduced Luc expression plasmids were constructed and they were used for the transient transfection assay. The results showed that the GGAA motif, which is included in a putative RELB protein recognizing sequence, plays a part in the promoter activity with response to Rsv in HeLa S3 cells.
Collapse
Affiliation(s)
- Jun Arakawa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hikaru Kondoh
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tokiyoshi Matsushita
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoko Ogino
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masashi Asai
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Laboratory of Kampo Pharmacology, Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama, Kanagawa 245-0066, Japan
| | - Sei-Ichi Tanuma
- Genomic Medicinal Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
5
|
Radhakrishnan A, Sharma C, Malviya VN, Srivastav R. Deciphering the molecular functionality of Cdc45 in replisomal complex. Biochem Biophys Rep 2024; 37:101643. [PMID: 38298211 PMCID: PMC10828582 DOI: 10.1016/j.bbrep.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
The members of DHH superfamily have been reported with diverse substrate spectrum and play pivotal roles in replication, repair, and RNA metabolism. This family comprises phosphatases, phosphoesterase and bifunctional enzymes having nanoRNase and phosphatase activities. Cell cycle factor Cdc45, a member of this superfamily, is crucial for movement of the replication fork during DNA replication and an important component of the replisome. The specific protein-protein interactions of Cdc45 with other factors along with helicase moderate the faithful DNA replication process. However, the exact biochemical functions of this factor are still unknown and need further investigation. Here, we studied the biochemical roles of Cdc45 and its molecular interactions within the replisomal complex. The alteration in the level of protein, observed when DNA damage is induced in-vivo, suggests its association with DNA replication stress. We analyzed protein Cdc45, providing new insights about the molecular and biochemical functionality of this replisomal factor.
Collapse
Affiliation(s)
| | - Chandresh Sharma
- Translational Health Science and Technology Institute, Haryana, India
| | - Viveka Nand Malviya
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Gottingen, Germany
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University Uttar Pardesh, Noida, India
- Department of Science & Technology, Ministry of Science & Technology, New Delhi, India
| |
Collapse
|
6
|
Guilz NC, Ahn YO, Seo S, Mace EM. Unwinding the Role of the CMG Helicase in Inborn Errors of Immunity. J Clin Immunol 2023; 43:847-861. [PMID: 36809597 PMCID: PMC10789183 DOI: 10.1007/s10875-023-01437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
Inborn errors of immunity (IEI) are a collection of diseases resulting from genetic causes that impact the immune system through multiple mechanisms. Natural killer cell deficiency (NKD) is one such IEI where natural killer (NK) cells are the main immune lineage affected. Though rare, the deficiency of several genes has been described as underlying causes of NKD, including MCM4, GINS1, MCM10 , and GINS4 , all of which are involved in the eukaryotic CMG helicase. The CMG helicase is made up of C DC45 – M CM – G INS and accessory proteins including MCM10. The CMG helicase plays a critical role in DNA replication by unwinding the double helix and enabling access of polymerases to single-stranded DNA, and thus helicase proteins are active in any proliferating cell. Replication stress, DNA damage, and cell cycle arrest are among the cellular phenotypes attributed to loss of function variants in CMG helicase proteins. Despite the ubiquitous function of the CMG helicase, NK cells have an apparent susceptibility to the deficiency of helicase proteins. This review will examine the role of the CMG helicase in inborn errors of immunity through the lens of NKD and further discuss why natural killer cells can be so strongly affected by helicase deficiency.
Collapse
Affiliation(s)
- Nicole C Guilz
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA
| | - Yong-Oon Ahn
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA
| | - Seungmae Seo
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA.
| |
Collapse
|
7
|
Zhang L, Lin T, Yin Y, Chen M. Biochemical and functional characterization of a thermostable RecJ exonuclease from Thermococcus gammatolerans. Int J Biol Macromol 2022; 204:617-626. [PMID: 35150781 DOI: 10.1016/j.ijbiomac.2022.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023]
Abstract
RecJ is ubiquitous in bacteria and Archaea, and play an important role in DNA replication and repair. Currently, our understanding on biochemical function of archaeal RecJ is incomplete due to the limited reports. The genome of the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes one putative RecJ protein (Tga-RecJ). Herein, we report biochemical characteristics and catalytic mechanism of Tga-RecJ. Tga-RecJ can degrade ssDNA in the 5'-3' direction at high temperature as observed in Thermococcus kodakarensis RecJ and Pyrococcus furiosus RecJ, the two closest homologs of the enzyme. In contrasted to P. furiosus RecJ, Tga-RecJ lacks 3'-5' ssRNA exonuclease activity. Furthermore, maximum activity of Tga-RecJ is observed at 50 °C ~ 70 °C and pH 7.0-9.0 with Mn2+, and the enzyme is the most thermostable among the reported RecJ proteins. Additionally, the rates for hydrolyzing ssDNA by Tga-RecJ were estimated by kinetic analyses at 50 °C ~ 70 °C, thus revealing its activation energy (10.5 ± 0.6 kcal/mol), which is the first report on energy barrier for ssDNA degradation by RecJ. Mutational studies showed that the mutations of residues D36, D83, D105, H106, H107 and D166 in Tga-RecJ to alanine almost completely abolish its activity, thereby suggesting that these residues are essential for catalysis.
Collapse
Affiliation(s)
- Likui Zhang
- Guangling College, Yangzhou University, China; College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| | - Tan Lin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Youcheng Yin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
8
|
Wang X, Hu S, Ji W, Tang Y, Zhang S. Identification of genes associated with clinicopathological features of colorectal cancer. J Int Med Res 2021; 48:300060520912139. [PMID: 32281438 PMCID: PMC7155243 DOI: 10.1177/0300060520912139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective To identify genes associated with the clinicopathological features of colorectal cancer (CRC). Methods Gene expression profiles were downloaded and preprocessed by GEOquery and affy R packages, respectively. The limma package was applied to identify the differentially expressed genes (DEGs) in CRC. Gene Ontology and Kyoto Gene and Genome Encyclopedia (KEGG) pathway enrichment analyses for the DEGs were carried out using the clusterProfiler package. Protein–protein interaction (PPI) and weighted gene co-expression (WGC) networks were constructed using the STRING database and WGCNA package, respectively. Results A total of 523 DEGs (283 downregulated and 240 upregulated genes) in CRC tissues were identified. These DEGs were mainly enriched in 111 biological processes, 16 cellular components and 40 molecular functions, such as proteinaceous extracellular matrix, extracellular structure organization and chemokine-mediated signalling pathway. PPI and WGC networks showed that four upregulated genes (KIF2C, CDC45, CEP55 and DTL) were key genes. Subgroup analysis based on individual cancer stages and histological subtypes indicated that the expression of these key genes was upregulated in CRC stages I–IV, adenocarcinoma and mucinous adenocarcinoma. Conclusions The study provides new insights into understanding the pathogenesis of CRC. These identified genes may act as potential targets for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoting Wang
- Physical Examination Centre, Xuhui District Central Hospital of Shanghai, Shanghai, China
| | - Shouzi Hu
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenbin Ji
- Department of General Surgery, Xuhui District Central Hospital of Shanghai, Shanghai, China
| | - Yan Tang
- Department of General Surgery, Xuhui District Central Hospital of Shanghai, Shanghai, China
| | - Shulong Zhang
- Department of General Surgery, Xuhui District Central Hospital of Shanghai, Shanghai, China
| |
Collapse
|
9
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
10
|
Feng L, Chang CC, Song D, Jiang C, Song Y, Wang CF, Deng W, Zou YJ, Chen HF, Xiao X, Wang FP, Liu XP. The trimeric Hef-associated nuclease HAN is a 3'→5' exonuclease and is probably involved in DNA repair. Nucleic Acids Res 2019; 46:9027-9043. [PMID: 30102394 PMCID: PMC6158738 DOI: 10.1093/nar/gky707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
Nucleases play important roles in nucleic acid metabolism. Some archaea encode a conserved protein known as Hef-associated nuclease (HAN). In addition to its C-terminal DHH nuclease domain, HAN also has three N-terminal domains, including a DnaJ-Zinc-finger, ribosomal protein S1-like, and oligonucleotide/oligosaccharide-binding fold. To further understand HAN’s function, we biochemically characterized the enzymatic properties of HAN from Pyrococcus furiosus (PfuHAN), solved the crystal structure of its DHH nuclease domain, and examined its role in DNA repair. Our results show that PfuHAN is a Mn2+-dependent 3′-exonuclease specific to ssDNA and ssRNA with no activity on blunt and 3′-recessive double-stranded DNA. Domain truncation confirmed that the intrinsic nuclease activity is dependent on the C-terminal DHH nuclease domain. The crystal structure of the DHH nuclease domain adopts a trimeric topology, with each subunit adopting a classical DHH phosphoesterase fold. Yeast two hybrid assay confirmed that the DHH domain interacts with the IDR peptide of Hef nuclease. Knockout of the han gene or its C-terminal DHH nuclease domain in Haloferax volcanii resulted in increased sensitivity to the DNA damage reagent MMS. Our results imply that HAN nuclease might be involved in repairing stalled replication forks in archaea.
Collapse
Affiliation(s)
- Lei Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chen-Chen Chang
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Dong Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chuang Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Yang Song
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chao-Fan Wang
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Wei Deng
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Ya-Juan Zou
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| |
Collapse
|
11
|
Li MJ, Yi GS, Yu F, Zhou H, Chen JN, Xu CY, Wang FP, Xiao X, He JH, Liu XP. The crystal structure of Pyrococcus furiosus RecJ implicates it as an ancestor of eukaryotic Cdc45. Nucleic Acids Res 2019; 45:12551-12564. [PMID: 30053256 PMCID: PMC5716160 DOI: 10.1093/nar/gkx887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/01/2017] [Indexed: 12/27/2022] Open
Abstract
RecJ nucleases specifically degrade single-stranded (ss) DNA in the 5′ to 3′ direction. Archaeal RecJ is different from bacterial RecJ in sequence, domain organization, and substrate specificity. The RecJ from archaea Pyrococcus furiosus (PfuRecJ) also hydrolyzes RNA strands in the 3′ to 5′ direction. Like eukaryotic Cdc45 protein, archaeal RecJ forms a complex with MCM helicase and GINS. Here, we report the crystal structures of PfuRecJ and the complex of PfuRecJ and two CMPs. PfuRecJ bind one or two divalent metal ions in its crystal structure. A channel consisting of several positively charged residues is identified in the complex structure, and might be responsible for binding substrate ssDNA and/or releasing single nucleotide products. The deletion of the complex interaction domain (CID) increases the values of kcat/Km of 5′ exonuclease activity on ssDNA and 3′ exonuclease activity on ssRNA by 5- and 4-fold, respectively, indicating that the CID functions as a regulator of enzymatic activity. The DHH domain of PfuRecJ interacts with the C-terminal beta-sheet domain of the GINS51 subunit in the tetrameric GINS complex. The relationship of archaeal and bacterial RecJs, as well as eukaryotic Cdc45, is discussed based on biochemical and structural results.
Collapse
Affiliation(s)
- Min-Jun Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Jia-Nan Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Chun-Yan Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Lu S, Zhang X, Chen K, Chen Z, Li Y, Qi Z, Shen Y, Li Z. The small subunit of DNA polymerase D (DP1) associates with GINS-GAN complex of the thermophilic archaea in Thermococcus sp. 4557. Microbiologyopen 2019; 8:e00848. [PMID: 31069963 PMCID: PMC6741145 DOI: 10.1002/mbo3.848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
The eukaryotic GINS, Cdc45, and minichromosome maintenance proteins form an essential complex that moves with the DNA replication fork. The GINS protein complex has also been reported to associate with DNA polymerase. In archaea, the third domain of life, DNA polymerase D (PolD) is essential for DNA replication, and the genes encoding PolDs exist only in the genomes of archaea. The archaeal GAN (GINS‐associated nuclease) is believed to be a homolog of the eukaryotic Cdc45. In this study, we found that the Thermococcus sp. 4557 DP1 (small subunit of PolD) interacted with GINS15 in vitro, and the 3′–5′ exonuclease activity of DP1 was inhibited by GINS15. We also demonstrated that the GAN, GINS15, and DP1 proteins interact to form a complex adapting a GAN–GINS15–DP1 order. The results of this study imply that the complex constitutes a core of the DNA replisome in archaea.
Collapse
Affiliation(s)
- Shuhong Lu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.,Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Xuesong Zhang
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Kaiying Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Zimeng Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Yixiang Li
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Zhuo Li
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| |
Collapse
|
13
|
Rios-Morales RY, Chan SH, Bell SP. Initiation-specific alleles of the Cdc45 helicase-activating protein. PLoS One 2019; 14:e0214426. [PMID: 30913274 PMCID: PMC6435160 DOI: 10.1371/journal.pone.0214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
The committed step in DNA replication initiation is the activation of the Mcm2-7 replicative DNA helicase. Two activators, Cdc45 and GINS, associate with Mcm2-7 at origins of replication to form the CMG complex, which is the active eukaryotic replicative helicase. These activators function during both replication initiation and elongation, however, it remains unclear whether Cdc45 performs the same function(s) during both events. Here, we describe the genetic and biochemical characterization of seven Cdc45 mutations. Three of these mutations are temperature-sensitive lethal mutations in CDC45. Intriguingly, these mutants are defective for DNA replication initiation but not elongation. Consistent with an initiation defect, all three temperature-sensitive mutants are defective for CMG formation. Two of the lethal mutants are located within the RecJ-like domain of Cdc45 confirming the importance of this region for Cdc45 function. The remaining two lethal mutations localize to an intrinsically disordered region (IDR) of Cdc45 that is found in all eukaryotes. Despite the lethality of these IDR substitution mutants, Cdc45 lacking the IDR retains full function. Together, our data provide insights into the functional importance of Cdc45 domains and suggest that the requirements for Cdc45 function during DNA replication initiation are distinct from those involved in replication elongation.
Collapse
Affiliation(s)
- Ramon Y. Rios-Morales
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sze Ham Chan
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Stephen P. Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Role of DHH superfamily proteins in nucleic acids metabolism and stress tolerance in prokaryotes and eukaryotes. Int J Biol Macromol 2018; 127:66-75. [PMID: 30578903 DOI: 10.1016/j.ijbiomac.2018.12.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/14/2018] [Indexed: 01/05/2023]
Abstract
DHH superfamily proteins play pivotal roles in various cellular processes like replication, recombination, repair and nucleic acids metabolism. These proteins are important for homeostasis maintenance and stress tolerance in prokaryotes and eukaryotes. The prominent members of DHH superfamily include single-strand specific exonuclease RecJ, nanoRNases, polyphosphatase PPX1, pyrophosphatase, prune phosphodiesterase and cell cycle protein Cdc45. The mutations of genes coding for DHH superfamily proteins lead to severe growth defects and in some cases, may be lethal. The members of superfamily have a wide substrate spectrum. The spectrum of substrate for DHH superfamily members ranges from smaller molecules like pyrophosphate and cyclic nucleotides to longer single-stranded DNA molecule. Several genetic, structural and biochemical studies have provided interesting insights about roles of DHH superfamily members. However, there are still various unexplored members in both prokaryotes and eukaryotes. Many aspects of this superfamily associated with homeostasis maintenance and stress tolerance are still not clearly understood. A comprehensive understanding is pre-requisite to decipher the physiological significance of members of DHH superfamily. This article provides the current understanding of DHH superfamily members and their significance in nucleic acids metabolism and stress tolerance across diverse forms of life.
Collapse
|
15
|
Kurniawan F, Shi K, Kurahashi K, Bielinsky AK, Aihara H. Crystal Structure of Entamoeba histolytica Cdc45 Suggests a Conformational Switch that May Regulate DNA Replication. iScience 2018; 3:102-109. [PMID: 29901028 PMCID: PMC5994768 DOI: 10.1016/j.isci.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Cdc45 plays a critical role at the core of the eukaryotic DNA replisome, serving as an essential scaffolding component of the replicative helicase holoenzyme Cdc45-MCM-GINS (CMG) complex. A 1.66-Å-resolution crystal structure of the full-length Cdc45 protein from Entamoeba histolytica shows a protein fold similar to that observed previously for human Cdc45 in its active conformation, featuring the overall disk-like monomer shape and intimate contacts between the N- and C-terminal DHH domains. However, the E. histolytica Cdc45 structure shows several unique features, including a distinct orientation of the C-terminal DHHA1 domain, concomitant disordering of the adjacent protruding α-helical segment implicated in DNA polymerase ε interactions, and a unique conformation of the GINS/Mcm5-binding loop. These structural observations collectively suggest the possibility that Cdc45 can sample multiple conformations corresponding to different functional states. We propose that such conformational switch of Cdc45 may allow regulation of protein-protein interactions important in DNA replication.
Collapse
Affiliation(s)
- Fredy Kurniawan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kayo Kurahashi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Two Archaeal RecJ Nucleases from Methanocaldococcus jannaschii Show Reverse Hydrolysis Polarity: Implication to Their Unique Function in Archaea. Genes (Basel) 2017; 8:genes8090211. [PMID: 28837073 PMCID: PMC5615345 DOI: 10.3390/genes8090211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/05/2022] Open
Abstract
Bacterial nuclease RecJ, which exists in almost all bacterial species, specifically degrades single-stranded (ss) DNA in the 5′ to 3′ direction. Some archaeal phyla, except Crenarchaea, also encode RecJ homologs. Compared with bacterial RecJ, archaeal RecJ exhibits a largely different amino acid sequence and domain organization. Archaeal RecJs from Thermococcus kodakarensis and Pyrococcus furiosus show 5′→3′ exonuclease activity on ssDNA. Interestingly, more than one RecJ exists in some Euryarchaeota classes, such as Methanomicrobia, Methanococci, Methanomicrobia, Methanobacteria, and Archaeoglobi. Here we report the biochemical characterization of two RecJs from Methanocaldococcus jannaschii, the long RecJ1 (MJ0977) and short RecJ2 (MJ0831) to understand their enzymatic properties. RecJ1 is a 5′→3′ exonuclease with a preference to ssDNA; however, RecJ2 is a 3′→5′ exonuclease with a preference to ssRNA. The 5′ terminal phosphate promotes RecJ1 activity, but the 3′ terminal phosphate inhibits RecJ2 nuclease. Go-Ichi-Ni-San (GINS) complex does not interact with two RecJs and does not promote their nuclease activities. Finally, we discuss the diversity, function, and molecular evolution of RecJ in archaeal taxonomy. Our analyses provide insight into the function and evolution of conserved archaeal RecJ/eukaryotic Cdc45 protein.
Collapse
|
17
|
Szambowska A, Tessmer I, Prus P, Schlott B, Pospiech H, Grosse F. Cdc45-induced loading of human RPA onto single-stranded DNA. Nucleic Acids Res 2017; 45:3217-3230. [PMID: 28100698 PMCID: PMC5389570 DOI: 10.1093/nar/gkw1364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/02/2017] [Indexed: 11/14/2022] Open
Abstract
Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8–10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork.
Collapse
Affiliation(s)
- Anna Szambowska
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D-97080 Würzburg, Germany
| | - Piotr Prus
- Biocenter Oulu, P.O. Box 5000, 90014 University of Oulu, Finland
| | - Bernhard Schlott
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany.,Proteomics Core Facility, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Helmut Pospiech
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany.,Faculty of Biochemistry and Molecular Medicine, P.O. Box 5000, 90014 University of Oulu, Finland
| | - Frank Grosse
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany.,Center for Molecular Biomedicine, Friedrich-Schiller University, Biochemistry Department, Jena, Germany
| |
Collapse
|
18
|
Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication. Genes (Basel) 2017; 8:genes8040117. [PMID: 28383499 PMCID: PMC5406864 DOI: 10.3390/genes8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 01/30/2023] Open
Abstract
The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described.
Collapse
|
19
|
Ogino H, Ishino S, Kohda D, Ishino Y. The RecJ2 protein in the thermophilic archaeon Thermoplasma acidophilum is a 3'-5' exonuclease that associates with a DNA replication complex. J Biol Chem 2017; 292:7921-7931. [PMID: 28302716 DOI: 10.1074/jbc.m116.767921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
RecJ/cell division cycle 45 (Cdc45) proteins are widely conserved in the three domains of life, i.e. in bacteria, Eukarya, and Archaea. Bacterial RecJ is a 5'-3' exonuclease and functions in DNA repair pathways by using its 5'-3' exonuclease activity. Eukaryotic Cdc45 has no identified enzymatic activity but participates in the CMG complex, so named because it is composed of Cdc45, minichromosome maintenance protein complex (MCM) proteins 2-7, and GINS complex proteins (Sld5, Psf11-3). Eukaryotic Cdc45 and bacterial/archaeal RecJ share similar amino acid sequences and are considered functional counterparts. In Archaea, a RecJ homolog in Thermococcus kodakarensis was shown to associate with GINS and accelerate its nuclease activity and was, therefore, designated GAN (GINS-associated nuclease); however, to date, no archaeal RecJ·MCM·GINS complex has been isolated. The thermophilic archaeon Thermoplasma acidophilum has two RecJ-like proteins, designated TaRecJ1 and TaRecJ2. TaRecJ1 exhibited DNA-specific 5'-3' exonuclease activity, whereas TaRecJ2 had 3'-5' exonuclease activity and preferred RNA over DNA. TaRecJ2, but not TaRecJ1, formed a stable complex with TaGINS in a 2:1 molar ratio. Furthermore, the TaRecJ2·TaGINS complex stimulated activity of TaMCM (T. acidophilum MCM) helicase in vitro, and the TaRecJ2·TaMCM·TaGINS complex was also observed in vivo However, TaRecJ2 did not interact with TaMCM directly and was not required for the helicase activation in vitro These findings suggest that the function of archaeal RecJ in DNA replication evolved divergently from Cdc45 despite conservation of the CMG-like complex formation between Archaea and Eukarya.
Collapse
Affiliation(s)
- Hiromi Ogino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and
| | - Sonoko Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and
| | - Daisuke Kohda
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Yoshizumi Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and .,the Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
21
|
Bai L, Yuan Z, Sun J, Georgescu R, O'Donnell ME, Li H. Architecture of the Saccharomyces cerevisiae Replisome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:207-228. [PMID: 29357060 DOI: 10.1007/978-981-10-6955-0_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.
Collapse
Affiliation(s)
- Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA.
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
22
|
Pellegrini L. Structural insights into Cdc45 function: was there a nuclease at the heart of the ancestral replisome? Biophys Chem 2016; 225:10-14. [PMID: 27919598 PMCID: PMC5484177 DOI: 10.1016/j.bpc.2016.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 01/28/2023]
Abstract
The role of Cdc45 in genomic duplication has remained unclear since its initial identification as an essential replication factor. Recent structural studies of Cdc45 and the evolutionarily-related archaeal GAN and bacterial RecJ nucleases have provided fresh insight into its function as co-activator of the MCM helicase. The CMG helicase of the last archaeal/eukaryotic ancestor might have harboured a single-stranded DNA nuclease activity, conserved in some modern archaea.
Collapse
Affiliation(s)
- Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
23
|
Pellegrini L, Costa A. New Insights into the Mechanism of DNA Duplication by the Eukaryotic Replisome. Trends Biochem Sci 2016; 41:859-871. [PMID: 27555051 DOI: 10.1016/j.tibs.2016.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/26/2022]
Abstract
The DNA replication machinery, or replisome, is a macromolecular complex that combines DNA unwinding, priming and synthesis activities. In eukaryotic cells, the helicase and polymerases are multi-subunit, highly-dynamic assemblies whose structural characterization requires an integrated approach. Recent studies have combined single-particle electron cryo-microscopy and protein crystallography to gain insights into the mechanism of DNA duplication by the eukaryotic replisome. We review current understanding of how replication fork unwinding by the CMG helicase is coupled to leading-strand synthesis by polymerase (Pol) ɛ and lagging-strand priming by Pol α/primase, and discuss emerging principles of replisome organization.
Collapse
Affiliation(s)
- Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| |
Collapse
|
24
|
Fenwick AL, Kliszczak M, Cooper F, Murray J, Sanchez-Pulido L, Twigg SRF, Goriely A, McGowan SJ, Miller KA, Taylor IB, Logan C, Bozdogan S, Danda S, Dixon J, Elsayed SM, Elsobky E, Gardham A, Hoffer MJV, Koopmans M, McDonald-McGinn DM, Santen GWE, Savarirayan R, de Silva D, Vanakker O, Wall SA, Wilson LC, Yuregir OO, Zackai EH, Ponting CP, Jackson AP, Wilkie AOM, Niedzwiedz W, Bicknell LS. Mutations in CDC45, Encoding an Essential Component of the Pre-initiation Complex, Cause Meier-Gorlin Syndrome and Craniosynostosis. Am J Hum Genet 2016; 99:125-38. [PMID: 27374770 PMCID: PMC5005452 DOI: 10.1016/j.ajhg.2016.05.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.
Collapse
Affiliation(s)
- Aimee L Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Maciej Kliszczak
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Fay Cooper
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jennie Murray
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Anne Goriely
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Simon J McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Kerry A Miller
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Indira B Taylor
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Clare Logan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sevcan Bozdogan
- Department of Medical Genetics, Mersin University, Mersin, 33343 Cukurova, Turkey
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, Tamil Nadu 632004, India
| | - Joanne Dixon
- Genetic Health Service NZ-South Island Hub, Christchurch Hospital, Christchurch, Canterbury 8140, New Zealand
| | - Solaf M Elsayed
- Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Ezzat Elsobky
- Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Alice Gardham
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Marije Koopmans
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Donna M McDonald-McGinn
- Clinical Genetics, The Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Deepthi de Silva
- Department of Physiology, Faculty of Medicine, University of Kelaniya, Ragama, Gampaha GQ 11010, Sri Lanka
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Ozge Ozalp Yuregir
- Genetic Diagnosis Center, Adana Numune Training and Research Hospital, Cukurova, Adana, 01170, Turkey
| | - Elaine H Zackai
- Clinical Genetics, The Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Chris P Ponting
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Wojciech Niedzwiedz
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Louise S Bicknell
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK; Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, Otago 9016, New Zealand.
| |
Collapse
|
25
|
Simon AC, Sannino V, Costanzo V, Pellegrini L. Structure of human Cdc45 and implications for CMG helicase function. Nat Commun 2016; 7:11638. [PMID: 27189187 PMCID: PMC4873980 DOI: 10.1038/ncomms11638] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/14/2016] [Indexed: 01/05/2023] Open
Abstract
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. The cell cycle division protein Cdc45 is required for genome duplication in eukaryotes. Here, the authors determine the crystal structure of human Cdc45 and combine it with functional data to improve our understanding of its role in DNA replication.
Collapse
Affiliation(s)
- Aline C Simon
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Vincenzo Sannino
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
26
|
Abid Ali F, Costa A. The MCM Helicase Motor of the Eukaryotic Replisome. J Mol Biol 2016; 428:1822-32. [PMID: 26829220 DOI: 10.1016/j.jmb.2016.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom.
| |
Collapse
|
27
|
Cheng K, Xu H, Chen X, Wang L, Tian B, Zhao Y, Hua Y. Structural basis for DNA 5´-end resection by RecJ. eLife 2016; 5:e14294. [PMID: 27058167 PMCID: PMC4846377 DOI: 10.7554/elife.14294] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
The resection of DNA strand with a 5´ end at double-strand breaks is an essential step in recombinational DNA repair. RecJ, a member of DHH family proteins, is the only 5´ nuclease involved in the RecF recombination pathway. Here, we report the crystal structures of Deinococcus radiodurans RecJ in complex with deoxythymidine monophosphate (dTMP), ssDNA, the C-terminal region of single-stranded DNA-binding protein (SSB-Ct) and a mechanistic insight into the RecF pathway. A terminal 5´-phosphate-binding pocket above the active site determines the 5´-3´ polarity of the deoxy-exonuclease of RecJ; a helical gateway at the entrance to the active site admits ssDNA only; and the continuous stacking interactions between protein and nine nucleotides ensure the processive end resection. The active site of RecJ in the N-terminal domain contains two divalent cations that coordinate the nucleophilic water. The ssDNA makes a 180° turn at the scissile phosphate. The C-terminal domain of RecJ binds the SSB-Ct, which explains how RecJ and SSB work together to efficiently process broken DNA ends for homologous recombination.
Collapse
Affiliation(s)
- Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Xuanyi Chen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 2016; 7:10708. [PMID: 26888060 PMCID: PMC4759635 DOI: 10.1038/ncomms10708] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Ludovic Renault
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
- National Institute for Biological Standards and Control, Microscopy and Imaging, Blanche Lane, South Mimms EN6 3QG, UK
| | - Julian Gannon
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Hailey L. Gahlon
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jin Chuan Zhou
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - David Rueda
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Alessandro Costa
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
29
|
Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O'Donnell ME, Li H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 2016; 23:217-24. [PMID: 26854665 PMCID: PMC4812828 DOI: 10.1038/nsmb.3170] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
The CMG helicase is composed of Cdc45, Mcm2-7 and GINS. Here we report the structure of the Saccharomyces cerevisiae CMG, determined by cryo-EM at a resolution of 3.7-4.8 Å. The structure reveals that GINS and Cdc45 scaffold the N tier of the helicase while enabling motion of the AAA+ C tier. CMG exists in two alternating conformations, compact and extended, thus suggesting that the helicase moves like an inchworm. The N-terminal regions of Mcm2-7, braced by Cdc45-GINS, form a rigid platform upon which the AAA+ C domains make longitudinal motions, nodding up and down like an oil-rig pumpjack attached to a stable platform. The Mcm ring is remodeled in CMG relative to the inactive Mcm2-7 double hexamer. The Mcm5 winged-helix domain is inserted into the central channel, thus blocking entry of double-stranded DNA and supporting a steric-exclusion DNA-unwinding model.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Lin Bai
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Jingchuan Sun
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Roxana Georgescu
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory, Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Huilin Li
- Department of Biochemistry &Cell Biology, Stony Brook University, Stony Brook, New York, USA.,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
30
|
Cheng K, Zhao Y, Chen X, Li T, Wang L, Xu H, Tian B, Hua Y. A Novel C-Terminal Domain of RecJ is Critical for Interaction with HerA in Deinococcus radiodurans. Front Microbiol 2015; 6:1302. [PMID: 26648913 PMCID: PMC4663267 DOI: 10.3389/fmicb.2015.01302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination (HR) generates error-free repair products, which plays an important role in double strand break repair and replication fork rescue processes. DNA end resection, the critical step in HR, is usually performed by a series of nuclease/helicase. RecJ was identified as a 5'-3' exonuclease involved in bacterial DNA end resection. Typical RecJ possesses a conserved DHH domain, a DHHA1 domain, and an oligonucleotide/oligosaccharide-binding (OB) fold. However, RecJs from Deinococcus-Thermus phylum, such as Deinococcus radiodurans RecJ (DrRecJ), possess an extra C-terminal domain (CTD), of which the function has not been characterized. Here, we showed that a CTD-deletion of DrRecJ (DrRecJΔC) could not restore drrecJ mutant growth and mitomycin C (MMC)-sensitive phenotypes, indicating that this domain is essential for DrRecJ in vivo. DrRecJΔC displayed reduced DNA nuclease activity and DNA binding ability. Direct interaction was identified between DrRecJ-CTD and DrHerA, which stimulates DrRecJ nuclease activity by enhancing its DNA binding affinity. Moreover, DrNurA nuclease, another partner of DrHerA, inhibited the stimulation of DrHerA on DrRecJ nuclease activity by interaction with DrHerA. Opposing growth and MMC-resistance phenotypes between the recJ and nurA mutants were observed. A novel modulation mechanism among DrRecJ, DrHerA, and DrNurA was also suggested.
Collapse
Affiliation(s)
- Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Xuanyi Chen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Tao Li
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
31
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
32
|
Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, Berger JM, Botchan MR. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement. Proc Natl Acad Sci U S A 2015; 112:E249-58. [PMID: 25561522 PMCID: PMC4311868 DOI: 10.1073/pnas.1422003112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2-7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2-7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding. The consequences of inappropriate Mcm2/5 gate actuation and the role of a side channel formed between GINS/Cdc45 and the outer edge of the Mcm2-7 ring for unwinding have remained unexplored. Here we uncover a novel function for Cdc45. Cross-linking studies trace the path of the DNA with the CMG complex at a fork junction between duplex and single strands with the bound CMG in an open or closed gate conformation. In the closed state, the lagging strand does not pass through the side channel, but in the open state, the leading strand surprisingly interacts with Cdc45. Mutations in the recombination protein J fold of Cdc45 that ablate this interaction diminish helicase activity. These data indicate that Cdc45 serves as a shield to guard against occasional slippage of the leading strand from the core channel.
Collapse
Affiliation(s)
- Tatjana Petojevic
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720; Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - James J Pesavento
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Alessandro Costa
- Clare Hall Laboratories, London Research Institute, South Mimms, Herts EN6 3LD, United Kingdom; and
| | - Jingdan Liang
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Zhijun Wang
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Michael R Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720;
| |
Collapse
|
33
|
Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2014; 124:13-26. [PMID: 25308420 DOI: 10.1007/s00412-014-0489-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
34
|
Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. eLife 2014; 3:e03273. [PMID: 25117490 PMCID: PMC4359367 DOI: 10.7554/elife.03273] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/08/2014] [Indexed: 01/29/2023] Open
Abstract
The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3' single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase.
Collapse
Affiliation(s)
- Alessandro Costa
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Ludovic Renault
- London Research Institute, Cancer Research UK, London, United Kingdom Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Paolo Swuec
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James J Pesavento
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivar Ilves
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Kirsty MacLellan-Gibson
- Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Roland A Fleck
- Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
35
|
Itou H, Muramatsu S, Shirakihara Y, Araki H. Crystal structure of the homology domain of the eukaryotic DNA replication proteins Sld3/Treslin. Structure 2014; 22:1341-1347. [PMID: 25126958 DOI: 10.1016/j.str.2014.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/05/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomal DNA. Yeast Sld3 and its metazoan counterpart Treslin are the hub proteins mediating protein associations critical for the helicase formation. Here, we show the crystal structure of the central domain of Sld3 that is conserved in Sld3/Treslin family of proteins. The domain consists of two segments with 12 helices and is sufficient to bind to Cdc45, the essential helicase component. The structure model of the Sld3-Cdc45 complex, which is crucial for the formation of the active helicase, is proposed.
Collapse
Affiliation(s)
- Hiroshi Itou
- Structural Biology Center, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan.
| | - Sachiko Muramatsu
- Division of Microbial Genetics, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan
| | - Yasuo Shirakihara
- Structural Biology Center, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
36
|
Kristensen TP, Maria Cherian R, Gray FC, MacNeill SA. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines. Front Microbiol 2014; 5:123. [PMID: 24723920 PMCID: PMC3972481 DOI: 10.3389/fmicb.2014.00123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.
Collapse
Affiliation(s)
- Tatjana P Kristensen
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Reeja Maria Cherian
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Fiona C Gray
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Stuart A MacNeill
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark ; School of Biology, University of St. Andrews North Haugh, St. Andrews, Fife, UK
| |
Collapse
|
37
|
Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, Grosse F. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res 2013; 42:2308-19. [PMID: 24293646 PMCID: PMC3936751 DOI: 10.1093/nar/gkt1217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3′ protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3′–5′ polarity and, thereby acts as a molecular ‘wedge’ to initiate DNA strand displacement.
Collapse
Affiliation(s)
- Anna Szambowska
- Research Group Biochemistry, Leibniz Institute for Age Research -Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany, Laboratory of Molecular Biology IBB PAS, Affiliated with University of Gdansk, Wita Stwosza 59 Gdansk, Poland, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Josef Schneider Strasse 2, 7080 Wurzburg, Germany, Department of Biochemistry, Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland, Department of Chemistry, University of Hamburg/DESY, Notkestrasse 85, 22607 Hamburg, Germany, Biocenter Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland and Center for Molecular Biomedicine, Friedrich-Schiller University, Biochemistry Department, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
The physical interaction of Mcm10 with Cdc45 modulates their DNA-binding properties. Biochem J 2013; 454:333-43. [PMID: 23750504 DOI: 10.1042/bj20130059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic DNA replication protein Mcm10 (mini-chromosome maintenance 10) associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Another essential component of the eukaryotic replication fork is Cdc45 (cell division cycle 45), which is required for both initiation and elongation of DNA replication. In the present study we characterize, for the first time, the physical and functional interactions of human Mcm10 and Cdc45. First we demonstrated that Mcm10 and Cdc45 interact in cell-free extracts. We then analysed the role of each of the Mcm10 domains: N-terminal, internal and C-terminal (NTD, ID and CTD respectively). We have detected a direct physical interaction between CTD and Cdc45 by both in vitro co-immunoprecipitation and surface plasmon resonance experiments. On the other hand, we have found that the interaction of the Mcm10 ID with Cdc45 takes place only in the presence of DNA. Furthermore, we found that the isolated ID and CTD domains are fully functional, retaining DNA-binding capability with a clear preference for bubble and fork structures, and that they both enhance Cdc45 DNA-binding affinity. The results of the present study demonstrate that human Mcm10 and Cdc45 directly interact and establish a mutual co-operation in DNA binding.
Collapse
|
39
|
Aze A, Zhou JC, Costa A, Costanzo V. DNA replication and homologous recombination factors: acting together to maintain genome stability. Chromosoma 2013; 122:401-13. [PMID: 23584157 DOI: 10.1007/s00412-013-0411-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
Genome duplication requires the coordinated action of multiple proteins to ensure a fast replication with high fidelity. These factors form a complex called the Replisome, which is assembled onto the DNA duplex to promote its unwinding and to catalyze the polymerization of two new strands. Key constituents of the Replisome are the Cdc45-Mcm2-7-GINS helicase and the And1-Claspin-Tipin-Tim1 complex, which coordinate DNA unwinding with polymerase alpha-, delta-, and epsilon- dependent DNA polymerization. These factors encounter numerous obstacles, such as endogenous DNA lesions leading to template breakage and complex structures arising from intrinsic features of specific DNA sequences. To overcome these roadblocks, homologous recombination DNA repair factors, such as Rad51 and the Mre11-Rad50-Nbs1 complex, are required to ensure complete and faithful replication. Consistent with this notion, many of the genes involved in this process result in lethal phenotypes when inactivated in organisms with complex and large genomes. Here, we summarize the architectural and functional properties of the Replisome and propose a unified view of DNA replication and repair processes.
Collapse
Affiliation(s)
- Antoine Aze
- Clare Hall Laboratories, London Research Institute, South Mimms, Herts, EN63LD, UK
| | | | | | | |
Collapse
|
40
|
Broderick R, Rainey MD, Santocanale C, Nasheuer HP. Cell cycle-dependent formation of Cdc45-Claspin complexes in human cells is compromized by UV-mediated DNA damage. FEBS J 2013; 280:4888-902. [PMID: 23910567 DOI: 10.1111/febs.12465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
The replication factor Cdc45 has essential functions in the initiation and elongation steps of eukaryotic DNA replication and plays an important role in the intra-S-phase checkpoint. Its interactions with other replication proteins during the cell cycle and after intra-S-phase checkpoint activation are only partially characterized. In the present study, we show that the C terminal part of Cdc45 may mediate its interactions with Claspin. The interactions of human Cdc45 with the three replication factors Claspin, replication protein A and DNA polymerase δ are maximal during the S phase. Following UVC-induced DNA damage, Cdc45-Claspin complex formation is reduced, whereas the binding of Cdc45 to replication protein A is not affected. We also show that treatment of cells with UCN-01 and phosphatidylinositol 3-kinase-like kinase inhibitors does not rescue the UV-induced destabilization of Cdc45-Claspin interactions, suggesting that the loss of the interaction between Cdc45 and Claspin occurs upstream of ataxia telangiectasia and Rad 3-related activation in the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Ronan Broderick
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | | | | | | |
Collapse
|
41
|
Yuan H, Liu XP, Han Z, Allers T, Hou JL, Liu JH. RecJ-like protein from Pyrococcus furiosus has 3'-5' exonuclease activity on RNA: implications for proofreading of 3'-mismatched RNA primers in DNA replication. Nucleic Acids Res 2013; 41:5817-26. [PMID: 23605041 PMCID: PMC3675489 DOI: 10.1093/nar/gkt275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replicative DNA polymerases require an RNA primer for leading and lagging strand DNA synthesis, and primase is responsible for the de novo synthesis of this RNA primer. However, the archaeal primase from Pyrococcus furiosus (Pfu) frequently incorporates mismatched nucleoside monophosphate, which stops RNA synthesis. Pfu DNA polymerase (PolB) cannot elongate the resulting 3'-mismatched RNA primer because it cannot remove the 3'-mismatched ribonucleotide. This study demonstrates the potential role of a RecJ-like protein from P. furiosus (PfRecJ) in proofreading 3'-mismatched ribonucleotides. PfRecJ hydrolyzes single-stranded RNA and the RNA strand of RNA/DNA hybrids in the 3'-5' direction, and the kinetic parameters (Km and Kcat) of PfRecJ during RNA strand digestion are consistent with a role in proofreading 3'-mismatched RNA primers. Replication protein A, the single-stranded DNA-binding protein, stimulates the removal of 3'-mismatched ribonucleotides of the RNA strand in RNA/DNA hybrids, and Pfu DNA polymerase can extend the 3'-mismatched RNA primer after the 3'-mismatched ribonucleotide is removed by PfRecJ. Finally, we reconstituted the primer-proofreading reaction of a 3'-mismatched ribonucleotide RNA/DNA hybrid using PfRecJ, replication protein A, Proliferating cell nuclear antigen (PCNA) and PolB. Given that PfRecJ is associated with the GINS complex, a central nexus in archaeal DNA replication fork, we speculate that PfRecJ proofreads the RNA primer in vivo.
Collapse
Affiliation(s)
- Hui Yuan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
42
|
Li Y, Araki H. Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells 2013; 18:266-77. [PMID: 23461534 PMCID: PMC3657122 DOI: 10.1111/gtc.12040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/11/2013] [Indexed: 11/27/2022]
Abstract
Evolution has led to diversification of all living organisms from a common ancestor. Consequently, all living organisms use a common method to duplicate their genetic information and thus pass on their inherited traits to their offspring. To duplicate chromosomal DNA, double-stranded DNA must first be unwound by helicase, which is loaded to replication origins and activated during the DNA replication initiation step. In this review, we discuss the common features of, and differences in, replicative helicases between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Yan Li
- Division of Microbial Genetics, National Institute of Genetics, Yata 1111, Mishima City, Shizuoka, 411-8540, Japan
| | | |
Collapse
|
43
|
Structure and evolutionary origins of the CMG complex. Chromosoma 2013; 122:47-53. [PMID: 23412083 DOI: 10.1007/s00412-013-0397-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 01/20/2023]
Abstract
The CMG (Cdc45-MCM-GINS) complex is the eukaryotic replicative helicase, the enzyme that unwinds double-stranded DNA at replication forks. All three components of the CMG complex are essential for its function, but only in the case of MCM, the molecular motor that harnesses the energy of ATP hydrolysis to catalyse strand separation, is that function clear. Here, we review current knowledge of the three-dimensional structure of the CMG complex and its components and highlight recent advances in our understanding of its evolutionary origins.
Collapse
|
44
|
Bruck I, Kaplan DL. Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem 2013; 288:7550-7563. [PMID: 23382391 DOI: 10.1074/jbc.m112.440941] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is expressed in budding yeast cells exposed to hydroxyurea, cell growth is severely inhibited, and excess RPA accumulates at or near an origin. Chromatin immunoprecipitation suggests that helicase movement is uncoupled from polymerase movement for mutant cells exposed to hydroxyurea. These data suggest that Cdc45-ssDNA interaction is important for stalling the helicase during replication stress.
Collapse
Affiliation(s)
- Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida 32306.
| |
Collapse
|
45
|
Takaya J, Kusunoki S, Ishimi Y. Protein interaction and cellular localization of human CDC45. J Biochem 2013; 153:381-8. [PMID: 23364835 DOI: 10.1093/jb/mvt004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CDC45, which plays a role in eukaryotic DNA replication, is a member of the CMG (CDC45/MCM2-7/GINS) complex that is thought to function as a replicative DNA helicase. However, the biochemical properties of CDC45 are not fully understood. We systematically examined the interactions of human CDC45 with MCM2-7, GINS and other replication proteins by immunoprecipitation. We found that CDC45 can directly interact with all MCM2-7 proteins; with PSF2, PSF3 and SLD5 in GINS subunits; and with replication protein A2 (RPA2), AND-1 and topoisomerase 2-binding protein 1. These results are consistent with the notion that CDC45 plays a role in progression of DNA replication forks. Experiments using antibodies against CDC45 show that the level of CDC45 recovered from the Triton-insoluble chromatin-containing fraction is peaked at middle of S phase in synchronized HeLa cells. However, incubation of the Triton-insoluble fraction with nucleases resulted in recovery of less than half the amount of CDC45 in the nuclease-sensitive fraction; this result is in contrast with RPA1 and proliferating cell nuclear antigen distribution. These results indicate that a considerable portion of CDC45 localizes in a region other than the DNA replication forks in nuclei or it localizes on the replication forks but it is not fractionated with the fork proteins owing to its tight association with presumably nuclear scaffolds.
Collapse
Affiliation(s)
- Junichiro Takaya
- College of Science, Ibaraki University, Mito, Ibaraki 351-8511, Japan
| | | | | |
Collapse
|
46
|
Abstract
The initiation of DNA replication represents a committing step to cell proliferation. Appropriate replication onset depends on multiprotein complexes that help properly distinguish origin regions, generate nascent replication bubbles, and promote replisome formation. This review describes initiation systems employed by bacteria, archaea, and eukaryotes, with a focus on comparing and contrasting molecular mechanisms among organisms. Although commonalities can be found in the functional domains and strategies used to carry out and regulate initiation, many key participants have markedly different activities and appear to have evolved convergently. Despite significant advances in the field, major questions still persist in understanding how initiation programs are executed at the molecular level.
Collapse
Affiliation(s)
- Alessandro Costa
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Hertfordshire, EN6 3LD United Kingdom
| | - Iris V. Hood
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| |
Collapse
|
47
|
Ishino Y, Ishino S. Rapid progress of DNA replication studies in Archaea, the third domain of life. SCIENCE CHINA-LIFE SCIENCES 2012; 55:386-403. [PMID: 22645083 DOI: 10.1007/s11427-012-4324-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 02/04/2023]
Abstract
Archaea, the third domain of life, are interesting organisms to study from the aspects of molecular and evolutionary biology. Archaeal cells have a unicellular ultrastructure without a nucleus, resembling bacterial cells, but the proteins involved in genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of Eukaryota. Therefore, archaea provide useful model systems to understand the more complex mechanisms of genetic information processing in eukaryotic cells. Moreover, the hyperthermophilic archaea provide very stable proteins, which are especially useful for the isolation of replisomal multicomplexes, to analyze their structures and functions. This review focuses on the history, current status, and future directions of archaeal DNA replication studies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
48
|
Makarova KS, Koonin EV, Kelman Z. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 2012; 7:7. [PMID: 22329974 PMCID: PMC3307487 DOI: 10.1186/1745-6150-7-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 01/14/2023] Open
Abstract
Background In eukaryotes, the CMG (CDC45, MCM, GINS) complex containing the replicative helicase MCM is a key player in DNA replication. Archaeal homologs of the eukaryotic MCM and GINS proteins have been identified but until recently no homolog of the CDC45 protein was known. Two recent developments, namely the discovery of archaeal GINS-associated nuclease (GAN) that belongs to the RecJ family of the DHH hydrolase superfamily and the demonstration of homology between the DHH domains of CDC45 and RecJ, show that at least some Archaea possess a full complement of homologs of the CMG complex subunits. Here we present the results of in-depth phylogenomic analysis of RecJ homologs in archaea. Results We confirm and extend the recent hypothesis that CDC45 is the eukaryotic ortholog of the bacterial and archaeal RecJ family nucleases. At least one RecJ homolog was identified in all sequenced archaeal genomes, with the single exception of Caldivirga maquilingensis. These proteins include previously unnoticed remote RecJ homologs with inactivated DHH domain in Thermoproteales. Combined with phylogenetic tree reconstruction of diverse eukaryotic, archaeal and bacterial DHH subfamilies, this analysis yields a complex scenario of RecJ family evolution in Archaea which includes independent inactivation of the nuclease domain in Crenarchaeota and Halobacteria, and loss of this domain in Methanococcales. Conclusions The archaeal complex of a CDC45/RecJ homolog, MCM and GINS is homologous and most likely functionally analogous to the eukaryotic CMG complex, and appears to be a key component of the DNA replication machinery in all Archaea. It is inferred that the last common archaeo-eukaryotic ancestor encoded a CMG complex that contained an active nuclease of the RecJ family. The inactivated RecJ homologs in several archaeal lineages most likely are dedicated structural components of replication complexes. Reviewers This article was reviewed by Prof. Patrick Forterre, Dr. Stephen John Aves (nominated by Dr. Purificacion Lopez-Garcia) and Prof. Martijn Huynen. For the full reviews, see the Reviewers' Comments section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
49
|
Abstract
High-fidelity chromosomal DNA replication is vital for maintaining the integrity of the genetic material in all forms of cellular life. In eukaryotic cells, around 40-50 distinct conserved polypeptides are essential for chromosome replication, the majority of which are themselves component parts of a series of elaborate molecular machines that comprise the replication apparatus or replisome. How these complexes are assembled, what structures they adopt, how they perform their functions, and how those functions are regulated, are key questions for understanding how genome duplication occurs. Here I present a brief overview of current knowledge of the composition of the replisome and the dynamic molecular events that underlie chromosomal DNA replication in eukaryotic cells.
Collapse
|