1
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
2
|
Zhang L, Li N. Lipid overload - a culprit for hypertrophic cardiomyopathy? THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:8. [PMID: 36818426 PMCID: PMC9933935 DOI: 10.20517/jca.2022.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Marston S, Pinto JR. Suppression of lusitropy as a disease mechanism in cardiomyopathies. Front Cardiovasc Med 2023; 9:1080965. [PMID: 36698941 PMCID: PMC9870330 DOI: 10.3389/fcvm.2022.1080965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
In cardiac muscle the action of adrenaline on β1 receptors of heart muscle cells is essential to adjust cardiac output to the body's needs. Adrenergic activation leads to enhanced contractility (inotropy), faster heart rate (chronotropy) and faster relaxation (lusitropy), mainly through activation of protein kinase A (PKA). Efficient enhancement of heart output under stress requires all of these responses to work together. Lusitropy is essential for shortening the heartbeat when heart rate increases. It therefore follows that, if the lusitropic response is not present, heart function under stress will be compromised. Current literature suggests that lusitropy is primarily achieved due to PKA phosphorylation of troponin I (TnI) and phospholamban (PLB). It has been well documented that PKA-induced phosphorylation of TnI releases Ca2+ from troponin C faster and increases the rate of cardiac muscle relaxation, while phosphorylation of PLB increases SERCA activity, speeding up Ca2+ removal from the cytoplasm. In this review we consider the current scientific evidences for the connection between suppression of lusitropy and cardiac dysfunction in the context of mutations in phospholamban and thin filament proteins that are associated with cardiomyopathies. We will discuss what advances have been made into understanding the physiological mechanism of lusitropy due to TnI and PLB phosphorylation and its suppression by mutations and we will evaluate the evidence whether lack of lusitropy is sufficient to cause cardiomyopathy, and under what circumstances, and consider the range of pathologies associated with loss of lusitropy. Finally, we will discuss whether suppressed lusitropy due to mutations in thin filament proteins can be therapeutically restored.
Collapse
Affiliation(s)
- Steven Marston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
4
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
5
|
Psaras Y, Margara F, Cicconet M, Sparrow AJ, Repetti GG, Schmid M, Steeples V, Wilcox JA, Bueno-Orovio A, Redwood CS, Watkins HC, Robinson P, Rodriguez B, Seidman JG, Seidman CE, Toepfer CN. CalTrack: High-Throughput Automated Calcium Transient Analysis in Cardiomyocytes. Circ Res 2021; 129:326-341. [PMID: 34018815 PMCID: PMC8260473 DOI: 10.1161/circresaha.121.318868] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yiangos Psaras
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
| | - Francesca Margara
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
| | - Marcelo Cicconet
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Alexander J. Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Giuliana G. Repetti
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | - Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Jonathan A.L. Wilcox
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | | | - Charles S. Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Hugh C. Watkins
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
| | - Blanca Rodriguez
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
| | - Jonathan G. Seidman
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | - Christine E. Seidman
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Christopher N. Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Mijailovich SM, Prodanovic M, Poggesi C, Powers JD, Davis J, Geeves MA, Regnier M. The effect of variable troponin C mutation thin filament incorporation on cardiac muscle twitch contractions. J Mol Cell Cardiol 2021; 155:112-124. [PMID: 33636222 DOI: 10.1016/j.yjmcc.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
One of the complexities of understanding the pathology of familial forms of cardiac diseases is the level of mutation incorporation in sarcomeres. Computational models of the sarcomere that are spatially explicit offer an approach to study aspects of mutational incorporation into myofilaments that are more challenging to get at experimentally. We studied two well characterized mutations of cardiac TnC, L48Q and I61Q, that decrease or increase the release rate of Ca2+ from cTnC, k-Ca, resulting in HCM and DCM respectively [1]. Expression of these mutations in transgenic mice was used to provide experimental data for incorporation of 30 and 50% (respectively) into sarcomeres. Here we demonstrate that fixed length twitch contractions of trabeculae from mice containing mutant differ from WT; L48Q trabeculae have slower relaxation while I61Q trabeculae have markedly reduced peak tension. Using our multiscale modelling approach [2] we were able to describe the tension transients of WT mouse myocardium. Tension transients for the mutant cTnCs were simulated with changes in k-Ca, measured experimentally for each cTnC mutant in whole troponin complex, a change in the affinity of cTnC for cTnI, and a reduction in the number of detached crossbridges available for binding. A major advantage of the multiscale explicit 3-D model is that it predicts the effects of variable mutation incorporation, and the effects of variations in mutation distribution within thin filaments in sarcomeres. Such effects are currently impossible to explore experimentally. We explored random and clustered distributions of mutant cTnCs in thin filaments, as well as distributions of individual thin filaments with only WT or mutant cTnCs present. The effects of variable amounts of incorporation and non-random distribution of mutant cTnCs are more marked for I61Q than L48Q cTnC. We conclude that this approach can be effective for study on mutations in multiple proteins of the sarcomere. SUMMARY: A challenge in experimental studies of diseases is accounting for the effect of variable mutation incorporation into myofilaments. Here we use a spatially explicit computational approach, informed by experimental data from transgenic mice expressing one of two mutations in cardiac Troponin C that increase or decrease calcium sensitivity. We demonstrate that the model can accurately describe twitch contractions for the data and go on to explore the effect of variable mutant incorporation and localization on simulated cardiac muscle twitches.
Collapse
Affiliation(s)
| | - Momcilo Prodanovic
- Bioengineering Research and Development Center (BioIRC), Kragujevac 34000, Serbia; Faculty of Engineering, University of Kragujevac, Kragujevac 34000, Serbia
| | - Corrado Poggesi
- Department of Experimental & Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Dept. of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Michael A Geeves
- Dept. of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Fahed AC, Nemer G, Bitar FF, Arnaout S, Abchee AB, Batrawi M, Khalil A, Abou Hassan OK, DePalma SR, McDonough B, Arabi MT, Ware JS, Seidman JG, Seidman CE. Founder Mutation in N Terminus of Cardiac Troponin I Causes Malignant Hypertrophic Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:444-452. [PMID: 32885985 PMCID: PMC7676616 DOI: 10.1161/circgen.120.002991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac troponin I (TNNI3) gene mutations account for 3% of hypertrophic cardiomyopathy and carriers have a heterogeneous phenotype, with increased risk of sudden cardiac death (SCD). Only one mutation (p.Arg21Cys) has been reported in the N terminus of the protein. In model organisms, it impairs PKA (protein kinase A) phosphorylation, increases calcium sensitivity, and causes diastolic dysfunction. The phenotype of this unique mutation in patients with hypertrophic cardiomyopathy remains unknown. METHODS We sequenced 29 families with hypertrophic cardiomyopathy enriched for pediatric-onset disease and identified 5 families with the TNNI3 p.Arg21Cys mutation. Using cascade screening, we studied the clinical phenotype of 57 individuals from the 5 families with TNNI3 p.Arg21Cys-related cardiomyopathy. We performed survival analysis investigating the age at first SCD in carriers of the mutation. RESULTS All 5 families with TNNI3 p.Arg21Cys were from South Lebanon. TNNI3 p.Arg21Cys-related cardiomyopathy manifested a malignant phenotype-SCD occurred in 30 (53%) of 57 affected individuals at a median age of 22.5 years. In select carriers without left ventricular hypertrophy on echocardiogram, SCD occurred, myocyte disarray was found on autopsy heart, and tissue Doppler and cardiac magnetic resonance imaging identified subclinical disease features such as diastolic dysfunction and late gadolinium enhancement. CONCLUSIONS The TNNI3 p.Arg21Cys mutation has a founder effect in South Lebanon and causes malignant hypertrophic cardiomyopathy with early SCD even in the absence of hypertrophy. Genetic diagnosis with this mutation may be sufficient for risk stratification for SCD.
Collapse
Affiliation(s)
- Akl C Fahed
- Division of Cardiology, Department of Medicine, Center of Genomic Medicine, Massachusetts General Hospital (A.C.F.), Harvard Medical School, Boston.,Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (A.C.F.)
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon (G.N., F.F.B., M.B., A.K., O.A.-H.).,College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar (G.N.)
| | - Fadi F Bitar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon (G.N., F.F.B., M.B., A.K., O.A.-H.).,Department of Pediatrics (F.F.B., M.T.A.), American University of Beirut Medical Center, Lebanon
| | - Samir Arnaout
- Cardiology Division (S.A., A.B.A., O.A.-H.), American University of Beirut Medical Center, Lebanon
| | - Antoine B Abchee
- Cardiology Division (S.A., A.B.A., O.A.-H.), American University of Beirut Medical Center, Lebanon
| | - Manal Batrawi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon (G.N., F.F.B., M.B., A.K., O.A.-H.)
| | - Athar Khalil
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon (G.N., F.F.B., M.B., A.K., O.A.-H.)
| | - Ossama K Abou Hassan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon (G.N., F.F.B., M.B., A.K., O.A.-H.).,Cardiology Division (S.A., A.B.A., O.A.-H.), American University of Beirut Medical Center, Lebanon
| | - Steven R DePalma
- Department of Genetics (S.R.D., B.M., J.G.S., C.E.S.), Harvard Medical School, Boston
| | - Barbara McDonough
- Department of Genetics (S.R.D., B.M., J.G.S., C.E.S.), Harvard Medical School, Boston
| | - Mariam T Arabi
- Department of Pediatrics (F.F.B., M.T.A.), American University of Beirut Medical Center, Lebanon
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital (J.S.W.).,Medical Research College London Institute of Medical Sciences, United Kingdom (J.S.W.)
| | - Jonathan G Seidman
- Department of Genetics (S.R.D., B.M., J.G.S., C.E.S.), Harvard Medical School, Boston
| | - Christine E Seidman
- Department of Genetics (S.R.D., B.M., J.G.S., C.E.S.), Harvard Medical School, Boston.,Division of Cardiology and Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA (C.E.S.)
| |
Collapse
|
8
|
Landim-Vieira M, Johnston JR, Ji W, Mis EK, Tijerino J, Spencer-Manzon M, Jeffries L, Hall EK, Panisello-Manterola D, Khokha MK, Deniz E, Chase PB, Lakhani SA, Pinto JR. Familial Dilated Cardiomyopathy Associated With a Novel Combination of Compound Heterozygous TNNC1 Variants. Front Physiol 2020; 10:1612. [PMID: 32038292 PMCID: PMC6990120 DOI: 10.3389/fphys.2019.01612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM), clinically characterized by enlargement and dysfunction of one or both ventricles of the heart, can be caused by variants in sarcomeric genes including TNNC1 (encoding cardiac troponin C, cTnC). Here, we report the case of two siblings with severe, early onset DCM who were found to have compound heterozygous variants in TNNC1: p.Asp145Glu (D145E) and p.Asp132Asn (D132N), which were inherited from the parents. We began our investigation with CRISPR/Cas9 knockout of TNNC1 in Xenopus tropicalis, which resulted in a cardiac phenotype in tadpoles consistent with DCM. Despite multiple maneuvers, we were unable to rescue the tadpole hearts with either human cTnC wild-type or patient variants to investigate the cardiomyopathy phenotype in vivo. We therefore utilized porcine permeabilized cardiac muscle preparations (CMPs) reconstituted with either wild-type or patient variant forms of cTnC to examine effects of the patient variants on contractile function. Incorporation of 50% WT/50% D145E into CMPs increased Ca2+ sensitivity of isometric force, consistent with prior studies. In contrast, incorporation of 50% WT/50% D132N, which had not been previously reported, decreased Ca2+ sensitivity of isometric force. CMPs reconstituted 50–50% with both variants mirrored WT in regard to myofilament Ca2+ responsiveness. Sinusoidal stiffness (SS) (0.2% peak-to-peak) and the kinetics of tension redevelopment (kTR) at saturating Ca2+ were similar to WT for all preparations. Modeling of Ca2+-dependence of kTR support the observation from Ca2+ responsiveness of steady-state isometric force, that the effects on each mutant (50% WT/50% mutant) were greater than the combination of the two mutants (50% D132N/50% D145E). Further studies are needed to ascertain the mechanism(s) of these variants.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Joshua Tijerino
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Michele Spencer-Manzon
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - E Kevin Hall
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David Panisello-Manterola
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
9
|
Gannon MP, Link MS. Phenotypic variation and targeted therapy of hypertrophic cardiomyopathy using genetic animal models. Trends Cardiovasc Med 2019; 31:20-31. [PMID: 31862214 DOI: 10.1016/j.tcm.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) has a variable clinical presentation due to the diversity of causative genetic mutations. Animal models allow in vivo study of genotypic expression through non-invasive imaging, pathologic sampling, and force analysis. This review focuses on the spontaneous and induced mutations in various animal models affecting mainly sarcomere proteins. The sarcomere is comprised of thick (myosin) filaments and related proteins including myosin heavy chain and myosin binding protein-C; thin (actin) filament proteins and their associated regulators including tropomyosin, troponin I, troponin C, and troponin T. The regulatory milieu including transcription factors and cell signaling also play a significant role. Animal models provide a layered approach of understanding beginning with the causative mutation as a foundation. The functional consequences of protein energy utilization and calcium sensitivity in vivo and ex vivo can be studied. Beyond pathophysiologic disruption of sarcomere function, these models demonstrate the clinical sequalae of diastolic dysfunction, heart failure, and arrhythmogenic death. Through this cascade of understanding the mutation followed by their functional significance, targeted therapies have been developed and are briefly discussed.
Collapse
Affiliation(s)
- Michael P Gannon
- National Heart, Lung and Blood Institute, National Institutes of Health, US Department of Health and Human Services, Bldg 10, Rm B1D416, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Mark S Link
- University of Texas Southwestern Medical Center, USA
| |
Collapse
|
10
|
Zhou Y, Yuan J, Wang Y, Qiao S. Predictive Values of Apelin for Myocardial Fibrosis in Hypertrophic Cardiomyopathy. Int Heart J 2019; 60:648-655. [DOI: 10.1536/ihj.18-598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital
| | - Jiansong Yuan
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital
| | - Yong Wang
- Department of Cardiology, China-Japan Friendship Hospital
| | - Shubin Qiao
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital
| |
Collapse
|
11
|
Bailey KE, MacGowan GA, Tual-Chalot S, Phillips L, Mohun TJ, Henderson DJ, Arthur HM, Bamforth SD, Phillips HM. Disruption of embryonic ROCK signaling reproduces the sarcomeric phenotype of hypertrophic cardiomyopathy. JCI Insight 2019; 5:125172. [PMID: 30835717 PMCID: PMC6538384 DOI: 10.1172/jci.insight.125172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sarcomeric disarray is a hallmark of gene mutations in patients with hypertrophic cardiomyopathy (HCM). However, it is unknown when detrimental sarcomeric changes first occur and whether they originate in the developing embryonic heart. Furthermore, Rho kinase (ROCK) is a serine/threonine protein kinase that is critical for regulating the function of several sarcomeric proteins, and therefore, our aim was to determine whether disruption of ROCK signaling during the earliest stages of heart development would disrupt the integrity of sarcomeres, altering heart development and function. Using a mouse model in which the function of ROCK is specifically disrupted in embryonic cardiomyocytes, we demonstrate a progressive cardiomyopathy that first appeared as sarcomeric disarray during cardiogenesis. This led to abnormalities in the structure of the embryonic ventricular wall and compensatory cardiomyocyte hypertrophy during fetal development. This sarcomeric disruption and hypertrophy persisted throughout adult life, triggering left ventricular concentric hypertrophy with systolic dysfunction, and reactivation of fetal gene expression and cardiac fibrosis, all typical features of HCM. Taken together, our findings establish a mechanism for the developmental origin of the sarcomeric phenotype of HCM and suggest that variants in the ROCK genes or disruption of ROCK signaling could, in part, contribute to its pathogenesis. Disruption of ROCK activity in embryonic cardiomyocytes revealed a developmental origin for hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Kate E Bailey
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Guy A MacGowan
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D Bamforth
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
13
|
Dvornikov AV, de Tombe PP, Xu X. Phenotyping cardiomyopathy in adult zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:116-125. [PMID: 29884423 PMCID: PMC6269218 DOI: 10.1016/j.pbiomolbio.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is usually manifested by increased myofilament Ca2+ sensitivity, excessive contractility, and impaired relaxation. In contrast, dilated cardiomyopathy (DCM) originates from insufficient sarcomere contractility and reduced cardiac pump function, subsequently resulting in heart failure. The zebrafish has emerged as a new model of human cardiomyopathy with high-throughput screening, which will facilitate the discovery of novel genetic factors and the development of new therapies. Given the small hearts of zebrafish, better phenotyping tools are needed to discern different types of cardiomyopathy, such as HCM and DCM. This article reviews the existing models of cardiomyopathy, available morphologic and functional methods, and current understanding of the different types of cardiomyopathy in adult zebrafish.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Pieter P de Tombe
- University of Illinois at Chicago, Department of Physiology and Biophysics, Chicago, IL, USA; Magdi Yacoub Institute, Cardiac Biophysics Division, Harefield, UK; Imperial College, Heart and Lung Institute, London, UK; Freiburg University, Institute for Experimental Cardiovascular Medicine, Germany
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Abstract
This article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort. Continued research is necessary to address the complexity of cardiomyopathic progression and develop efficacious therapeutics.
Collapse
Affiliation(s)
- Melissa L Lynn
- Department of Medicine, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Sarah J Lehman
- Department of Physiological Sciences, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Room 312, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Na I, Kong MJ, Straight S, Pinto JR, Uversky VN. Troponins, intrinsic disorder, and cardiomyopathy. Biol Chem 2017; 397:731-51. [PMID: 27074551 DOI: 10.1515/hsz-2015-0303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/05/2016] [Indexed: 11/15/2022]
Abstract
Cardiac troponin is a dynamic complex of troponin C, troponin I, and troponin T (TnC, TnI, and TnT, respectively) found in the myocyte thin filament where it plays an essential role in cardiac muscle contraction. Mutations in troponin subunits are found in inherited cardiomyopathies, such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The highly dynamic nature of human cardiac troponin and presence of numerous flexible linkers in its subunits suggest that understanding of structural and functional properties of this important complex can benefit from the consideration of the protein intrinsic disorder phenomenon. We show here that mutations causing decrease in the disorder score in TnI and TnT are significantly more abundant in HCM and DCM than mutations leading to the increase in the disorder score. Identification and annotation of intrinsically disordered regions in each of the troponin subunits conducted in this study can help in better understanding of the roles of intrinsic disorder in regulation of interactomes and posttranslational modifications of these proteins. These observations suggest that disease-causing mutations leading to a decrease in the local flexibility of troponins can trigger a whole plethora of functional changes in the heart.
Collapse
|
16
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Westfall MV. Contribution of Post-translational Phosphorylation to Sarcomere-Linked Cardiomyopathy Phenotypes. Front Physiol 2016; 7:407. [PMID: 27683560 PMCID: PMC5021686 DOI: 10.3389/fphys.2016.00407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/30/2016] [Indexed: 01/24/2023] Open
Abstract
Secondary shifts develop in post-translational phosphorylation of sarcomeric proteins in multiple animal models of inherited cardiomyopathy. These signaling alterations together with the primary mutation are predicted to contribute to the overall cardiac phenotype. As a result, identification and integration of post-translational myofilament signaling responses are identified as priorities for gaining insights into sarcomeric cardiomyopathies. However, significant questions remain about the nature and contribution of post-translational phosphorylation to structural remodeling and cardiac dysfunction in animal models and human patients. This perspective essay discusses specific goals for filling critical gaps about post-translational signaling in response to these inherited mutations, especially within sarcomeric proteins. The discussion focuses primarily on pre-clinical analysis of animal models and defines challenges and future directions in this field.
Collapse
|
18
|
Cheng Y, Lindert S, Oxenford L, Tu AY, McCulloch AD, Regnier M. Effects of Cardiac Troponin I Mutation P83S on Contractile Properties and the Modulation by PKA-Mediated Phosphorylation. J Phys Chem B 2016; 120:8238-53. [PMID: 27150586 PMCID: PMC5001945 DOI: 10.1021/acs.jpcb.6b01859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
cTnI(P82S) (cTnI(P83S) in rodents) resides at the I-T arm of cardiac troponin I (cTnI) and was initially identified as a disease-causing mutation of hypertrophic cardiomyopathy (HCM). However, later studies suggested this may not be true. We recently reported that introduction of an HCM-associated mutation in either inhibitory-peptide (cTnI(R146G)) or cardiac-specific N-terminus (cTnI(R21C)) of cTnI blunts the PKA-mediated modulation on myofibril activation/relaxation kinetics by prohibiting formation of intrasubunit contacts between these regions. Here, we tested whether this also occurs for cTnI(P83S). cTnI(P83S) increased both Ca(2+) binding affinity to cTn (KCa) and affinity of cTnC for cTnI (KC-I), and eliminated the reduction of KCa and KC-I observed for phosphorylated-cTnI(WT). In isolated myofibrils, cTnI(P83S) maintained maximal tension (TMAX) and Ca(2+) sensitivity of tension (pCa50). For cTnI(WT) myofibrils, PKA-mediated phosphorylation decreased pCa50 and sped up the slow-phase relaxation (especially for those Ca(2+) conditions that heart performs in vivo). Those effects were blunted for cTnI(P83S) myofibrils. Molecular-dynamics simulations suggested cTnI(P83S) moderately inhibited an intrasubunit interaction formation between inhibitory-peptide and N-terminus, but this "blunting" effect was weaker than that with cTnI(R146G) or cTnI(R21C). In summary, cTnI(P83S) has similar effects as other HCM-associated cTnI mutations on troponin and myofibril function even though it is in the I-T arm of cTnI.
Collapse
Affiliation(s)
- Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- National Biomedical Computation Resource, University of California San Diego, La Jolla, California 92093, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lucas Oxenford
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - An-yue Tu
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Andrew D. McCulloch
- National Biomedical Computation Resource, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Cai W, Tucholski TM, Gregorich ZR, Ge Y. Top-down Proteomics: Technology Advancements and Applications to Heart Diseases. Expert Rev Proteomics 2016; 13:717-30. [PMID: 27448560 DOI: 10.1080/14789450.2016.1209414] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Heart diseases are a leading cause of morbidity and mortality for both men and women worldwide, and impose significant economic burdens on the healthcare systems. Despite substantial effort over the last several decades, the molecular mechanisms underlying diseases of the heart remain poorly understood. AREAS COVERED Altered protein post-translational modifications (PTMs) and protein isoform switching are increasingly recognized as important disease mechanisms. Top-down high-resolution mass spectrometry (MS)-based proteomics has emerged as the most powerful method for the comprehensive analysis of PTMs and protein isoforms. Here, we will review recent technology developments in the field of top-down proteomics, as well as highlight recent studies utilizing top-down proteomics to decipher the cardiac proteome for the understanding of the molecular mechanisms underlying diseases of the heart. Expert commentary: Top-down proteomics is a premier method for the global and comprehensive study of protein isoforms and their PTMs, enabling the identification of novel protein isoforms and PTMs, characterization of sequence variations, and quantification of disease-associated alterations. Despite significant challenges, continuous development of top-down proteomics technology will greatly aid the dissection of the molecular mechanisms underlying diseases of the hearts for the identification of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Wenxuan Cai
- a Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA.,b Molecular and Cellular Pharmacology Training Program , University of Wisconsin-Madison , Madison , WI , USA
| | - Trisha M Tucholski
- c Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA
| | - Zachery R Gregorich
- a Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA.,b Molecular and Cellular Pharmacology Training Program , University of Wisconsin-Madison , Madison , WI , USA
| | - Ying Ge
- a Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA.,c Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA.,d Human Proteomics Program , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
20
|
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601:11-21. [PMID: 26851561 PMCID: PMC4899195 DOI: 10.1016/j.abb.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases.
Collapse
Affiliation(s)
- Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, WA, USA.
| |
Collapse
|
21
|
Messer AE, Bayliss CR, El-Mezgueldi M, Redwood CS, Ward DG, Leung MC, Papadaki M, Dos Remedios C, Marston SB. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca(2+)-sensitivity and suppress the modulation of Ca(2+)-sensitivity by troponin I phosphorylation. Arch Biochem Biophys 2016; 601:113-20. [PMID: 27036851 PMCID: PMC4909753 DOI: 10.1016/j.abb.2016.03.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/16/2016] [Accepted: 03/26/2016] [Indexed: 11/24/2022]
Abstract
We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca2+-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca2+-sensitivity when compared with donor heart troponin and the Ca2+-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca2+-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca2+-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca2+-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca2+-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca2+-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential. 7 HCM-causing mutations in cardiac TnT were studied using in vitro motility assay. All the mutations increased myofilament Ca2+-sensitivity (range 1.5–2.7 fold). All mutations suppressed the modulation of Ca2+-sensitivity by TnI phosphorylation. Epigallocatechin-3-gallate (EGCG) restored this modulation to all mutations. This suggests a therapeutic potential for EGCG in the treatment of HCM.
Collapse
|
22
|
Sheng JJ, Jin JP. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Gene 2015; 576:385-94. [PMID: 26526134 DOI: 10.1016/j.gene.2015.10.052] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Troponin I (TnI) is the inhibitory subunit of the troponin complex in the sarcomeric thin filament of striated muscle and plays a central role in the calcium regulation of contraction and relaxation. Vertebrate TnI has evolved into three isoforms encoded by three homologous genes: TNNI1 for slow skeletal muscle TnI, TNNI2 for fast skeletal muscle TnI and TNNI3 for cardiac TnI, which are expressed under muscle type-specific and developmental regulations. To summarize the current knowledge on the TnI isoform genes and products, this review focuses on the evolution, gene regulation, posttranslational modifications, and structure-function relationship of TnI isoform proteins. Their physiological and medical significances are also discussed.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
23
|
Cheng Y, Rao V, Tu AY, Lindert S, Wang D, Oxenford L, McCulloch AD, McCammon JA, Regnier M. Troponin I Mutations R146G and R21C Alter Cardiac Troponin Function, Contractile Properties, and Modulation by Protein Kinase A (PKA)-mediated Phosphorylation. J Biol Chem 2015; 290:27749-66. [PMID: 26391394 DOI: 10.1074/jbc.m115.683045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Two hypertrophic cardiomyopathy-associated cardiac troponin I (cTnI) mutations, R146G and R21C, are located in different regions of cTnI, the inhibitory peptide and the cardiac-specific N terminus. We recently reported that these regions may interact when Ser-23/Ser-24 are phosphorylated, weakening the interaction of cTnI with cardiac TnC. Little is known about how these mutations influence the affinity of cardiac TnC for cTnI (KC-I) or contractile kinetics during β-adrenergic stimulation. Here, we tested how cTnI(R146G) or cTnI(R21C) influences contractile activation and relaxation and their response to protein kinase A (PKA). Both mutations significantly increased Ca(2+) binding affinity to cTn (KCa) and KC-I. PKA phosphorylation resulted in a similar reduction of KCa for all complexes, but KC-I was reduced only with cTnI(WT). cTnI(WT), cTnI(R146G), and cTnI(R21C) were complexed into cardiac troponin and exchanged into rat ventricular myofibrils, and contraction/relaxation kinetics were measured ± PKA phosphorylation. Maximal tension (Tmax) was maintained for cTnI(R146G)- and cTnI(R21C)-exchanged myofibrils, and Ca(2+) sensitivity of tension (pCa50) was increased. PKA phosphorylation decreased pCa50 for cTnI(WT)-exchanged myofibrils but not for either mutation. PKA phosphorylation accelerated the early slow phase relaxation for cTnI(WT) myofibrils, especially at Ca(2+) levels that the heart operates in vivo. Importantly, this effect was blunted for cTnI(R146G)- and cTnI(R21C)-exchanged myofibrils. Molecular dynamics simulations suggest both mutations inhibit formation of intra-subunit contacts between the N terminus and the inhibitory peptide of cTnI that is normally seen with WT-cTn upon PKA phosphorylation. Together, our results suggest that cTnI(R146G) and cTnI(R21C) blunt PKA modulation of activation and relaxation kinetics by prohibiting cardiac-specific N-terminal interaction with the cTnI inhibitory peptide.
Collapse
Affiliation(s)
- Yuanhua Cheng
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105, the National Biomedical Computational Resource and
| | - Vijay Rao
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - An-Yue Tu
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - Steffen Lindert
- Pharmacology, University of California at San Diego, La Jolla, California 92093, and
| | - Dan Wang
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - Lucas Oxenford
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105
| | - Andrew D McCulloch
- the National Biomedical Computational Resource and Departments of Bioengineering and
| | - J Andrew McCammon
- the National Biomedical Computational Resource and Pharmacology, University of California at San Diego, La Jolla, California 92093, and
| | - Michael Regnier
- From the Department of Bioengineering, University of Washington, Seattle, Washington 98105, the Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98105
| |
Collapse
|
24
|
McConnell BK, Singh S, Fan Q, Hernandez A, Portillo JP, Reiser PJ, Tikunova SB. Knock-in mice harboring a Ca(2+) desensitizing mutation in cardiac troponin C develop early onset dilated cardiomyopathy. Front Physiol 2015; 6:242. [PMID: 26379556 PMCID: PMC4550777 DOI: 10.3389/fphys.2015.00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
The physiological consequences of aberrant Ca(2+) binding and exchange with cardiac myofilaments are not clearly understood. In order to examine the effect of decreasing Ca(2+) sensitivity of cTnC on cardiac function, we generated knock-in mice carrying a D73N mutation (not known to be associated with heart disease in human patients) in cTnC. The D73N mutation was engineered into the regulatory N-domain of cTnC in order to reduce Ca(2+) sensitivity of reconstituted thin filaments by increasing the rate of Ca(2+) dissociation. In addition, the D73N mutation drastically blunted the extent of Ca(2+) desensitization of reconstituted thin filaments induced by cTnI pseudo-phosphorylation. Compared to wild-type mice, heterozygous knock-in mice carrying the D73N mutation exhibited a substantially decreased Ca(2+) sensitivity of force development in skinned ventricular trabeculae. Kaplan-Meier survival analysis revealed that median survival time for knock-in mice was 12 weeks. Echocardiographic analysis revealed that knock-in mice exhibited increased left ventricular dimensions with thinner walls. Echocardiographic analysis also revealed that measures of systolic function, such as ejection fraction (EF) and fractional shortening (FS), were dramatically reduced in knock-in mice. In addition, knock-in mice displayed electrophysiological abnormalities, namely prolonged QRS and QT intervals. Furthermore, ventricular myocytes isolated from knock-in mice did not respond to β-adrenergic stimulation. Thus, knock-in mice developed pathological features similar to those observed in human patients with dilated cardiomyopathy (DCM). In conclusion, our results suggest that decreasing Ca(2+) sensitivity of the regulatory N-domain of cTnC is sufficient to trigger the development of DCM.
Collapse
Affiliation(s)
- Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHouston, TX, USA
| | - Sonal Singh
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHouston, TX, USA
| | - Qiying Fan
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHouston, TX, USA
| | - Adriana Hernandez
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHouston, TX, USA
| | - Jesus P. Portillo
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHouston, TX, USA
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State UniversityColumbus, OH, USA
| | - Svetlana B. Tikunova
- Department of Pharmacological and Pharmaceutical Sciences, University of HoustonHouston, TX, USA
| |
Collapse
|
25
|
Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene 2015; 571:153-66. [PMID: 26232335 DOI: 10.1016/j.gene.2015.07.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca(2+) or Mg(2+) under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Monica X Li
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
26
|
Vikhorev PG, Song W, Wilkinson R, Copeland O, Messer AE, Ferenczi MA, Marston SB. The dilated cardiomyopathy-causing mutation ACTC E361G in cardiac muscle myofibrils specifically abolishes modulation of Ca(2+) regulation by phosphorylation of troponin I. Biophys J 2015; 107:2369-80. [PMID: 25418306 PMCID: PMC4241448 DOI: 10.1016/j.bpj.2014.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/25/2014] [Accepted: 10/16/2014] [Indexed: 01/30/2023] Open
Abstract
Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca2+ sensitivity and increases the rate of Ca2+ release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system. Using a Ca2+-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic parameters of Ca2+ regulation of contractility in single transgenic mouse heart myofibrils. We used propranolol treatment of mice to reduce the level of troponin I and myosin binding protein C (MyBP-C) phosphorylation in their hearts before isolating the myofibrils. In nontransgenic mouse myofibrils, the Ca2+ sensitivity of force was increased, the fast relaxation phase rate constant, kREL, was reduced, and the length of the slow linear phase, tLIN, was increased when the troponin I phosphorylation level was reduced from 1.02 to 0.3 molPi/TnI (EC50 P/unP = 1.8 ± 0.2, p < 0.001). Native myofibrils from ACTC E361G transgenic mice had a 2.4-fold higher Ca2+ sensitivity than nontransgenic mouse myofibrils. Strikingly, the Ca2+ sensitivity and relaxation parameters of ACTC E361G myofibrils did not depend on the troponin I phosphorylation level (EC50 P/unP = 0.88 ± 0.17, p = 0.39). Nevertheless, modulation of the Ca2+ sensitivity of ACTC E361G myofibrils by sarcomere length or EMD57033 was indistinguishable from that of nontransgenic myofibrils. Overall, EC50 measured in different conditions varied over a 7-fold range. The time course of relaxation, as defined by tLIN and kREL, was correlated with EC50 but varied by just 2.7- and 3.3-fold, respectively. Our results confirm that troponin I phosphorylation specifically alters the Ca2+ sensitivity of isometric tension and the time course of relaxation in cardiac muscle myofibrils. Moreover, the DCM-causing mutation ACTC E361G blunts this phosphorylation-dependent response without affecting other parameters of contraction, including length-dependent activation and the response to EMD57033.
Collapse
Affiliation(s)
- Petr G Vikhorev
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ross Wilkinson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - O'Neal Copeland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Steven B Marston
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
27
|
Papadaki M, Vikhorev PG, Marston SB, Messer AE. Uncoupling of myofilament Ca2+ sensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc Res 2015; 108:99-110. [PMID: 26109583 DOI: 10.1093/cvr/cvv181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/11/2015] [Indexed: 02/02/2023] Open
Abstract
AIMS Heart muscle contraction is regulated via the β-adrenergic response that leads to phosphorylation of Troponin I (TnI) at Ser22/23, which changes the Ca(2+) sensitivity of the cardiac myofilament. Mutations in thin filament proteins that cause dilated cardiomyopathy (DCM) and some mutations that cause hypertrophic cardiomyopathy (HCM) abolish the relationship between TnI phosphorylation and Ca(2+) sensitivity (uncoupling). Small molecule Ca(2+) sensitizers and Ca(2+) desensitizers that act upon troponin alter the Ca(2+) sensitivity of the thin filament, but their relationship with TnI phosphorylation has never been studied before. METHODS AND RESULTS Quantitative in vitro motility assay showed that 30 µM EMD57033 and 100 µM Bepridil increase Ca(2+) sensitivity of phosphorylated cardiac thin filaments by 3.1- and 2.8-fold, respectively. Additionally they uncoupled Ca(2+) sensitivity from TnI phosphorylation, mimicking the effect of HCM mutations. Epigallocatechin-3-gallate (EGCG) decreased Ca(2+) sensitivity of phosphorylated and unphosphorylated wild-type thin filaments equally (by 2.15 ± 0.45- and 2.80 ± 0.48-fold, respectively), retaining the coupling. Moreover, EGCG also reduced Ca(2+) sensitivity of phosphorylated but not unphosphorylated thin filaments containing DCM and HCM-causing mutations; thus, the dependence of Ca(2+) sensitivity upon TnI phosphorylation of uncoupled mutant thin filaments was restored in every case. In single mouse heart myofibrils, EGCG reduced Ca(2+) sensitivity of force and kACT and also preserved coupling. Myofibrils from the ACTC E361G (DCM) mouse were uncoupled; EGCG reduced Ca(2+) sensitivity more for phosphorylated than for unphosphorylated myofibrils, thus restoring coupling. CONCLUSION We conclude that it is possible to both mimic and reverse the pathological defects in troponin caused by cardiomyopathy mutations pharmacologically. Re-coupling by EGCG may be of potential therapeutic significance for treating cardiomyopathies.
Collapse
Affiliation(s)
- Maria Papadaki
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Petr G Vikhorev
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Steven B Marston
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| |
Collapse
|
28
|
The R21C Mutation in Cardiac Troponin I Imposes Differences in Contractile Force Generation between the Left and Right Ventricles of Knock-In Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:742536. [PMID: 25961037 PMCID: PMC4415466 DOI: 10.1155/2015/742536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 01/20/2023]
Abstract
We investigated the effect of the hypertrophic cardiomyopathy-linked R21C (arginine to cysteine) mutation in human cardiac troponin I (cTnI) on the contractile properties and myofilament protein phosphorylation in papillary muscle preparations from left (LV) and right (RV) ventricles of homozygous R21C(+/+) knock-in mice. The maximal steady-state force was significantly reduced in skinned papillary muscle strips from the LV compared to RV, with the latter displaying the level of force observed in LV or RV from wild-type (WT) mice. There were no differences in the Ca(2+) sensitivity between the RV and LV of R21C(+/+) mice; however, the Ca(2+) sensitivity of force was higher in RV-R21C(+/+) compared with RV-WT and lower in LV- R21C(+/+) compared with LV-WT. We also observed partial loss of Ca(2+) regulation at low [Ca(2+)]. In addition, R21C(+/+)-KI hearts showed no Ser23/24-cTnI phosphorylation compared to LV or RV of WT mice. However, phosphorylation of the myosin regulatory light chain (RLC) was significantly higher in the RV versus LV of R21C(+/+) mice and versus LV and RV of WT mice. The difference in RLC phosphorylation between the ventricles of R21C(+/+) mice likely contributes to observed differences in contractile force and the lower tension monitored in the LV of HCM mice.
Collapse
|
29
|
Chang AN, Battiprolu PK, Cowley PM, Chen G, Gerard RD, Pinto JR, Hill JA, Baker AJ, Kamm KE, Stull JT. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem 2015; 290:10703-16. [PMID: 25733667 DOI: 10.1074/jbc.m115.642165] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.
Collapse
Affiliation(s)
| | | | - Patrick M Cowley
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | - Robert D Gerard
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jose R Pinto
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Joseph A Hill
- Internal Medicine (Cardiology), and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anthony J Baker
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | | |
Collapse
|
30
|
Duncker DJ, Bakkers J, Brundel BJ, Robbins J, Tardiff JC, Carrier L. Animal and in silico models for the study of sarcomeric cardiomyopathies. Cardiovasc Res 2015; 105:439-48. [PMID: 25600962 DOI: 10.1093/cvr/cvv006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, our understanding of cardiomyopathies has improved dramatically, due to improvements in screening and detection of gene defects in the human genome as well as a variety of novel animal models (mouse, zebrafish, and drosophila) and in silico computational models. These novel experimental tools have created a platform that is highly complementary to the naturally occurring cardiomyopathies in cats and dogs that had been available for some time. A fully integrative approach, which incorporates all these modalities, is likely required for significant steps forward in understanding the molecular underpinnings and pathogenesis of cardiomyopathies. Finally, novel technologies, including CRISPR/Cas9, which have already been proved to work in zebrafish, are currently being employed to engineer sarcomeric cardiomyopathy in larger animals, including pigs and non-human primates. In the mouse, the increased speed with which these techniques can be employed to engineer precise 'knock-in' models that previously took years to make via multiple rounds of homologous recombination-based gene targeting promises multiple and precise models of human cardiac disease for future study. Such novel genetically engineered animal models recapitulating human sarcomeric protein defects will help bridging the gap to translate therapeutic targets from small animal and in silico models to the human patient with sarcomeric cardiomyopathy.
Collapse
Affiliation(s)
- Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bianca J Brundel
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeff Robbins
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jil C Tardiff
- Department of Medicine and Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
31
|
Parvatiyar MS, Pinto JR. Pathogenesis associated with a restrictive cardiomyopathy mutant in cardiac troponin T is due to reduced protein stability and greatly increased myofilament Ca2+ sensitivity. Biochim Biophys Acta Gen Subj 2014; 1850:365-72. [PMID: 25450489 DOI: 10.1016/j.bbagen.2014.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Dilated and hypertrophic cardiomyopathy mutations in troponin can blunt effects of protein kinase A (PKA) phosphorylation of cardiac troponin I (cTnI), decreasing myofilament Ca2+-sensitivity; however this effect has never been tested for restrictive cardiomyopathy (RCM) mutants. This study explores whether an RCM cardiac troponin T mutant (cTnT-ΔE96) interferes with convergent PKA regulation and if TnT instability contributes to greatly enhanced Ca2+-sensitivity in skinned fibers. METHODS Force of contraction in skinned cardiac porcine fiber and spectroscopic studies were performed. RESULTS A decrease of -0.26 and -0.25 pCa units in Ca2+-sensitivity of contraction after PKA incubation was observed for skinned fibers incorporated with WT or cTnT-ΔE96, respectively. To further assess whether cTnT-ΔE96 interferes solely with transmission of cTnI phosphorylation effects, skinned fibers were reconstituted with PKA pseudo-phosphorylated cTnI (cTnI-SS/DD.cTnC). Fibers displaced with cTnT-WT, reconstituted with cTnI-SS/DD.cTnC decreased Ca2+-sensitivity of force (pCa50=5.61) compared to control cTnI-WT.cTnC (pCa50=5.75), similarly affecting cTnT-ΔE96 (pCa50=6.03) compared to control \cTnI-WT.cTnC (pCa50=6.14). Fluorescence studies measuring cTnC(IAANS) Ca2+-affinity changes due to cTnT-ΔE96 indicated that higher complexity (thin filament) better recapitulates skinned fiber Ca2+ sensitive changes. Circular dichroism revealed reduced α-helicity and earlier thermal unfolding for cTnT-ΔE96 compared to WT. CONCLUSIONS Although ineffective in decreasing myofilament Ca2+-sensitivity to normal levels, cTnT-ΔE96 does not interfere with PKA cTnI phosphorylation mediated effects; 2) cTnT-ΔE96 requires actin to increase cTnC Ca2+-affinity; and 3) deletion of E96 reduces cTnT stability, likely disrupting crucial thin filament interactions. GENERAL SIGNIFICANCE The pathological effect of cTnT-ΔE96 is largely manifested by dramatic myofilament Ca2+-sensitization which still persists even after PKA phosphorylation mediated Ca2+-desensitization.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
32
|
The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc Natl Acad Sci U S A 2014; 111:14412-7. [PMID: 25246568 DOI: 10.1073/pnas.1410775111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cardiac isoform of troponin I (cTnI) has a unique 31-residue N-terminal region that binds cardiac troponin C (cTnC) to increase the calcium sensitivity of the sarcomere. The interaction can be abolished by cTnI phosphorylation at Ser22 and Ser23, an important mechanism for regulating cardiac contractility. cTnC contains two EF-hand domains (the N and C domain of cTnC, cNTnC and cCTnC) connected by a flexible linker. Calcium binding to either domain favors an "open" conformation, exposing a large hydrophobic surface that is stabilized by target binding, cTnI[148-158] for cNTnC and cTnI[39-60] for cCTnC. We used multinuclear multidimensional solution NMR spectroscopy to study cTnI[1-73] in complex with cTnC. cTnI[39-60] binds to the hydrophobic face of cCTnC, stabilizing an alpha helix in cTnI[41-67] and a type VIII turn in cTnI[38-41]. In contrast, cTnI[1-37] remains disordered, although cTnI[19-37] is electrostatically tethered to the negatively charged surface of cNTnC (opposite its hydrophobic surface). The interaction does not directly affect the calcium binding affinity of cNTnC. However, it does fix the positioning of cNTnC relative to the rest of the troponin complex, similar to what was previously observed in an X-ray structure [Takeda S, et al. (2003) Nature 424(6944):35-41]. Domain positioning impacts the effective concentration of cTnI[148-158] presented to cNTnC, and this is how cTnI[19-37] indirectly modulates the calcium affinity of cNTnC within the context of the cardiac thin filament. Phosphorylation of cTnI at Ser22/23 disrupts domain positioning, explaining how it impacts many other cardiac regulatory mechanisms, like the Frank-Starling law of the heart.
Collapse
|
33
|
Messer AE, Marston SB. Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca(2+)-sensitivity in the pathogenesis of cardiomyopathy. Front Physiol 2014; 5:315. [PMID: 25202278 PMCID: PMC4142463 DOI: 10.3389/fphys.2014.00315] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022] Open
Abstract
Contraction in the mammalian heart is controlled by the intracellular Ca(2+) concentration as it is in all striated muscle, but the heart has an additional signaling system that comes into play to increase heart rate and cardiac output during exercise or stress. β-adrenergic stimulation of heart muscle cells leads to release of cyclic-AMP and the activation of protein kinase A which phosphorylates key proteins in the sarcolemma, sarcoplasmic reticulum and contractile apparatus. Troponin I (TnI) and Myosin Binding Protein C (MyBP-C) are the prime targets in the myofilaments. TnI phosphorylation lowers myofibrillar Ca(2+)-sensitivity and increases the speed of Ca(2+)-dissociation and relaxation (lusitropic effect). Recent studies have shown that this relationship between Ca(2+)-sensitivity and TnI phosphorylation may be unstable. In familial cardiomyopathies, both dilated and hypertrophic (DCM and HCM), a mutation in one of the proteins of the thin filament often results in the loss of the relationship (uncoupling) and blunting of the lusitropic response. For familial dilated cardiomyopathy in thin filament proteins it has been proposed that this uncoupling is causative of the phenotype. Uncoupling has also been found in human heart tissue from patients with hypertrophic obstructive cardiomyopathy as a secondary effect. Recently, it has been found that Ca(2+)-sensitizing drugs can promote uncoupling, whilst one Ca(2+)-desensitizing drug Epigallocatechin 3-Gallate (EGCG) can reverse uncoupling. We will discuss recent findings about the role of uncoupling in the development of cardiomyopathies and the molecular mechanism of the process.
Collapse
Affiliation(s)
- Andrew E. Messer
- National Heart & Lung Institute, Imperial College LondonLondon, UK
| | | |
Collapse
|
34
|
Dweck D, Sanchez-Gonzalez MA, Chang AN, Dulce RA, Badger CD, Koutnik AP, Ruiz EL, Griffin B, Liang J, Kabbaj M, Fincham FD, Hare JM, Overton JM, Pinto JR. Long term ablation of protein kinase A (PKA)-mediated cardiac troponin I phosphorylation leads to excitation-contraction uncoupling and diastolic dysfunction in a knock-in mouse model of hypertrophic cardiomyopathy. J Biol Chem 2014; 289:23097-23111. [PMID: 24973218 DOI: 10.1074/jbc.m114.561472] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart rates and reduced cardiovagal tone. Cardiac myocytes isolated from older R21C mice demonstrate that in the presence of isoproterenol, significant delays in Ca(2+) decay and sarcomere relaxation occur that are not present at 6 months of age. Although isoproterenol and stepwise increases in stimulation frequency accelerate Ca(2+)-transient and sarcomere shortening kinetics in R21C myocytes from older mice, they are unable to attain the corresponding WT values. When R21C myocytes from older mice are treated with isoproterenol, evidence of excitation-contraction uncoupling is indicated by an elevation in diastolic calcium that is frequency-dissociated and not coupled to shorter diastolic sarcomere lengths. Myocytes from older mice have smaller Ca(2+) transient amplitudes (2.3-fold) that are associated with reductions (2.9-fold) in sarcoplasmic reticulum Ca(2+) content. This abnormal Ca(2+) handling within the cell may be attributed to a reduction (2.4-fold) in calsequestrin expression in conjunction with an up-regulation (1.5-fold) of Na(+)-Ca(2+) exchanger. Incubation of permeabilized cardiac fibers from R21C mice with PKA confirmed that the mutation prevents facilitation of mechanical relaxation. Altogether, these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy.
Collapse
Affiliation(s)
- David Dweck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Marcos A Sanchez-Gonzalez
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300,; Family Institute, Florida State University, Tallahassee, Florida 32306
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Crystal-Dawn Badger
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Andrew P Koutnik
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Edda L Ruiz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Brittany Griffin
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Frank D Fincham
- Family Institute, Florida State University, Tallahassee, Florida 32306
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - J Michael Overton
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300,.
| |
Collapse
|
35
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
36
|
Yaniv Y. Cardiac troponin I phosphorylation and the force-length relationship. J Physiol 2013; 591:6135-6. [PMID: 24339151 DOI: 10.1113/jphysiol.2013.265090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
37
|
Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy. PLoS One 2013; 8:e82979. [PMID: 24349409 PMCID: PMC3859602 DOI: 10.1371/journal.pone.0082979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM.
Collapse
|
38
|
Lu QW, Wu XY, Morimoto S. Inherited cardiomyopathies caused by troponin mutations. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:91-101. [PMID: 23610579 PMCID: PMC3627712 DOI: 10.3969/j.issn.1671-5411.2013.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/13/2012] [Accepted: 01/30/2013] [Indexed: 01/25/2023]
Abstract
Genetic investigations of cardiomyopathy in the recent two decades have revealed a large number of mutations in the genes encoding sarcomeric proteins as a cause of inherited hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardiomyopathy (RCM). Most functional analyses of the effects of mutations on cardiac muscle contraction have revealed significant changes in the Ca(2+)-regulatory mechanism, in which cardiac troponin (cTn) plays important structural and functional roles as a key regulatory protein. Over a hundred mutations have been identified in all three subunits of cTn, i.e., cardiac troponins T, I, and C. Recent studies on cTn mutations have provided plenty of evidence that HCM- and RCM-linked mutations increase cardiac myofilament Ca(2+) sensitivity, while DCM-linked mutations decrease it. This review focuses on the functional consequences of mutations found in cTn in terms of cardiac myofilament Ca(2+) sensitivity, ATPase activity, force generation, and cardiac troponin I phosphorylation, to understand potential molecular and cellular pathogenic mechanisms of the three types of inherited cardiomyopathy.
Collapse
Affiliation(s)
- Qun-Wei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|