1
|
Guvench O. Effect of Lipid Bilayer Anchoring on the Conformational Properties of the Cytochrome P450 2D6 Binding Site. J Phys Chem B 2024; 128:7188-7198. [PMID: 39016537 DOI: 10.1021/acs.jpcb.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Human cytochrome P450 (CYP) proteins metabolize 75% of small-molecule pharmaceuticals, which makes structure-based modeling of CYP metabolism and inhibition, bolstered by the current availability of X-ray crystal structures of CYP globular catalytic domains, an attractive prospect. Accounting for this broad metabolic capacity is a combination of the existence of multiple different CYP proteins and the capacity of a single CYP protein to metabolize multiple different small molecules. It is thought that structural plasticity and flexibility contribute to this latter property; therefore, incorporating diverse conformational states of a particular CYP is likely an important consideration in structure-based CYP metabolism and inhibition modeling. While all-atom explicit-solvent molecular dynamics simulations can be used to generate conformational ensembles under biologically relevant conditions, existing CYP crystal structures are of the globular domain only, whereas human CYPs contain N-terminal transmembrane and linker peptides that anchor the globular catalytic domain to the endoplasmic reticulum. To determine whether this can cause significant differences in the sampled binding site conformations, microsecond scale all-atom explicit-solvent molecular dynamics simulations of the CYP2D6 globular domain in an aqueous environment were compared with those of the full-length protein anchored in a POPC lipid bilayer. While bilayer-anchoring damped some structural fluctuations in the globular domain relative to the aqueous simulations, none of the affected residues included binding site pocket residues. Furthermore, clustering of molecular dynamics snapshots based on either pairwise binding site pocket RMSD or volume differences demonstrated a lack of separation of snapshots from the two simulation conditions into different clusters. These results suggest the substantially simpler and computationally cheaper aqueous simulation approach can be used to generate a relevant conformational ensemble of the CYP2D6 binding site for structure-based metabolism and inhibition modeling.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, Maine 04103, United States
| |
Collapse
|
2
|
Sivadas A, Rathore S, Sahana S, Jolly B, Bhoyar RC, Jain A, Sharma D, Imran M, Senthilvel V, Divakar MK, Mishra A, Sivasubbu S, Scaria V. The genomic landscape of CYP2D6 variation in the Indian population. Pharmacogenomics 2024; 25:147-160. [PMID: 38426301 DOI: 10.2217/pgs-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Aim: The CYP2D6 gene is highly polymorphic, causing large interindividual variability in the metabolism of several clinically important drugs. Materials & methods: The authors investigated the diversity and distribution of CYP2D6 alleles in Indians using whole genome sequences (N = 1518). Functional consequences were assessed using pathogenicity scores and molecular dynamics simulations. Results: The analysis revealed population-specific CYP2D6 alleles (*86, *7, *111, *112, *113, *99) and remarkable differences in variant and phenotype frequencies with global populations. The authors observed that one in three Indians could benefit from a dose alteration for psychiatric drugs with accurate CYP2D6 phenotyping. Molecular dynamics simulations revealed large conformational fluctuations, confirming the predicted reduced function of *86 and *113 alleles. Conclusion: The findings emphasize the utility of comprehensive CYP2D6 profiling for aiding precision public health.
Collapse
Affiliation(s)
- Ambily Sivadas
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, Karnataka, 560034, India
| | - Surabhi Rathore
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - S Sahana
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Bani Jolly
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Abhinav Jain
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Disha Sharma
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vigneshwar Senthilvel
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anushree Mishra
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Vishwanath Cancer Care Foundation, B 702, 7th Floor, Neelkanth Business Park Kirol Village, Vidya Vihar, West Mumbai, 400086, India
| | - Vinod Scaria
- CSIR Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Vishwanath Cancer Care Foundation, B 702, 7th Floor, Neelkanth Business Park Kirol Village, Vidya Vihar, West Mumbai, 400086, India
| |
Collapse
|
3
|
Burris-Hiday SD, Scott EE. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem 2023; 299:105112. [PMID: 37517692 PMCID: PMC10481364 DOI: 10.1016/j.jbc.2023.105112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.
Collapse
Affiliation(s)
- Sarah D Burris-Hiday
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology and Biological Chemistry and the Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Sun MZ, Lyu LS, Zheng QC. How does multiple substrate binding lead to substrate inhibition of CYP2D6 metabolizing dextromethorphan? A theoretical study. Phys Chem Chem Phys 2023; 25:5164-5173. [PMID: 36723118 DOI: 10.1039/d2cp05634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CYP2D6 is one of the most important metalloenzymes involved in the biodegradation of many drug molecules in the human body. It has been found that multiple substrate binding can lead to substrate inhibition of CYP2D6 metabolizing dextromethorphan (DM), but the corresponding theoretical mechanism is rarely reported. Therefore, we chose DM as the probe and performed molecular dynamics simulations and quantum mechanical calculations on CYP2D6-DM systems to investigate the mechanism of how the multiple substrate binding leads to the substrate inhibition of CYP2D6 metabolizing substrates. According to our results, three gate residues (Arg221, Val374, and Phe483) for the catalytic pocket are determined. We also found that the multiple substrate binding can lead to substrate inhibition by reducing the stability of CYP2D6 binding DM and increasing the reactive activation energy of the rate-determining step. Our findings would help to understand the substrate inhibition of CYP2D6 metabolizing the DM and enrich the knowledge of the drug-drug interactions for the cytochrome P450 superfamily.
Collapse
Affiliation(s)
- Min-Zhang Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Ling-Shan Lyu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Qing-Chuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130023, China. .,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| |
Collapse
|
5
|
Danel T, Wojtuch A, Podlewska S. Generation of new inhibitors of selected cytochrome P450 subtypes- In silico study. Comput Struct Biotechnol J 2022; 20:5639-5651. [PMID: 36284709 PMCID: PMC9582735 DOI: 10.1016/j.csbj.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Physicochemical and pharmacokinetic compound profile has crucial impact on compound potency to become a future drug. Ligands with desired activity profile cannot be used for treatment if they are characterized by unfavourable physicochemical or ADMET properties. In the study, we consider metabolic stability and focus on selected subtypes of cytochrome P450 - proteins, which take part in the first phase of compound transformations in the organism. We develop a protocol for generation of new potential inhibitors of selected cytochrome isoforms. Its subsequent stages are composed of generation and assessment of new derivatives of known cytochrome inhibitors, docking and evaluation of the compound possible inhibition on the basis of the obtained ligand-protein complexes. Besides the library of new potential agents inhibiting particular cytochrome subtypes, we also prepare a graph neural network that predicts the change in activity for all modifications of the starting molecule. In addition, we perform a systematic statistical study on the influence of particular substitutions on the potential inhibition properties of generated compounds (both mono- and di-substitutions are considered), provide explanations of the inhibitory predictions and prepare an on-line visualization platform enabling manual inspection of the results. The developed methodology can greatly support the design of new cytochrome P450 inhibitors with the overarching goal of generation of new metabolically stable compounds. It enables instant evaluation of possible compound-cytochrome interactions and selection of ligands with the highest potential of possessing desired biological activity.
Collapse
Key Words
- CYP inhibitors
- CYP, cytochrome P450
- CYP450
- DL, deep learning
- DNNs, deep neural networks
- Docking
- Explainability
- GNN, graph neural network
- Graph neural networks
- ML, machine learning
- MSE, mean squared error
- Morgan FP, Morgan fingerprint
- New compounds generation
- On-line platform
- QSPR, quantitative structure-property relationship
- RF, random forest
- SRD, sum of ranking differences
Collapse
Affiliation(s)
- Tomasz Danel
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Agnieszka Wojtuch
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 31-343 Kraków, Smętna Street 12, Poland,Corresponding author.
| |
Collapse
|
6
|
Sun MZ, Zheng QC. The regioselectivity of the interaction between dextromethorphan and CYP2D6. Phys Chem Chem Phys 2022; 24:2234-2242. [PMID: 35014636 DOI: 10.1039/d1cp03933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CYP2D6 is an important enzyme of the cytochrome P450 superfamily, and catalyzes nearly 25% of the drugs sold in the market. For decades, the interactions and metabolism between CYP2D6 and substrates have been a hot topic. However, the key factors of the catalytic regioselectivity for CYP2D6 still remain controversial. Here, we construct four systems to explore the interaction between dextromethorphan (DM) and CYP2D6. A new binding mode of CYP2D6 is defined, and two key residues (residue Asp301 and residue Glu216) are discovered working simultaneously to stabilize the DM at the reactive site by forming water bridge hydrogen bonds when CYP2D6 binds DM. Our results also indicate that the substrate concentration could mediate the binding mode between the substrate and CYP2D6 by decreasing the volume of the catalytic pocket, which is not conducive to the O-demethylation of DM but benefits the N-demethylation of DM. These results could shed light on the process of CYP2D6 binding to the substrate, and help to better understand the regioselectivity of CYP2D6 catalyzing the substrates.
Collapse
Affiliation(s)
- Min-Zhang Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, P. R. China.
| | - Qing-Chuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, P. R. China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE. Role of P34S, G169R, R296C, and S486T Substitutions in Ligand Access and Catalysis for Cytochrome P450 2D6 Allelic Variants CYP2D6*14A and CYP2D6*14B. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:51-63. [PMID: 35049443 DOI: 10.2174/1872312815666220113125232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population. METHODS CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants. RESULTS Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies. CONCLUSION In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.
Collapse
Affiliation(s)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham, Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Beow Chin Yiap
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Huff HC, Vasan A, Roy P, Kaul A, Tajkhorshid E, Das A. Differential Interactions of Selected Phytocannabinoids with Human CYP2D6 Polymorphisms. Biochemistry 2021; 60:2749-2760. [PMID: 34491040 DOI: 10.1021/acs.biochem.1c00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 2D6 (CYP2D6) is primarily expressed in the liver and in the central nervous system. It is known to be highly polymorphic in nature. It metabolizes several endogenous substrates such as anandamide (AEA). Concomitantly, it is involved in phase 1 metabolism of several antidepressants, antipsychotics, and other drugs. Research in the field of phytocannabinoids (pCBs) has recently accelerated owing to their legalization and increasing medicinal use for pain and inflammation. The primary component of cannabis is THC, which is well-known for its psychotropic effects. Since CYP2D6 is an important brain and liver P450 and is known to be inhibited by CBD, we investigated the interactions of four important highly prevalent CYP2D6 polymorphisms with selected phytocannabinoids (CBD, THC, CBDV, THCV, CBN, CBG, CBC, β-carophyllene) that are rapidly gaining popularity. We show that there is differential binding of CYP2D6*17 to pCBs as compared to WT CYP2D6. We also perform a more detailed comparison of WT and *17 CYP2D6, which reveals the possible regulation of AEA metabolism by CBD. Furthermore, we use molecular dynamics to delineate the mechanism of this binding, inhibition, and regulation. Taken together, we have found that the interactions of CYP2D6 with pCBs vary by polymorphism and by specific pCB class.
Collapse
|
9
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Nigam A, Pollice R, Krenn M, Gomes GDP, Aspuru-Guzik A. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES. Chem Sci 2021; 12:7079-7090. [PMID: 34123336 PMCID: PMC8153210 DOI: 10.1039/d1sc00231g] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Inverse design allows the generation of molecules with desirable physical quantities using property optimization. Deep generative models have recently been applied to tackle inverse design, as they possess the ability to optimize molecular properties directly through structure modification using gradients. While the ability to carry out direct property optimizations is promising, the use of generative deep learning models to solve practical problems requires large amounts of data and is very time-consuming. In this work, we propose STONED - a simple and efficient algorithm to perform interpolation and exploration in the chemical space, comparable to deep generative models. STONED bypasses the need for large amounts of data and training times by using string modifications in the SELFIES molecular representation. First, we achieve non-trivial performance on typical benchmarks for generative models without any training. Additionally, we demonstrate applications in high-throughput virtual screening for the design of drugs, photovoltaics, and the construction of chemical paths, allowing for both property and structure-based interpolation in the chemical space. Overall, we anticipate our results to be a stepping stone for developing more sophisticated inverse design models and benchmarking tools, ultimately helping generative models achieve wider adoption.
Collapse
Affiliation(s)
- AkshatKumar Nigam
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
| | - Robert Pollice
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
| | - Mario Krenn
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
- Vector Institute for Artificial Intelligence Toronto Canada
| | - Gabriel Dos Passos Gomes
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto Canada
- Department of Chemistry, University of Toronto Canada
- Vector Institute for Artificial Intelligence Toronto Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR) 661 University Ave Toronto Ontario M5G Canada
| |
Collapse
|
11
|
Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Ong CE. In vitro inhibitory effects of glucosamine, chondroitin and diacerein on human hepatic CYP2D6. Drug Metab Pers Ther 2021; 36:259-270. [PMID: 34821124 DOI: 10.1515/dmpt-2020-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug-natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6. METHODS CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6-antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking. RESULTS The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and K i values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 μM and K i =32.27 μM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro-in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition. CONCLUSIONS Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Yan Pan
- Division of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Ong CE. In vitro inhibitory effects of glucosamine, chondroitin and diacerein on human hepatic CYP2D6. Drug Metab Pers Ther 2021; 0:dmdi-2020-0182. [PMID: 33831979 DOI: 10.1515/dmdi-2020-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug-natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6. METHODS CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6-antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking. RESULTS The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and K i values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 μM and K i =32.27 μM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro-in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition. CONCLUSIONS Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Yan Pan
- Division of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
McCarty KD, Ratliff SA, Furge KA, Furge LL. Tryptophan-75 Is a Low-Energy Channel-Gating Residue that Facilitates Substrate Egress/Access in Cytochrome P450 2D6. Drug Metab Dispos 2021; 49:179-187. [PMID: 33376147 PMCID: PMC7883074 DOI: 10.1124/dmd.120.000274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
CYP2D6 is a major drug metabolizing enzyme with a buried active site. Channels leading to the active site from various enzyme surfaces are believed to facilitate ligand egress and access to the active site. The present study used molecular dynamics (MD) and in vitro studies with CYP2D6*1 and a Trp75-to-Ala mutant to examine channel gating in CYP2D6 by Trp75. MD simulations measured energy landscapes of Trp75 conformations and simulated substrate passage within channel 2b using bufuralol as a model substrate. Trp75 alternated between multiple stable states that supported substrate transport along channel 2b with low-energy barriers between states (∼ -1 kcal/mol). Trp75 conformations were stabilized primarily by hydrogen bonding between Trp75 and Glu222, Asn226, Ala225, or Gln72. Energy barriers were low between Trp75 conformations, allowing Trp75 to easily move between various conformations over time and to function in both binding to and moving substrates in the 2b channel of CYP2D6. Michaelis-Menten kinetic studies completed with purified enzyme in a reconstituted system showed overall reduced enzyme efficiency for metabolism of bufuralol and dextromethorphan by the Trp75Ala mutant compared with CYP2D6*1. In stopped-flow measurements, k off for dextromethorphan was decreased in the absence of Trp75. Our results support a role for Trp75 in substrate shuttling to the active site of CYP2D6. SIGNIFICANCE STATEMENT: Using combined molecular dynamics and in vitro assays, this study shows for the first time a role for Trp75 as a channel entrance gating residue in the mechanism of substrate binding/unbinding in CYP2D6. Energy landscapes derived from molecular dynamics were used to quantitate the strength of gating, and kinetics assays showed the impact on enzyme efficiency and k off of a Trp75Ala mutation.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | | - Kyle A Furge
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | |
Collapse
|
14
|
Sharma V, Shing B, Hernandez-Alvarez L, Debnath A, Podust LM. Domain-Swap Dimerization of Acanthamoeba castellanii CYP51 and a Unique Mechanism of Inactivation by Isavuconazole. Mol Pharmacol 2020; 98:770-780. [PMID: 33008918 PMCID: PMC7674934 DOI: 10.1124/molpharm.120.000092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cytochromes P450 (P450, CYP) metabolize a wide variety of endogenous and exogenous lipophilic molecules, including most drugs. Sterol 14α-demethylase (CYP51) is a target for antifungal drugs known as conazoles. Using X-ray crystallography, we have discovered a domain-swap homodimerization mode in CYP51 from a human pathogen, Acanthamoeba castellanii CYP51 (AcCYP51). Recombinant AcCYP51 with a truncated transmembrane helix was purified as a heterogeneous mixture corresponding to the dimer and monomer units. Spectral analyses of these two populations have shown that the CO-bound ferrous form of the dimeric protein absorbed at 448 nm (catalytically competent form), whereas the monomeric form absorbed at 420 nm (catalytically incompetent form). AcCYP51 dimerized head-to-head via N-termini swapping, resulting in formation of a nonplanar protein-protein interface exceeding 2000 Å2 with a total solvation energy gain of -35.4 kcal/mol. In the dimer, the protomers faced each other through the F and G α-helices, thus blocking the substrate access channel. In the presence of the drugs clotrimazole and isavuconazole, the AcCYP51 drug complexes crystallized as monomers. Although clotrimazole-bound AcCYP51 adopted a typical CYP monomer structure, isavuconazole-bound AcCYP51 failed to refold 74 N-terminal residues. The failure of AcCYP51 to fully refold upon inhibitor binding in vivo would cause an irreversible loss of a structurally aberrant enzyme through proteolytic degradation. This assumption explains the superior potency of isavuconazole against A. castellanii The dimerization mode observed in this work is compatible with membrane association and may be relevant to other members of the CYP family of biologic, medical, and pharmacological importance. SIGNIFICANCE STATEMENT: We investigated the mechanism of action of antifungal drugs in the human pathogen Acanthamoeba castellanii. We discovered that the enzyme target [Acanthamoeba castellanii sterol 14α-demethylase (AcCYP51)] formed a dimer via an N-termini swap, whereas drug-bound AcCYP51 was monomeric. In the AcCYP51-isavuconazole complex, the protein target failed to refold 74 N-terminal residues, suggesting a fundamentally different mechanism of AcCYP51 inactivation than only blocking the active site. Proteolytic degradation of a structurally aberrant enzyme would explain the superior potency of isavuconazole against A. castellanii.
Collapse
Affiliation(s)
- Vandna Sharma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Brian Shing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Lilian Hernandez-Alvarez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Anjan Debnath
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| |
Collapse
|
15
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel) 2020; 11:E1295. [PMID: 33143137 PMCID: PMC7692531 DOI: 10.3390/genes11111295] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a critical pharmacogene involved in the metabolism of ~20% of commonly used drugs across a broad spectrum of medical disciplines including psychiatry, pain management, oncology and cardiology. Nevertheless, CYP2D6 is highly polymorphic with single-nucleotide polymorphisms, small insertions/deletions and larger structural variants including multiplications, deletions, tandem arrangements, and hybridisations with non-functional CYP2D7 pseudogenes. The frequency of these variants differs across populations, and they significantly influence the drug-metabolising enzymatic function of CYP2D6. Importantly, altered CYP2D6 function has been associated with both adverse drug reactions and reduced drug efficacy, and there is growing recognition of the clinical and economic burdens associated with suboptimal drug utilisation. To date, pharmacogenomic clinical guidelines for at least 48 CYP2D6-substrate drugs have been developed by prominent pharmacogenomics societies, which contain therapeutic recommendations based on CYP2D6-predicted categories of metaboliser phenotype. Novel algorithms to interpret CYP2D6 function from sequencing data that consider structural variants, and machine learning approaches to characterise the functional impact of novel variants, are being developed. However, CYP2D6 genotyping is yet to be implemented broadly into clinical practice, and so further effort and initiatives are required to overcome the implementation challenges and deliver the potential benefits to the bedside.
Collapse
Affiliation(s)
- Christopher Taylor
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Ian Crosby
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Vincent Yip
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Peter Maguire
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Richard M. Turner
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| |
Collapse
|
17
|
Ferreira KCDV, Fialho LF, Franco OL, de Alencar SA, Porto WF. Benchmarking analysis of deleterious SNP prediction tools on CYP2D6 enzyme. Chem Biol Drug Des 2020; 96:984-994. [DOI: 10.1111/cbdd.13676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/15/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Karla Cristina do Vale Ferreira
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
| | - Leonardo Ferreira Fialho
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
| | - Octávio Luiz Franco
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
- S‐Inova Biotech Pós Graduação em Biotecnologia Universidade Católica Dom Bosco Campo Grande Brazil
| | - Sérgio Amorim de Alencar
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
| | - William Farias Porto
- S‐Inova Biotech Pós Graduação em Biotecnologia Universidade Católica Dom Bosco Campo Grande Brazil
- Porto Reports Brasília Brazil
| |
Collapse
|
18
|
Jastrzębski S, Szymczak M, Pocha A, Mordalski S, Tabor J, Bojarski AJ, Podlewska S. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening. J Chem Inf Model 2020; 60:4246-4262. [DOI: 10.1021/acs.jcim.9b01202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanisław Jastrzębski
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Maciej Szymczak
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Agnieszka Pocha
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Stefan Mordalski
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Jacek Tabor
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
19
|
Luirink RA, Verkade‐Vreeker MCA, Commandeur JNM, Geerke DP. A Modified Arrhenius Approach to Thermodynamically Study Regioselectivity in Cytochrome P450-Catalyzed Substrate Conversion. Chembiochem 2020; 21:1461-1472. [PMID: 31919943 PMCID: PMC7318578 DOI: 10.1002/cbic.201900751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 12/21/2022]
Abstract
The regio- (and stereo-)selectivity and specific activity of cytochrome P450s are determined by the accessibility of potential sites of metabolism (SOMs) of the bound substrate relative to the heme, and the activation barrier of the regioselective oxidation reaction(s). The accessibility of potential SOMs depends on the relative binding free energy (ΔΔGbind ) of the catalytically active substrate-binding poses, and the probability of the substrate to adopt a transition-state geometry. An established experimental method to measure activation energies of enzymatic reactions is the analysis of reaction rate constants at different temperatures and the construction of Arrhenius plots. This is a challenge for multistep P450-catalyzed processes that involve redox partners. We introduce a modified Arrhenius approach to overcome the limitations in studying P450 selectivity, which can be applied in multiproduct enzyme catalysis. Our approach gives combined information on relative activation energies, ΔΔGbind values, and collision entropies, yielding direct insight into the basis of selectivity in substrate conversion.
Collapse
Affiliation(s)
- Rosa A. Luirink
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | | | - Jan N. M. Commandeur
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Daan P. Geerke
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
20
|
Xin J, Yuan M, Peng Y, Wang J. Analysis of the Deleterious Single-Nucleotide Polymorphisms Associated With Antidepressant Efficacy in Major Depressive Disorder. Front Psychiatry 2020; 11:151. [PMID: 32256400 PMCID: PMC7093583 DOI: 10.3389/fpsyt.2020.00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease with negative effects on both mental and physical health of the patient. Currently, antidepressants are among the major ways to ease or treat MDD. However, the existing antidepressants have limited efficacy in treating MDD, with a large fraction of patients either responding inadequately or differently to antidepressants during the treatment. Pharmacogenetics studies have found that the genetic features of some genes are associated with the antidepressant efficacy. In order to obtain a better understanding on the relationship between the genetic factors and antidepressant treatment response, we compiled a list of 233 single-nucleotide polymorphisms (SNPs) significantly associated with the antidepressant efficacy in treating MDD. Of the 13 non-synonymous SNPs in the list, three (rs1065852, rs3810651, and rs117986340) may influence the structures and function of the corresponding proteins. Besides, the influence of rs1065852 on the structure of CYP2D6 was further investigated via molecular dynamics simulations. Our results showed that compared to the native CYP2D6 the flexibility of the F-G loop was reduced in the mutant. As a portion of the substrate access channel, the lower flexibility of F-G loop may reduce the ability of the substrates to enter the channel, which may be the reason for the lower enzyme activity of mutant. This study may help us to understand the impact of genetic variation on antidepressant efficacy and provide clues for developing new antidepressants.
Collapse
Affiliation(s)
- Juncai Xin
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Meng Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonglin Peng
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Glass SM, Leddy SM, Orwin MC, Miller GP, Furge KA, Furge LL. Rolapitant Is a Reversible Inhibitor of CYP2D6. Drug Metab Dispos 2019; 47:567-573. [PMID: 30952677 PMCID: PMC6505376 DOI: 10.1124/dmd.118.085928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/25/2019] [Indexed: 11/22/2022] Open
Abstract
Rolapitant [(Varubi), 5S,8S)-8-[[(1R)-1-[3,5 bis(trifluoromethyl phenyl]ethoxy]methyl]-8-phenyl-1,7-diazaspiro[4.5]decan-2-one] is a high-affinity NK1 receptor antagonist that was approved in September 2015 as a treatment for nausea and vomiting caused by chemotherapy. In vivo rolapitant moderately inhibits CYP2D6 for at least 7 days after one 180 mg dose. Due to the long inhibition time, we investigated rolapitant as a possible mechanism-based inactivator of CYP2D6. Rolapitant docked in the active site of CYP2D6 and displayed type I binding to CYP2D6 with a K s value of 1.2 ± 0.4 µM. However, in NADPH-, time-, and concentration-dependent assays of CYP2D6 activity, no evidence for mechanism-based inactivation and no metabolites of rolapitant were observed. Stopped-flow binding studies yielded a kon /koff (K d) value of 6.2 µM. The IC50 value for rolapitant inhibition of CYP2D6 activity was 24 µM, suggesting that inhibition is not due to tight binding of rolapitant to CYP2D6. By Lineweaver-Burk analysis, rolapitant behaved as a mixed, reversible inhibitor. The K i values of 20 and 34 µM were determined by Dixon analysis, with bufuralol and dextromethorphan as reporter substrates, respectively, and drug-drug interaction modeling did not predict the reported in vivo inhibition. The interaction of rolapitant with CYP2D6 was also examined in 1 microsecond molecular dynamics simulations. Rolapitant adopted multiple low-energy binding conformations near the active site, but at distances not consistent with metabolism. Given these findings, we do not see evidence that rolapitant is a mechanism-based inactivator. Moreover, the reversible inhibition of CYP2D6 by rolapitant may not fully account for the moderate inhibition described in vivo.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Sabrina M Leddy
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Michael C Orwin
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Garret P Miller
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Kyle A Furge
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | |
Collapse
|
22
|
Pang X, Zhao Y, Song J, Kang D, Wu S, Wang L, Liu A, Du G. Pharmacokinetics, excretion and metabolites analysis of DL0410, a dual‑acting cholinesterase inhibitor and histamine‑3 receptor antagonist. Mol Med Rep 2019; 20:1103-1112. [PMID: 31173186 PMCID: PMC6625456 DOI: 10.3892/mmr.2019.10306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/04/2019] [Indexed: 01/20/2023] Open
Abstract
DL0410, a dual‑action cholinesterase inhibitor and histamine‑3 receptor antagonist with a novel structural scaffold, may be a potential candidate for the treatment of Alzheimer's disease (AD). To the best of the authors' knowledge, this is the first study to demonstrate a reliable method for the measurement of DL0410 in rat plasma, brain, bile, urine and feces samples, and identification of its primary metabolites. The pharmacokinetic properties of DL0410 were analyzed by liquid chromatography‑mass spectrometry at oral doses of 25, 50 and 100 mg/kg and intravenous dose of 5 mg/kg. The investigation of the excretion and metabolism of DL0410 was determined following liquid‑liquid extraction for biliary, urinary and fecal samples. Finally, the cytochrome (CY)P450 isoforms involved in the production of DL0410 metabolites with recombinant human cytochrome P450 enzymes were characterized. The results suggested that DL0410 was not well absorbed; however, was distributed to the entorhinal cortex and hippocampus of the brain. A total of two common metabolites of the reduction of DL0140 in the bile, urine and feces were identified and CYP2D6 was involved in this reaction. The pharmacokinetic results of DL0410 provided information for the illustration of its pharmacodynamic properties, mechanism of action and promoted its continued evaluation as a therapeutic agent for AD treatment.
Collapse
Affiliation(s)
- Xiaocong Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ying Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Junke Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - De Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Lin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
23
|
Guengerich FP, Wilkey CJ, Glass SM, Reddish MJ. Conformational selection dominates binding of steroids to human cytochrome P450 17A1. J Biol Chem 2019; 294:10028-10041. [PMID: 31072872 DOI: 10.1074/jbc.ra119.008860] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 (P450, CYP) enzymes are the major catalysts involved in the oxidation of steroids as well as many other compounds. Their versatility has been explained in part by flexibility of the proteins and complexity of the binding mechanisms. However, whether these proteins bind their substrates via induced fit or conformational selection is not understood. P450 17A1 has a major role in steroidogenesis, catalyzing the two-step oxidations of progesterone and pregnenolone to androstenedione and dehydroepiandrosterone, respectively, via 17α-hydroxy (OH) intermediates. We examined the interaction of P450 17A1 with its steroid substrates by analyzing progress curves (UV-visible spectroscopy), revealing that the rates of binding of any of these substrates decreased with increasing substrate concentration, a hallmark of conformational selection. Further, when the concentration of 17α-OH pregnenolone was held constant and the P450 concentration increased, the binding rate increased, and such opposite patterns are also diagnostic of conformational selection. Kinetic simulation modeling was also more consistent with conformational selection than with an induced-fit mechanism. Cytochrome b 5 partially enhances P450 17A1 lyase activity by altering the P450 17A1 conformation but did not measurably alter the binding of 17α-OH pregnenolone or 17α-OH progesterone, as judged by the apparent Kd and binding kinetics. The P450 17A1 inhibitor abiraterone also bound to P450 17A1 in a multistep manner, and modeling indicated that the selective inhibition of the two P450 17A1 steps by the drug orteronel can be rationalized only by a multiple-conformation model. In conclusion, P450 17A1 binds its steroid substrates via conformational selection.
Collapse
Affiliation(s)
- F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Clayton J Wilkey
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Sarah M Glass
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Michael J Reddish
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
24
|
Functional and structural characterisation of common cytochrome P450 2D6 allelic variants—roles of Pro34 and Thr107 in catalysis and inhibition. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1015-1029. [DOI: 10.1007/s00210-019-01651-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023]
|
25
|
Coumarins and P450s, Studies Reported to-Date. Molecules 2019; 24:molecules24081620. [PMID: 31022888 PMCID: PMC6515222 DOI: 10.3390/molecules24081620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs) are important phase I enzymes involved in the metabolism of endogenous and xenobiotic compounds mainly through mono-oxygenation reactions into more polar and easier to excrete species. In addition to their role in detoxification, they play important roles in the biosynthesis of endogenous compounds and the bioactivation of xenobiotics. Coumarins, phytochemicals abundant in food and commonly used in fragrances and cosmetics, have been shown to interact with P450 enzymes as substrates and/or inhibitors. In this review, these interactions and their significance in pharmacology and toxicology are discussed in detail.
Collapse
|
26
|
Ariza Márquez YV, Briceño I, Aristizábal F, Niño LF, Yosa Reyes J. Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen. Sci Rep 2019; 9:2521. [PMID: 30792473 PMCID: PMC6385267 DOI: 10.1038/s41598-018-38340-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is a group of multigenic diseases. It is the most common cancer diagnosed among women worldwide and is often treated with tamoxifen. Tamoxifen is catalysed by cytochrome P450 2D6 (CYP2D6), and inter-individual variations in the enzyme due to single nucleotide polymorphisms (SNPs) could alter enzyme activity. We evaluated SNPs in patients from Colombia in South America who were receiving tamoxifen treatment for breast cancer. Allelic diversity in the CYP2D6 gene was found in the studied population, with two patients displaying the poor-metaboliser phenotype. Molecular dynamics and trajectory analyses were performed for CYP2D6 from these two patients, comparing it with the common allelic form (CYP2D6*1). Although we found no significant structural change in the protein, its dynamics differ significantly from those of CYP2D6*1, the effect of such differential dynamics resulting in an inefficient enzyme with serious implications for tamoxifen-treated patients, increasing the risk of disease relapse and ineffective treatment.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal/drug therapy
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/metabolism
- Carcinoma, Ductal/pathology
- Chemotherapy, Adjuvant
- Cytochrome P-450 CYP2D6/genetics
- Cytochrome P-450 CYP2D6/metabolism
- Female
- Genotype
- Humans
- Inactivation, Metabolic/genetics
- Middle Aged
- Pharmacogenomic Variants/genetics
- Phenotype
- Polymorphism, Single Nucleotide/genetics
- Tamoxifen/administration & dosage
- Tamoxifen/adverse effects
- Tamoxifen/metabolism
Collapse
Affiliation(s)
- Yeimy Viviana Ariza Márquez
- Universidad Nacional de Colombia, Instituto de Biotecnología IBUN, Departamento de Farmacia, Bogota, 111321, Colombia
| | - Ignacio Briceño
- Universidad de la Sabana, Facultad de Medicina, Bogota, 140013, Colombia
- Pontificia Universidad Javeriana, Facultad de Medicina, Instituto de Genética Humana IGH, Bogota, 110231, Colombia
| | - Fabio Aristizábal
- Universidad Nacional de Colombia, Instituto de Biotecnología IBUN, Departamento de Farmacia, Bogota, 111321, Colombia
| | - Luis Fernando Niño
- Universidad Nacional de Colombia, Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial, Bogota, 111321, Colombia
| | - Juvenal Yosa Reyes
- Universidad Simón Bolivar, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Barranquilla, 080002, Colombia.
| |
Collapse
|
27
|
Juvonen RO, Ahinko M, Huuskonen J, Raunio H, Pentikäinen OT. Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes. Xenobiotica 2018; 49:1015-1024. [DOI: 10.1080/00498254.2018.1530399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Risto O. Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mira Ahinko
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Juhani Huuskonen
- Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli T. Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Institute of Biomedicine, Faculty of Medicine Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Fischer A, Don CG, Smieško M. Molecular Dynamics Simulations Reveal Structural Differences among Allelic Variants of Membrane-Anchored Cytochrome P450 2D6. J Chem Inf Model 2018; 58:1962-1975. [PMID: 30126275 DOI: 10.1021/acs.jcim.8b00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is an enzyme that is involved in the metabolism of roughly 25% of all marketed drugs and therefore belongs to the most important enzymes in drug metabolism. CYP2D6 features a high degree of genetic polymorphism that can significantly affect the metabolic activity of an individual. In extreme cases, structural changes at the level of single amino acids can either increase its enzymatic activity abolishing the drug therapeutic effect or completely disable the enzyme and elevate drug plasma level potentially leading to adverse effects. In this study, starting from the crystal structure, we built a full-length membrane-anchored all-atom model of the wild-type CYP2D6 as well as five of its variants differing in the enzymatic activity. We validated our models with available experimental data and compared their structural properties with molecular dynamics simulations. The main focus of this study was to identify differences that could mechanistically explain the altered activity of the variants and improve our understanding of their functioning. We observed differences in the opening frequencies and minimal diameters of tunnels that connect the buried active site to the surrounding solvent environment. The variants CYP2D6*4 and CYP2D6*10 associated with missing or decreased activity showed less frequent opening of the tunnels compared to the wild-type. Both CYP2D6*10 and CYP2D6*17 showed a deprivation of an important ligand tunnel suggesting a feasible reason for their altered substrate specificity. Next, the altered fold at the N-terminal anchor region and the decreased active site volume caused by the amino acid mutations of the CYP2D6*4 variant offer an explanation for the absence of its metabolic activity. The mutations in CYP2D6*53 contributed to a significant enlargement of an important ligand tunnel and an extension of the active site cavity. This could explain the altered metabolic profile as well as the enhanced metabolic rates of this particular variant supporting its designation as a possible cause for the ultrarapid metabolizer phenotype. We believe these novel structural insights could advance the fields of personalized medicine and enzyme engineering. Furthermore, they could aid in guiding laboratory as well as computational experiments in the future.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Charleen G Don
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
29
|
Williams I, Gatchie L, Bharate SB, Chaudhuri B. Biotransformation, Using Recombinant CYP450-Expressing Baker's Yeast Cells, Identifies a Novel CYP2D6.10 A122V Variant Which Is a Superior Metabolizer of Codeine to Morphine Than the Wild-Type Enzyme. ACS OMEGA 2018; 3:8903-8912. [PMID: 31459022 PMCID: PMC6644518 DOI: 10.1021/acsomega.8b00809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/30/2018] [Indexed: 05/29/2023]
Abstract
CYP2D6, a cytochrome P450 (CYP) enzyme, metabolizes codeine to morphine. Within the human body, 0-15% of codeine undergoes O-demethylation by CYP2D6 to form morphine, a far stronger analgesic than codeine. Genetic polymorphisms in wild-type CYP2D6 (CYP2D6-wt) are known to cause poor-to-extensive metabolism of codeine and other CYP2D6 substrates. We have established a platform technology that allows stable expression of human CYP genes from chromosomal loci of baker's yeast cells. Four CYP2D6 alleles, (i) chemically synthesized CYP2D6.1, (ii) chemically synthesized CYP2D6-wt, (iii) chemically synthesized CYP2D6.10, and (iv) a novel CYP2D6.10 variant CYP2D6-C (i.e., CYP2D6.10A122V) isolated from a liver cDNA library, were cloned for chromosomal integration in yeast cells. When expressed in yeast, CYP2D6.10 enzyme shows weak activity compared with CYP2D6-wt and CYP2D6.1 which have moderate activity, as reported earlier. Surprisingly, however, the CYP2D6-C enzyme is far more active than CYP2D6.10. More surprisingly, although CYP2D6.10 is a known low metabolizer of codeine, yeast cells expressing CYP2D6-C transform >70% of codeine to morphine, which is more than twice that of cells expressing the extensive metabolizers, CYP2D6.1, and CYP2D6-wt. The latter two enzymes predominantly catalyze formation of codeine's N-demethylation product, norcodeine, with >55% yield. Molecular modeling studies explain the specificity of CYP2D6-C for O-demethylation, validating observed experimental results. The yeast-based CYP2D6 expression systems, described here, could find generic use in CYP2D6-mediated drug metabolism and also in high-yield chemical reactions that allow the formation of regio-specific dealkylation products.
Collapse
Affiliation(s)
- Ibidapo
S. Williams
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Linda Gatchie
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Bhabatosh Chaudhuri
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| |
Collapse
|
30
|
Microsecond MD simulations of human CYP2D6 wild-type and five allelic variants reveal mechanistic insights on the function. PLoS One 2018; 13:e0202534. [PMID: 30133539 PMCID: PMC6104999 DOI: 10.1371/journal.pone.0202534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
Characterization of cytochrome P450 2D6 (CYP2D6) and the impact of the major identified allelic variants on the activity of one of the most dominating drug-metabolising enzymes is essential to increase drug safety and avoid adverse reactions. Microsecond molecular dynamics simulations have been performed to capture the dynamic signatures of this complex enzyme and five allelic variants with diverse enzymatic activity. In addition to the apo simulations, three substrates (bufuralol, veliparib and tamoxifen) and two inhibitors (prinomastat and quinidine) were included to explore their influence on the structure and dynamical features of the enzyme. Our results indicate that the altered enzyme activity can be attributed to changes in the hydrogen bonding network within the active site, and local structural differences in flexibility, position and shape of the binding pocket. In particular, the increased (CYP2D6*53) or the decreased (CYP2D6*17) activity seems to be related to a change in dynamics of mainly the BC loop due to a modified hydrogen bonding network around this region. In addition, the smallest active site volume was found for CYP2D6*4 (no activity). CYP2D6*2 (normal activity) showed no major differences in dynamic behaviour compared to the wild-type.
Collapse
|
31
|
Jeffreys LN, Girvan HM, McLean KJ, Munro AW. Characterization of Cytochrome P450 Enzymes and Their Applications in Synthetic Biology. Methods Enzymol 2018; 608:189-261. [PMID: 30173763 DOI: 10.1016/bs.mie.2018.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytochrome P450 monooxygenase enzymes (P450s) catalyze a diverse array of chemical transformations, most originating from the insertion of an oxygen atom into a substrate that binds close to the P450 heme. The oxygen is delivered by a highly reactive heme iron-oxo species (compound I) and, according to the chemical nature of the substrate and its position in the active site, the P450 can catalyze a wide range of reactions including, e.g., hydroxylation, reduction, decarboxylation, sulfoxidation, N- and O-demethylation, epoxidation, deamination, CC bond formation and breakage, nitration, and dehalogenation. In this chapter, we describe the structural, biochemical, and catalytic properties of the P450s, along with spectroscopic and analytical methods used to characterize P450 enzymes and their redox partners. Important uses of P450 enzymes are highlighted, including how various P450s have been exploited for applications in synthetic biology.
Collapse
Affiliation(s)
- Laura N Jeffreys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Hazel M Girvan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Kirsty J McLean
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Andrew W Munro
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
32
|
Kinetic mechanism of time-dependent inhibition of CYP2D6 by 3,4-methylenedioxymethamphetamine (MDMA): Functional heterogeneity of the enzyme and the reversibility of its inactivation. Biochem Pharmacol 2018; 156:86-98. [PMID: 30114388 DOI: 10.1016/j.bcp.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022]
Abstract
We investigate the mechanism of time-dependent inhibition (TDI) of human cytochrome P450 2D6 (CYP2D6) by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), one of the most widespread recreational drugs of abuse. In an effort to unravel the kinetic mechanism of the formation of metabolic inhibitory complex (MIC) of CYP2D6 with MDMA-derived carbene we carried out a series of spectrophotometric studies paralleled with registration of the kinetics of time-dependent inhibition (TDI) in CYP2D6-incorporated proteoliposomes. The high amplitude of spectral signal in this system allowed us to characterize the spectral properties of the formed MIC in details and obtain an accurate spectral signature of MIC formation. This information was then used in the studies with CYP2D6-containing microsomes of insect cells (CYP2D6 Supersomes™). Our results demonstrate that in both systems the formation of the ferrous carbene-derived MIC is relatively slow, reversible and is not associated with the accumulation of the ferric carbene intermediate, as takes place in the case of CYP3A4 and podophylotoxin. Furthermore, the limited amplitude of MIC formation suggests that only a fraction (∼50%) of spectrally detectable CYP2D6 in both proteoliposomes and Supersomes participates in the formation of MIC and is therefore involved in the MDMA metabolism. This observation reveals yet another example of a cytochrome P450 that exhibits persistent functional heterogeneity of its population in microsomal membranes. Our study provides a solid methodological background for further mechanistic studies of MIC formation in human liver microsomes and demonstrates that the potency and physiological relevance of MDMA-dependent TDI of CYP2D6 may be overestimated.
Collapse
|
33
|
Glass SM, Martell CM, Oswalt AK, Osorio-Vasquez V, Cho C, Hicks MJ, Mills JM, Fujiwara R, Glista MJ, Kamath SS, Furge LL. CYP2D6 Allelic Variants *34, *17-2, *17-3, and *53 and a Thr309Ala Mutant Display Altered Kinetics and NADPH Coupling in Metabolism of Bufuralol and Dextromethorphan and Altered Susceptibility to Inactivation by SCH 66712. Drug Metab Dispos 2018; 46:1106-1117. [PMID: 29784728 PMCID: PMC6038030 DOI: 10.1124/dmd.117.079871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/09/2018] [Indexed: 01/27/2023] Open
Abstract
Metabolic phenotype can be affected by multiple factors, including allelic variation and interactions with inhibitors. Human CYP2D6 is responsible for approximately 20% of cytochrome P450-mediated drug metabolism but consists of more than 100 known variants; several variants are commonly found in the population, whereas others are quite rare. Four CYP2D6 allelic variants-three with a series of mutations distal to the active site (*34, *17-2, *17-3) and one ultra-metabolizer with mutations near the active site (*53), along with reference *1 and an active site mutant of *1 (Thr309Ala)-were expressed, purified, and studied for interactions with the typical substrates dextromethorphan and bufuralol and the inactivator SCH 66712. We found that *34, *17-2, and *17-3 displayed reduced enzyme activity and NADPH coupling while producing the same metabolites as *1, suggesting a possible role for Arg296 in NADPH coupling. A higher-activity variant, *53, displayed similar NADPH coupling to *1 but was less susceptible to inactivation by SCH 66712. The Thr309Ala mutant showed similar activity to that of *1 but with greatly reduced NADPH coupling. Overall, these results suggest that kinetic and metabolic analysis of individual CYP2D6 variants is required to understand their possible contributions to variable drug response and the complexity of personalized medicine.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | | | | | | - Christi Cho
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | - Michael J Hicks
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | | - Rina Fujiwara
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | | - Sharat S Kamath
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | |
Collapse
|
34
|
Siu YA, Hao MH, Dixit V, Lai WG. Celecoxib is a substrate of CYP2D6: Impact on celecoxib metabolism in individuals with CYP2C9*3 variants. Drug Metab Pharmacokinet 2018; 33:219-227. [PMID: 30219715 DOI: 10.1016/j.dmpk.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
Abstract
Celecoxib was characterized as a substrate of human cytochrome P450 (CYP) 2D6 in vitro. In recombinant CYP2D6, celecoxib hydroxylation showed atypical substrate inhibition kinetics with apparent Km, Ki, and Vmax of 67.2 μM, 12.6 μM, and 1.33 μM/min, respectively. In human liver microsomes (HLMs), a concentration-dependent inhibition of celecoxib hydroxylation by quinidine was observed after CYP2C9 and CYP3A4 were inhibited. In individual HLMs with variable CYP2D6 activities, a significant correlation was observed between celecoxib hydroxylation and CYP2D6-selective dextromethorphan O-demethylation when CYP2C9 and CYP3A4 activities were suppressed (r = 0.97, P < 0.0001). Molecular modeling showed two predominant docking modes of celecoxib with CYP2D6, resulting in either a substrate or an inhibitor. A second allosteric binding antechamber, which stabilized the inhibition mode, was revealed. Modeling results were consistent with the observed substrate inhibition kinetics. Using HLMs from individual donors, the relative contribution of CYP2D6 to celecoxib metabolism was found to be highly variable and dependent on CYP2C9 genotypes, ranging from no contribution in extensive metabolizers with CYP2C9*1*1 genotype to approximately 30% in slow metabolizers with allelic variants CYP2C9*1*3 and CYP2C9*3*3. These results demonstrate that celecoxib may become a potential victim of CYP2D6-associated drug-drug interactions, particularly in individuals with reduced CYP2C9 activity.
Collapse
Affiliation(s)
- Y Amy Siu
- Drug Metabolism and Pharmacokinetics Department, Eisai Inc., 4 Corporate Drive, Andover, MA 01810-2441, USA.
| | - Ming-Hong Hao
- Chemical Biology Department, Eisai Inc., 4 Corporate Drive, Andover, MA, USA.
| | - Vaishali Dixit
- Drug Metabolism and Pharmacokinetics Department, Eisai Inc., 4 Corporate Drive, Andover, MA 01810-2441, USA.
| | - W George Lai
- Drug Metabolism and Pharmacokinetics Department, Eisai Inc., 4 Corporate Drive, Andover, MA 01810-2441, USA.
| |
Collapse
|
35
|
Don CG, Smieško M. Out‐compute drug side effects: Focus on cytochrome P450 2D6 modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Charleen G. Don
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Martin Smieško
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
36
|
Bart AG, Scott EE. Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. J Biol Chem 2017; 292:20818-20833. [PMID: 29079577 DOI: 10.1074/jbc.ra117.000220] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/22/2017] [Indexed: 02/04/2023] Open
Abstract
The small heme-containing protein cytochrome b5 can facilitate, inhibit, or have no effect on cytochrome P450 catalysis, often in a P450-dependent and substrate-dependent manner that is not well understood. Herein, solution NMR was used to identify b5 residues interacting with different human drug-metabolizing P450 enzymes. NMR results revealed that P450 enzymes bound to either b5 α4-5 (CYP2A6 and CYP2E1) or this region and α2-3 (CYP2D6 and CYP3A4) and suggested variation in the affinity for b5 Mutations of key b5 residues suggest not only that different b5 surfaces are responsible for binding different P450 enzymes, but that these different complexes are relevant to the observed effects on P450 catalysis.
Collapse
Affiliation(s)
| | - Emily E Scott
- From the Biophysics Program and .,the Departments of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
37
|
Toward a systems approach to the human cytochrome P450 ensemble: interactions between CYP2D6 and CYP2E1 and their functional consequences. Biochem J 2017; 474:3523-3542. [PMID: 28904078 DOI: 10.1042/bcj20170543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase. The potential of CYP2D6 to form oligomers in the microsomal membrane is among the highest observed with human cytochrome P450 studied up to date. We also observed the formation of heteromeric complexes of CYP2D6 with CYP2E1 and CYP3A4, and found a significant modulation of these interactions by 3,4-methylenedioxymethylamphetamine, a widespread drug of abuse metabolized by CYP2D6. Our results demonstrate an ample alteration of the catalytic properties of CYP2D6 and CYP2E1 caused by their association. In particular, we demonstrated that preincubation of microsomes containing co-incorporated CYP2D6 and CYP2E1 with CYP2D6-specific substrates resulted in considerable time-dependent activation of CYP2D6, which presumably occurs via a slow substrate-induced reorganization of CYP2E1-CYP2D6 hetero-oligomers. Furthermore, we demonstrated that the formation of heteromeric complexes between CYP2E1 and CYP2D6 affects the stoichiometry of futile cycling and substrate oxidation by CYP2D6 by means of decreasing the electron leakage through the peroxide-generating pathways. Our results further emphasize the role of P450-P450 interactions in regulatory cross-talk in human drug-metabolizing ensemble and suggest a role of interactions of CYP2E1 with CYP2D6 in pharmacologically important instances of alcohol-drug interactions.
Collapse
|
38
|
A combinatorial approach for the discovery of cytochrome P450 2D6 inhibitors from nature. Sci Rep 2017; 7:8071. [PMID: 28808272 PMCID: PMC5556109 DOI: 10.1038/s41598-017-08404-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The human cytochrome P450 2D6 (CYP2D6) enzyme is part of phase-I metabolism and metabolizes at least 20% of all clinically relevant drugs. Therefore, it is an important target for drug-drug interaction (DDI) studies. High-throughput screening (HTS) assays are commonly used tools to examine DDI, but show certain drawbacks with regard to their applicability to natural products. We propose an in silico - in vitro workflow for the reliable identification of natural products with CYP2D6 inhibitory potential. In order to identify candidates from natural product-based databases that share similar structural features with established inhibitors, a pharmacophore model was applied. The virtual hits were tested for the inhibition of recombinant human CYP2D6 in a bioluminescence-based assay. By controlling for unspecific interferences of the test compounds with the detection reaction, the number of false positives were reduced. The success rate of the reported workflow was 76%, as most of the candidates identified in the in silico approach were able to inhibit CYP2D6 activity. In summary, the workflow presented here is a suitable and cost-efficient strategy for the discovery of new CYP2D6 inhibitors with natural product libraries.
Collapse
|
39
|
Dhers L, Pietrancosta N, Ducassou L, Ramassamy B, Dairou J, Jaouen M, André F, Mansuy D, Boucher JL. Spectral and 3D model studies of the interaction of orphan human cytochrome P450 2U1 with substrates and ligands. Biochim Biophys Acta Gen Subj 2017; 1861:3144-3153. [DOI: 10.1016/j.bbagen.2016.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/06/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
|
40
|
Guengerich FP, Waterman MR, Egli M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci 2016; 37:625-640. [PMID: 27267697 PMCID: PMC4961565 DOI: 10.1016/j.tips.2016.05.006] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
41
|
Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 2016; 48:405-33. [PMID: 27320797 DOI: 10.1080/03602532.2016.1195403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.
Collapse
Affiliation(s)
- Sung-Mi Kim
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - YongQiang Wang
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Noushin Nabavi
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Yi Liu
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Maria Almira Correia
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA ;,b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA ;,c Department of Bioengineering and Therapeutic Sciences , University of California San Francisco , San Francisco , CA , USA ;,d The Liver Center, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
42
|
Fukuyoshi S, Kometani M, Watanabe Y, Hiratsuka M, Yamaotsu N, Hirono S, Manabe N, Takahashi O, Oda A. Molecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62. PLoS One 2016; 11:e0152946. [PMID: 27046024 PMCID: PMC4821567 DOI: 10.1371/journal.pone.0152946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/20/2016] [Indexed: 11/18/2022] Open
Abstract
Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the “hatch” of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type.
Collapse
Affiliation(s)
- Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920–1192, Japan
| | - Masaharu Kometani
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920–1192, Japan
| | - Yurie Watanabe
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920–1192, Japan
| | - Masahiro Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3 Aoba, Aramaki, Aoba-ku, Sendai, 980–8578, Japan
| | - Noriyuki Yamaotsu
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108–8641, Japan
| | - Shuichi Hirono
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108–8641, Japan
| | - Noriyoshi Manabe
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981–8558, Japan
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981–8558, Japan
| | - Akifumi Oda
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920–1192, Japan
- Institute for Protein Research, Osaka University, 3–2 Yamadaoka, Suita, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
43
|
Gunio D, Froehlig J, Pappas K, Ferguson U, Wade H. Solution-Binding and Molecular Docking Approaches Combine to Provide an Expanded View of Multidrug Recognition in the MDR Gene Regulator BmrR. J Chem Inf Model 2016; 56:377-89. [DOI: 10.1021/acs.jcim.5b00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Drew Gunio
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - John Froehlig
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Katerina Pappas
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Uneeke Ferguson
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Herschel Wade
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
44
|
Li Z, Li Y, Sun L, Tang Y, Liu L, Zhu W. Artificial neural network cascade identifies multi-P450 inhibitors in natural compounds. PeerJ 2015; 3:e1524. [PMID: 26719820 PMCID: PMC4696407 DOI: 10.7717/peerj.1524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/30/2015] [Indexed: 12/27/2022] Open
Abstract
Substantial evidence has shown that most exogenous substances are metabolized by multiple
cytochrome P450 (P450) enzymes instead of by merely one P450 isoform. Thus, multi-P450
inhibition leads to greater drug-drug interaction risk than specific P450 inhibition.
Herein, we innovatively established an artificial neural network cascade (NNC) model
composed of 23 cascaded networks in a ladder-like framework to identify potential
multi-P450 inhibitors among natural compounds by integrating 12 molecular descriptors into
a P450 inhibition score (PIS). Experimental data reporting in vitro
inhibition of five P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) were
obtained for 8,148 compounds from the Cytochrome P450 Inhibitors Database (CPID). The
results indicate significant positive correlation between the PIS values and the number of
inhibited P450 isoforms (Spearman’s ρ = 0.684, p <
0.0001). Thus, a higher PIS indicates a greater possibility for a chemical to inhibit the
enzyme activity of at least three P450 isoforms. Ten-fold cross-validation of the NNC
model suggested an accuracy of 78.7% for identifying whether a compound is a multi-P450
inhibitor or not. Using our NNC model, 22.2% of the approximately 160,000 natural
compounds in TCM Database@Taiwan were identified as potential multi-P450 inhibitors.
Furthermore, chemical similarity calculations suggested that the prevailing parent
structures of natural multi-P450 inhibitors were alkaloids. Our findings show that
dissection of chemical structure contributes to confident identification of natural
multi-P450 inhibitors and provides a feasible method for virtually evaluating multi-P450
inhibition risk for a known structure.
Collapse
Affiliation(s)
- Zhangming Li
- Department of Pharmacy Administration, Harbin Medical University , Harbin , China
| | - Yan Li
- Department of Pharmacy, The Fourth Hospital of Harbin Medical University , Harbin , China
| | - Lu Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai , China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai , China
| | - Lanru Liu
- Department of Pharmacy Administration, Harbin Medical University , Harbin , China
| | - Wenliang Zhu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| |
Collapse
|
45
|
Liang B, Zhan Y, Wang Y, Gu E, Dai D, Cai J, Hu G. Effect of 24 Cytochrome P450 2D6 Variants Found in the Chinese Population on Atomoxetine Metabolism in vitro. Pharmacology 2015; 97:78-83. [PMID: 26666748 DOI: 10.1159/000442952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this article was to assess the catalytic activities of 24 cytochrome P450 2D6 (CYP2D6) variants found in the Chinese population toward atomoxetine in vitro as well as CYP2D6.1. METHODS In this study, the co-expression enzyme of human recombinant CYPOR, CYPb5, and CYP2D6.1 or other CYP2D6 variants with the baculovirus-mediated insect cells (Sf21) was used to study the catalytic activities of 24 CYP2D6 variants toward atomoxetine metabolism. The metabolite of atomoxetine (4-hydroxyatomoxetine) was detected by ultra-high performance liquid chromatography-mass spectrometry method. RESULTS The intrinsic clearance (Vmax/Km) values of most variants were significantly altered when compared with CYP2D6.1. CYP2D6.94, CYP2D6.D336N, CYP2D6.R440C exhibited marked increased values 172, 126, 121% respectively. CYP2D6.89 and CYP2D6.98 exhibited similar catalytic activity as the wild type, whereas 17 variants exhibited significantly decreased values (from 5 to 87%) due to increase Km and/or decrease Vmax values. However, CYP2D6.92 and CYP2D6.96 showed no or few activity because of producing nothing. CONCLUSIONS Our results suggest that most of these newly found variants exhibit significantly changed catalytic activities compared with the wild type. And these findings provide valuable information for the growth and development of personalized medicine in China.
Collapse
Affiliation(s)
- Bingqing Liang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Martiny VY, Carbonell P, Chevillard F, Moroy G, Nicot AB, Vayer P, Villoutreix BO, Miteva MA. Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6. Bioinformatics 2015; 31:3930-7. [PMID: 26315915 DOI: 10.1093/bioinformatics/btv486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Cytochrome P450 (CYP) is a superfamily of enzymes responsible for the metabolism of drugs, xenobiotics and endogenous compounds. CYP2D6 metabolizes about 30% of drugs and predicting potential CYP2D6 inhibition is important in early-stage drug discovery. RESULTS We developed an original in silico approach for the prediction of CYP2D6 inhibition combining the knowledge of the protein structure and its dynamic behavior in response to the binding of various ligands and machine learning modeling. This approach includes structural information for CYP2D6 based on the available crystal structures and molecular dynamic simulations (MD) that we performed to take into account conformational changes of the binding site. We performed modeling using three learning algorithms--support vector machine, RandomForest and NaiveBayesian--and we constructed combined models based on topological information of known CYP2D6 inhibitors and predicted binding energies computed by docking on both X-ray and MD protein conformations. In addition, we identified three MD-derived structures that are capable all together to better discriminate inhibitors and non-inhibitors compared with individual CYP2D6 conformations, thus ensuring complementary ligand profiles. Inhibition models based on classical molecular descriptors and predicted binding energies were able to predict CYP2D6 inhibition with an accuracy of 78% on the training set and 75% on the external validation set.
Collapse
Affiliation(s)
- Virginie Y Martiny
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Pablo Carbonell
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Florent Chevillard
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France
| | - Gautier Moroy
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | | | - Philippe Vayer
- BioInformatic Modelling Department, Technologie Servier, 45007 Orléans Cedex1, France
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| |
Collapse
|
47
|
Kumari V, Kumar V, Bhalla TC. Functional interpretation and structural insights of Arabidopsis lyrata cytochrome P450 CYP71A13 involved in auxin synthesis. Bioinformation 2015; 11:330-5. [PMID: 26339148 PMCID: PMC4546991 DOI: 10.6026/97320630011330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022] Open
Abstract
Cytochrome P450 CYP71A13 of Arabidopsis lyrata is a heme protein involved in biosynthesis of indole-3-acetonitrile which leads to the formation of indolyl-3-acetic acid. It catalyzes a unique reaction: formation of a carbon-nitrogen triple bond and dehydration of indolyl-3-acetaldoxime. Homology model of this 57 kDa polypeptide revealed that the heme existed between H-helix and J- helix in the hydrophobic pocket, although both helixes are involved in catalytic activity, where Gly305 and Thr308, 311 of H- helix were involved in its stabilization. The substrate indole-3-acetaldoxime was tightly fitted into the substrate pocket with the aromatic ring being surrounded by amino acid residues creating a hydrophobic environment. The smaller size of the substrate binding pocket in cytochrome P450 CYP71A13 was due to the bulkiness of the two amino acid residues Phe182 and Trp315 pointing into the substrate binding cavity. The apparent role of the heme in cytochrome P450 CYP71A13 was to tether the substrate in the catalysis by indole-3-acetaldoxime dehydratase. Since the crystal structure of cytochrome P450 CYP71A13 has not yet been solved, the modeled structure revealed mechanism of substrate recognition and catalysis.
Collapse
Affiliation(s)
- Vijaya Kumari
- Department of Biotechnology, Himachal Pradesh University, Shimla-171005
| | - Vijay Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla-171005
| | - Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Shimla-171005
| |
Collapse
|
48
|
Sasahara K, Mashima A, Yoshida T, Chuman H. Molecular dynamics and density functional studies on the metabolic selectivity of antipsychotic thioridazine by cytochrome P450 2D6: Connection with crystallographic and metabolic results. Bioorg Med Chem 2015; 23:5459-65. [PMID: 26264841 DOI: 10.1016/j.bmc.2015.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
CYP2D6, a cytochrome P450 isoform, significantly contributes to the metabolism of many clinically important drugs. Thioridazine (THD) is one of the phenothiazine-type antipsychotics, which exhibit dopamine D2 antagonistic activity. THD shows characteristic metabolic profiles compared to other phenothiazine-type antipsychotics such as chlorpromazine. The sulfur atom attached to the phenothiazine ring is preferentially oxidized mainly by CYP2D6, that is, the 2-sulfoxide is a major metabolite, and interestingly this metabolite shows more potent activity against dopamine D2 receptors than THD. On the other hand, the formation of this metabolite causes many serious problems for its clinical use. Wójcikowski et al. (Drug Metab. Dispos. 2006, 34, 471) reported a kinetic study of THD formed by CYP2D6. Recently, Wang et al. (J. Biol. Chem. 2012, 287, 10834 and J. Biol. Chem. 2015, 290, 5092) revealed the crystallographic structure of THD with CYP2D6. In the current study, the binding and reaction mechanisms at the atomic and electronic levels were computationally examined based on the assumption as to whether or not the different crystallographic binding poses correspond to the different metabolites. The binding and oxidative reaction steps in the whole metabolic process were investigated using molecular dynamics and density functional theory calculations, respectively. The current study demonstrated the essential importance of the orientation of the substrate in the reaction center of CYP2D6 for the metabolic reaction.
Collapse
Affiliation(s)
- Katsunori Sasahara
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan; Department of Drug Metabolism, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Akira Mashima
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Tatsusada Yoshida
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Hiroshi Chuman
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
49
|
Ducassou L, Jonasson G, Dhers L, Pietrancosta N, Ramassamy B, Xu-Li Y, Loriot MA, Beaune P, Bertho G, Lombard M, Mansuy D, André F, Boucher JL. Expression in yeast, new substrates, and construction of a first 3D model of human orphan cytochrome P450 2U1: Interpretation of substrate hydroxylation regioselectivity from docking studies. Biochim Biophys Acta Gen Subj 2015; 1850:1426-37. [DOI: 10.1016/j.bbagen.2015.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022]
|
50
|
Olsen L, Oostenbrink C, Jørgensen FS. Prediction of cytochrome P450 mediated metabolism. Adv Drug Deliv Rev 2015; 86:61-71. [PMID: 25958010 DOI: 10.1016/j.addr.2015.04.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/30/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 enzymes (CYPs) form one of the most important enzyme families involved in the metabolism of xenobiotics. CYPs comprise many isoforms, which catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be formed. However, it is often hard to rationalize what metabolites these enzymes generate. In recent years, many different in silico approaches have been developed to predict binding or regioselective product formation for the different CYP isoforms. These comprise ligand-based methods that are trained on experimental CYP data and structure-based methods that consider how the substrate is oriented in the active site or/and how reactive the part of the substrate that is accessible to the heme group is. We will review key aspects for various approaches that are available to predict binding and site of metabolism (SOM), what outcome can be expected from the predictions, and how they could potentially be improved.
Collapse
|