1
|
Kim JS, Chen T, Zhang B, Miller TM, Gilliam ME, Guo H. Cloning, expression, and characterization of collagen galactosyltransferases from human, sponge, and sea walnut. Protein Expr Purif 2025; 229:106685. [PMID: 39904402 DOI: 10.1016/j.pep.2025.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Collagen is an extracellular matrix protein conserved across animals and viruses, with its function regulated by post-translational modifications of lysine residues. Specifically, certain lysine residues in collagen are hydroxylated to form hydroxylysine, which serves as an attachment site for hydroxylysine-linked glycosylation. This glycosylation process is initiated by collagen galactosyltransferases from the GT25 family, also known as GLT25D or COLGALT proteins. Despite their biological importance, efficient methods for expressing and isolating GLT25Ds have yet to be fully developed, and the biochemical mechanisms underlying their function still need to be better understood. To address this, we performed sequence alignment and phylogenetic analyses of GLT25Ds across vertebrates, invertebrates, and viruses. Using sponge (amphimedon queenslandica) GLT25D as a model, we established a bacterial expression, purification, and assay protocol. Sponge GLT25D expressed robustly in E. coli strain BL21 and demonstrated enzymatic activity comparable to human GLT25D1 from mammalian cells. Kinetic parameters and the effects of time, temperature and pH on enzymatic activity were characterized for both enzymes. AlphaFold structural modeling and sequence alignment revealed an EXD motif and a conserved leucine in a pocket of the second Rossmann-fold domain of sponge GLT25D, suggesting this pocket as the active site. Using the standardized bacterial expression, purification, and assay protocol, we screened GLT25Ds from various vertebrate and invertebrate species. Notably, the sea walnut (mnemiopsis leidyi) GLT25D exhibited superior expression levels and robust enzymatic activity. This established method provides a strong foundation for future bioengineering efforts, structure-function analyses, and the development of GLT25D inhibitors.
Collapse
Affiliation(s)
- Jeong Seon Kim
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tingfei Chen
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Botao Zhang
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tristin M Miller
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marisa E Gilliam
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Houfu Guo
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Melnik E, Markova T, Fedotova Y, Tatarskiy E, Zabnenkova V, Kadyshev V, Kenis V, Buyanova G, Skoblov M, Dadali E. Expanding the Clinical Spectrum of BCARD Syndrome Caused by Novel Biallelic Variants in the PLOD3 Gene. Clin Genet 2025. [PMID: 40289369 DOI: 10.1111/cge.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
BCARD syndrome is a rare autosomal recessive connective tissue disorder characterized by bone abnormalities, cataract, risk of arterial rupture due to vascular aneurisms or dissections, and sensorineural deafness. BCARD, linked to biallelic pathogenic variants in the PLOD3 gene, was characterized in 10 cases across six reports. Here we present an 11-year-old female patient whose phenotype, alongside the clinical features specific to BCARD syndrome, also exhibited vesico-ureteral reflux, intestinal anomaly, minor cardiac anomalies, focal epilepsy, and brain abnormalities, including polymicrogyria and heterotopia. Whole-exome sequencing revealed two novel nucleotide variants (c.335A>G and c.2158G>T) in the PLOD3 gene. The first variant functions as a cryptic splice site variant, and RNA analysis confirmed that it causes a 4 bp truncation of exon 3. This truncation induces a frameshift, resulting in the formation of a premature termination codon (p.(Asp112AlafsTer4)). The second variant, a nonsense mutation located in the final exon, leads to the truncation of a functionally critical protein domain. This case expands our understanding of BCARD syndrome variability, aiding in earlier detection of skeletal pathology, brain, ocular, vascular complications, and intestinal, ureteral, cardiac abnormalities.
Collapse
Affiliation(s)
| | | | - Yana Fedotova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | - Vladimir Kenis
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - Galina Buyanova
- Chelyabinsk Regional Children's Clinical Hospital, Chelyabinsk, Russia
| | | | - Elena Dadali
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
3
|
De Marco M, Rai SR, Scietti L, Mattoteia D, Liberi S, Moroni E, Pinnola A, Vetrano A, Iacobucci C, Santambrogio C, Colombo G, Forneris F. Molecular structure and enzymatic mechanism of the human collagen hydroxylysine galactosyltransferase GLT25D1/COLGALT1. Nat Commun 2025; 16:3624. [PMID: 40240392 PMCID: PMC12003778 DOI: 10.1038/s41467-025-59017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
During collagen biosynthesis, lysine residues undergo extensive post-translational modifications through the alternate action of two distinct metal ion-dependent enzyme families (i.e., LH/PLODs and GLT25D/COLGALT), ultimately producing the highly conserved α-(1,2)-glucosyl-β-(1,O)-galactosyl-5-hydroxylysine pattern. Malfunctions in these enzymes are linked to developmental pathologies and extracellular matrix alterations associated to enhanced aggressiveness of solid tumors. Here, we characterized human GLT25D1/COLGALT1, revealing an elongated head-to-head homodimeric assembly. Each monomer encompasses two domains (named GT1 and GT2), both unexpectedly capable of binding metal ion cofactors and UDP-α-galactose donor substrates, resulting in four candidate catalytic sites per dimer. We identify the catalytic site in GT2, featuring an unusual Glu-Asp-Asp motif critical for Mn2+ binding, ruling out direct catalytic roles for the GT1 domain, but showing that in this domain the unexpectedly bound Ca2+ and UDP-α-galactose cofactors are critical for folding stability. Dimerization, albeit not essential for GLT25D1/COLGALT1 activity, provides a critical molecular contact site for multi-enzyme assembly interactions with partner multifunctional LH/PLOD lysyl hydroxylase-glycosyltransferase enzymes.
Collapse
Grants
- MFAG 20075, BRIDGE 27004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- Rarer Types EDS Grant 2022 Ehlers-Danlos Society (EDS)
- CDA 2013 Giovanni Armenise-Harvard Foundation
- NextGeneration-EU PNRR MUR M4C2 PE00000007 INF-ACT Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN PNRR 2022 P20224WAME Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN PNRR 2022 P20224WAME Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Piano Operativo Salute, IMMUNO-HUB Ministero della Salute (Ministry of Health, Italy)
- regional law n° 9/2020, resolution n° 3776/2020 Regione Lombardia (Region of Lombardy)
- Please update "Ministero dell'Istruzione, dell'Università e della Ricerca" with "Ministero dell'Università e della Ricerca (MUR)"
Collapse
Affiliation(s)
- Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Sristi Raj Rai
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IRCCS European Institute of Oncology (IEO), Via Adamello 16, 20139, Milan, Italy
| | - Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Stefano Liberi
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | | | - Alberta Pinnola
- BioPhotoLab, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Alice Vetrano
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Claudio Iacobucci
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy.
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
4
|
Kim JS, Chen Z, Garcia SAE, Buhlheller C, Richards SJ, Chen T, Wu J, Bruntz RC, Gilliam ME, Yamauchi M, Liang B, Guo H. Structural basis of collagen glucosyltransferase function and its serendipitous role in kojibiose synthesis. RESEARCH SQUARE 2025:rs.3.rs-5850681. [PMID: 39975904 PMCID: PMC11838735 DOI: 10.21203/rs.3.rs-5850681/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Collagen glucosyltransferases catalyze a unique type of collagen glucosylation that is critical for biological processes and disease mechanisms. However, the structural regulation of collagen glucosyltransferases remains poorly understood. Here, we report the crystal structures of a mimiviral collagen glucosyltransferase in its apo form and in complexes with uridine diphosphate (UDP) and the disaccharide product. Our findings reveal that the enzyme functions as a homodimer, stabilized by a loop from one subunit locking into a cleft on the opposite subunit. This dimerization enables UDP-glucose binding cooperativity and enzymatic activity, a property conserved in the human homolog. Further structural analyses suggest an induced fit model for UDP interaction, mediated by Lysine 222. The dimerization also forms an extended cleft flanked by two active sites, which likely facilitates collagen recognition. Unexpectedly, we discovered that the mimiviral collagen glucosyltransferase can also synthesize the prebiotic disaccharide kojibiose. An elongated pocket adjacent to the UDP-binding site allows the enzyme to use UDP-glucose as the sugar donor and glucose as the acceptor for kojibiose production. Enzymatic activity assays confirmed the enzyme's novel kojibiose synthesis activity in vitro and in vivo. These structural insights not only inform glucosyltransferase function but also open new avenues for biomedicine.
Collapse
Affiliation(s)
- Jeong Seon Kim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhenhang Chen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Stephen J. Richards
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tingfei Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jingjing Wu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ronald C. Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marisa E. Gilliam
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Mitsuo Yamauchi
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Houfu Guo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Lee J, Guo HF, Wang S, Maghsoud Y, Vázquez-Montelongo EA, Jing Z, Sammons RM, Cho EJ, Ren P, Cisneros GA, Kurie JM, Dalby KN. Unleashing the Potential of 1,3-Diketone Analogues as Selective LH2 Inhibitors. ACS Med Chem Lett 2023; 14:1396-1403. [PMID: 37849534 PMCID: PMC10577891 DOI: 10.1021/acsmedchemlett.3c00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Lysyl hydroxylase 2 (LH2) catalyzes the formation of highly stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), thus promoting lung cancer metastasis through its capacity to modulate specific types of collagen cross-links within the tumor stroma. Using 1 and 2 from our previous high-throughput screening (HTS) as lead probes, we prepared a series of 1,3-diketone analogues, 1-18, and identified 12 and 13 that inhibit LH2 with IC50's of approximately 300 and 500 nM, respectively. Compounds 12 and 13 demonstrate selectivity for LH2 over LH1 and LH3. Quantum mechanics/molecular mechanics (QM/MM) modeling indicates that the selectivity of 12 and 13 may stem from noncovalent interactions like hydrogen bonding between the morpholine/piperazine rings with the LH2-specific Arg661. Treatment of 344SQ WT cells with 13 resulted in a dose-dependent reduction in their migration potential, whereas the compound did not impede the migration of the same cell line with an LH2 knockout (LH2KO).
Collapse
Affiliation(s)
- Juhoon Lee
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Hou-fu Guo
- Department
of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, United States
| | - Shike Wang
- Department
of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yazdan Maghsoud
- Department
of Chemistry and Biochemistry, The University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erik Antonio Vázquez-Montelongo
- Department
of Physical Medicine and Rehabilitation, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zhifeng Jing
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Rae M. Sammons
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - G. Andrés Cisneros
- Department
of Chemistry and Biochemistry, The University
of Texas at Dallas, Richardson, Texas 75080, United States
- Department
of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jonathan M. Kurie
- Department
of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Kevin N. Dalby
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
7
|
Mattoteia D, Chiapparino A, Fumagalli M, De Marco M, De Giorgi F, Negro L, Pinnola A, Faravelli S, Roscioli T, Scietti L, Forneris F. Identification of Regulatory Molecular "Hot Spots" for LH/PLOD Collagen Glycosyltransferase Activity. Int J Mol Sci 2023; 24:11213. [PMID: 37446392 DOI: 10.3390/ijms241311213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.
Collapse
Affiliation(s)
- Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
8
|
Visser DR, Loo TS, Norris GE, Parry DAD. Potential implications of the glycosylation patterns in collagen α1(I) and α2(I) chains for fibril assembly and growth. J Struct Biol 2023; 215:107938. [PMID: 36641113 DOI: 10.1016/j.jsb.2023.107938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
O-Glycosylation of hydroxylysine (Hyl) in collagen occurs at an early stage of biosynthesis before the triple-helix has formed. This simple post-translational modification (PTM) of lysine by either a galactosyl or glucosylgalactosyl moiety is highly conserved in collagens and depends on the species, type of tissue and the collagen amino acid sequence. The structural/functional reason why only specific lysines are modified is poorly understood, and has led to increased efforts to map the sites of PTMs on collagen sequences from different species and to ascertain their potential role in vivo. To investigate this, we purified collagen type I (Col1) from the skins of four animals, then used mass spectrometry and proteomic techniques to identify lysines that were oxidised, galactosylated, glucosylgalactosylated, or glycated in its mature sequence. We found 18 out of the 38 lysines in collagen type Iα1, (Col1A1) and 7 of the 30 lysines in collagen type Iα2 (Col1A2) were glycosylated. Six of these modifications had not been reported before, and included a lysine involved in crosslinking collagen molecules. A Fourier transform analysis of the positions of the glycosylated hydroxylysines showed they display a regular axial distribution with the same d-period observed in collagen fibrils. The significance of this finding in terms of the assembly of collagen molecules into fibrils and of potential restrictions on the growth of the collagen fibrils is discussed.
Collapse
Affiliation(s)
- D R Visser
- School of Natural Sciences, Massey University, New Zealand
| | - T S Loo
- School of Natural Sciences, Massey University, New Zealand
| | - G E Norris
- School of Natural Sciences, Massey University, New Zealand.
| | | |
Collapse
|
9
|
Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, Tonetti M, Van Etten JL, De Castro C. The Astounding World of Glycans from Giant Viruses. Chem Rev 2022; 122:15717-15766. [PMID: 35820164 PMCID: PMC9614988 DOI: 10.1021/acs.chemrev.2c00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| | - Anna Notaro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Chantal Abergel
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Rosa Lanzetta
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Todd L. Lowary
- Institute
of Biological Chemistry, Academia Sinica, Academia Road, Section 2, Nangang 11529, Taipei, Taiwan
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Michela Tonetti
- Department
of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - James L. Van Etten
- Nebraska
Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, United States
- Department
of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, United States
| | - Cristina De Castro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| |
Collapse
|
10
|
Wu W, Kim JS, Bailey AO, Russell WK, Richards SJ, Chen T, Chen T, Chen Z, Liang B, Yamauchi M, Guo H. Comparative genomic and biochemical analyses identify a collagen galactosylhydroxylysyl glucosyltransferase from Acanthamoeba polyphaga mimivirus. Sci Rep 2022; 12:16806. [PMID: 36207453 PMCID: PMC9546862 DOI: 10.1038/s41598-022-21197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Humans and Acanthamoeba polyphaga mimivirus share numerous homologous genes, including collagens and collagen-modifying enzymes. To explore this homology, we performed a genome-wide comparison between human and mimivirus using DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) and identified 52 new putative mimiviral proteins that are homologous with human proteins. To gain functional insights into mimiviral proteins, their human protein homologs were organized into Gene Ontology (GO) and REACTOME pathways to build a functional network. Collagen and collagen-modifying enzymes form the largest subnetwork with most nodes. Further analysis of this subnetwork identified a putative collagen glycosyltransferase R699. Protein expression test suggested that R699 is highly expressed in Escherichia coli, unlike the human collagen-modifying enzymes. Enzymatic activity assay and mass spectrometric analyses showed that R699 catalyzes the glucosylation of galactosylhydroxylysine to glucosylgalactosylhydroxylysine on collagen using uridine diphosphate glucose (UDP-glucose) but no other UDP-sugars as a sugar donor, suggesting R699 is a mimiviral collagen galactosylhydroxylysyl glucosyltransferase (GGT). To facilitate further analysis of human and mimiviral homologous proteins, we presented an interactive and searchable genome-wide comparison website for quickly browsing human and Acanthamoeba polyphaga mimivirus homologs, which is available at RRID Resource ID: SCR_022140 or https://guolab.shinyapps.io/app-mimivirus-publication/ .
Collapse
Affiliation(s)
- Wenhui Wu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Jeong Seon Kim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Richards
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tingfei Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhenhang Chen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Houfu Guo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
11
|
Fang J, Ma Z, Liu D, Wang Z, Cheng S, Zheng S, Wu H, Xia P, Chen X, Yang R, Hao L, Zhang Y. Co-expression of recombinant human collagen α1(III) chain with viral prolyl 4-hydroxylase in Pichia pastoris GS115. Protein Expr Purif 2022; 201:106184. [PMID: 36191842 DOI: 10.1016/j.pep.2022.106184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
The Collagen α1(Ш) chain (COL3A1) is an important structural protein on the surface of human skin. The activity of prolyl 4-hydroxylase (P4H) is crucial to maintaining the stable triple-helix structure and function of human COL3A1. To obtain hydroxylated human COL3A1, virus-derived P4H A085R was co-expressed with human COL3A1 in Pichia pastoris GS115. Colony PCR analysis and sequencing after transfection confirmed that the target gene was successfully inserted. Quantitative reverse transcription PCR (RT-qPCR) indicated that human COL3A1 and P4H A085R were expressed at mRNA levels in the clones. SDS-PAGE and Western blot analysis of supernatant from the recombinant methylotrophic yeast culture showed that recombinant human COL3A1 (rhCOL3A1) was secreted into the culture medium with an apparent molecular mass of approximately 130 kDa. It was observed that the amount of secreted rhCOL3A1 was highest at 120 h after induction. Furthermore, mass spectrometry analysis demonstrated that rhCOL3A1 was successfully expressed in P. pastoris. The His-tagged rhCOL3A1 protein was purified by Ni-affinity column chromatography.
Collapse
Affiliation(s)
- Jiayuan Fang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Ze Ma
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Dongyue Liu
- Jilin Province Guoda Biological Engineering Co. LTD, 3999 Air Street, Changchun, Jilin, 130102, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuqin Cheng
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hongyan Wu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Peijun Xia
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| | - Ying Zhang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| |
Collapse
|
12
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|
13
|
A persistent giant algal virus, with a unique morphology, encodes an unprecedented number of genes involved in energy metabolism. J Virol 2021; 95:JVI.02446-20. [PMID: 33536167 PMCID: PMC8103676 DOI: 10.1128/jvi.02446-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses have long been viewed as entities possessing extremely limited metabolic capacities. Over the last decade, however, this view has been challenged, as metabolic genes have been identified in viruses possessing large genomes and virions-the synthesis of which is energetically demanding. Here, we unveil peculiar phenotypic and genomic features of Prymnesium kappa virus RF01 (PkV RF01), a giant virus of the Mimiviridae family. We found that this virus encodes an unprecedented number of proteins involved in energy metabolism, such as all four succinate dehydrogenase (SDH) subunits (A-D) as well as key enzymes in the β-oxidation pathway. The SDHA gene was transcribed upon infection, indicating that the viral SDH is actively used by the virus- potentially to modulate its host's energy metabolism. We detected orthologous SDHA and SDHB genes in numerous genome fragments from uncultivated marine Mimiviridae viruses, which suggests that the viral SDH is widespread in oceans. PkV RF01 was less virulent compared with other cultured prymnesioviruses, a phenomenon possibly linked to the metabolic capacity of this virus and suggestive of relatively long co-evolution with its hosts. It also has a unique morphology, compared to other characterized viruses in the Mimiviridae family. Finally, we found that PkV RF01 is the only alga-infecting Mimiviridae virus encoding two aminoacyl-tRNA synthetases and enzymes corresponding to an entire base-excision repair pathway, as seen in heterotroph-infecting Mimiviridae These Mimiviridae encoded-enzymes were found to be monophyletic and branching at the root of the eukaryotic tree of life. This placement suggests that the last common ancestor of Mimiviridae was endowed with a large, complex genome prior to the divergence of known extant eukaryotes.IMPORTANCE Viruses on Earth are tremendously diverse in terms of morphology, functionality, and genomic composition. Over the last decade, the conceptual gap separating viruses and cellular life has tightened because of the detection of metabolic genes in viral genomes that express complex virus phenotypes upon infection. Here, we describe Prymnesium kappa virus RF01, a large alga-infecting virus with a unique morphology, an atypical infection profile, and an unprecedented number of genes involved in energy metabolism (such as the tricarboxylic (TCA) cycle and the β-oxidation pathway). Moreover, we show that the gene corresponding to one of these enzymes (the succinate dehydrogenase subunit A) is transcribed during infection and is widespread among marine viruses. This discovery provides evidence that a virus has the potential to actively regulate energy metabolism with its own gene.
Collapse
|
14
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
15
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
16
|
van der Wel H, Gas-Pascual E, West CM. Skp1 isoforms are differentially modified by a dual function prolyl 4-hydroxylase/N-acety lglucosaminyltransferase in a plant pathogen. Glycobiology 2019; 29:705-714. [PMID: 31281925 PMCID: PMC6774341 DOI: 10.1093/glycob/cwz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
Skp1 is hydroxylated by an O2-dependent prolyl hydroxylase (PhyA) that contributes to O2-sensing in the social amoeba Dictyostelium and the mammalian pathogen Toxoplasma gondii. HO-Skp1 is subject to glycosylation and the resulting pentasaccharide affects Skp1 conformation in a way that influences association of Skp1 with F-box proteins, and potentially the assembly of E3(SCF) ubiquitin ligase complexes that mediate the polyubiquitination of target proteins that are degraded in the 26S-proteasome. To investigate the conservation and specificity of these modifications, we analyzed proteins from the oomycete Pythium ultimum, an important crop plant pathogen. Putative coding sequences for Pythium's predicted PhyA and first glycosyltransferase in the predicted five-enzyme pathway, a GlcNAc-transferase (Gnt1), predict a bifunctional enzyme (Phgt) that, when expressed in Dictyostelium, rescued a knockout of phyA but not gnt1. Though recombinant Phgt was also unable to glycosylate Dictyostelium HO-Skp1, it could hydrolyze UDP-GlcNAc and modify a synthetic hydroxypeptide from Dictyostelium Skp1. Pythium encodes two highly similar Skp1 isoforms, but only Skp1A was efficiently hydroxylated and glycosylated in vitro. While kinetic analysis revealed no evidence for processive processing of Skp1, the physical linkage of the two activities implies dedication to Skp1 in vivo. These findings indicate a widespread occurrence of the Skp1 modification pathway across protist phylogeny, suggest that both Gnt1 and PhyA are specific for Skp1 and indicate that the second Skp1 provides a bypass mechanism for O2-regulation in Pythium and other protists that conserve this gene.
Collapse
Affiliation(s)
- Hanke van der Wel
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
17
|
Collagen glycosylation. Curr Opin Struct Biol 2019; 56:131-138. [PMID: 30822656 DOI: 10.1016/j.sbi.2019.01.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Despite the ubiquity of collagens in the animal kingdom, little is known about the biology of the disaccharide Glc(α1-2)Gal(β1-O) bound to hydroxylysine across collagens from sponges to mammals. The extent of collagen glycosylation varies by the types of collagen, with basement membrane collagen type IV being more glycosylated than fibrillar collagens. Beyond true collagens, proteins including collagen domains such as the complement protein 1Q and the hormone adiponectin also feature glycosylated hydroxylysine. Collagen glycosylation is initiated in the endoplasmic reticulum by the galactosyltransferases COLGALT1 and COLGALT2. Mutations in the COLGALT1 gene cause cerebral small vessel abnormality and porencephaly, which are common in collagen type IV deficiency. Beyond the strongly conserved Glc(α1-2)Gal(β1-O) glycan, additional forms of collagen glycosylation have been described in the deep-sea worm Riftia pachyptila and in the giant virus Mimivirus, thereby suggesting that further forms of collagen glycosylation are likely to be identified in the future.
Collapse
|
18
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 585] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
19
|
Devkota AK, Veloria JR, Guo HF, Kurie JM, Cho EJ, Dalby KN. Development of a High-Throughput Lysyl Hydroxylase (LH) Assay and Identification of Small-Molecule Inhibitors against LH2. SLAS DISCOVERY 2018; 24:484-491. [PMID: 30589612 DOI: 10.1177/2472555218817057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysyl hydroxylase-2 (LH2) catalyzes the hydroxylation of telopeptidyl lysine residues on collagen, leading to the formation of stable collagen cross-links that connect collagen molecules and stabilize the extracellular matrix. High levels of LH2 have been reported in the formation and stabilization of hydroxylysine aldehyde-derived collagen cross-links (HLCCs), leading to fibrosis and cancer metastasis in certain tissues. Identification of small-molecule inhibitors targeting LH2 activity requires a robust and suitable assay system, which is currently lacking. Thus, despite being a promising target for these diseases, small-molecule inhibitors for LH2 have yet to be reported. Therefore, we developed a luminescence-based strategy to monitor LH activity and validated its ability to identify new inhibitors in a screen of approximately 65,000 compounds against LH2. Primary hits were confirmed using the same LH assay against mimiviral L230. This newly developed LH assay is robust, suitable for high-throughput screening, and able to identify potent specific inhibitors of LH2.
Collapse
Affiliation(s)
- Ashwini K Devkota
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - John R Veloria
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - Hou-Fu Guo
- 2 Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan M Kurie
- 2 Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eun Jeong Cho
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - Kevin N Dalby
- 1 Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, TX, USA.,3 Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, TX, USA
| |
Collapse
|
20
|
Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe 2+-binding. Nat Commun 2018; 9:512. [PMID: 29410444 PMCID: PMC5802723 DOI: 10.1038/s41467-018-02859-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
Collagen lysyl hydroxylases (LH1-3) are Fe2+- and 2-oxoglutarate (2-OG)-dependent oxygenases that maintain extracellular matrix homeostasis. High LH2 levels cause stable collagen cross-link accumulations that promote fibrosis and cancer progression. However, developing LH antagonists will require structural insights. Here, we report a 2 Å crystal structure and X-ray scattering on dimer assemblies for the LH domain of L230 in Acanthamoeba polyphaga mimivirus. Loop residues in the double-stranded β-helix core generate a tail-to-tail dimer. A stabilizing hydrophobic leucine locks into an aromatic tyrosine-pocket on the opposite subunit. An active site triad coordinates Fe2+. The two active sites flank a deep surface cleft that suggest dimerization creates a collagen-binding site. Loss of Fe2+-binding disrupts the dimer. Dimer disruption and charge reversal in the cleft increase Km and reduce LH activity. Ectopic L230 expression in tumors promotes collagen cross-linking and metastasis. These insights suggest inhibitor targets for fibrosis and cancer. Collagen lysyl hydroxylases promote cancer progression. Here the authors present the crystal structure of the lysyl hydroxylase domain of L230 from Acanthamoeba polyphagamimivirus, which is of interest for LH inhibitor development, and show that ectopic expression of L230 in tumors promotes collagen cross-linking and metastasis.
Collapse
|
21
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
22
|
Wang T, Lew J, Premkumar J, Poh CL, Win Naing M. Production of recombinant collagen: state of the art and challenges. ENGINEERING BIOLOGY 2017. [DOI: 10.1049/enb.2017.0003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tianyi Wang
- Bio‐Manufacturing Programme Singapore Institute of Manufacturing Technology Singapore
| | - Jiewei Lew
- Bio‐Manufacturing Programme Singapore Institute of Manufacturing Technology Singapore
| | - Jayaraman Premkumar
- Department of Biomedical Engineering National University of Singapore Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering National University of Singapore Singapore
| | - May Win Naing
- Bio‐Manufacturing Programme Singapore Institute of Manufacturing Technology Singapore
| |
Collapse
|
23
|
Piacente F, De Castro C, Jeudy S, Gaglianone M, Laugieri ME, Notaro A, Salis A, Damonte G, Abergel C, Tonetti MG. The rare sugar N-acetylated viosamine is a major component of Mimivirus fibers. J Biol Chem 2017; 292:7385-7394. [PMID: 28314774 DOI: 10.1074/jbc.m117.783217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
The giant virus Mimivirus encodes an autonomous glycosylation system that is thought to be responsible for the formation of complex and unusual glycans composing the fibers surrounding its icosahedral capsid, including the dideoxyhexose viosamine. Previous studies have identified a gene cluster in the virus genome, encoding enzymes involved in nucleotide-sugar production and glycan formation, but the functional characterization of these enzymes and the full identification of the glycans found in viral fibers remain incomplete. Because viosamine is typically found in acylated forms, we suspected that one of the genes might encode an acyltransferase, providing directions to our functional annotations. Bioinformatic analyses indicated that the L142 protein contains an N-terminal acyltransferase domain and a predicted C-terminal glycosyltransferase. Sequence analysis of the structural model of the L142 N-terminal domain indicated significant homology with some characterized sugar acetyltransferases that modify the C-4 amino group in the bacillosamine or perosamine biosynthetic pathways. Using mass spectrometry and NMR analyses, we confirmed that the L142 N-terminal domain is a sugar acetyltransferase, catalyzing the transfer of an acetyl moiety from acetyl-CoA to the C-4 amino group of UDP-d-viosamine. The presence of acetylated viosamine in vivo has also been confirmed on the glycosylated viral fibers, using GC-MS and NMR. This study represents the first report of a virally encoded sugar acetyltransferase.
Collapse
Affiliation(s)
- Francesco Piacente
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | | | - Sandra Jeudy
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France
| | - Matteo Gaglianone
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Maria Elena Laugieri
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Anna Notaro
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France.,Chemical Sciences, University of Napoli, 80138 Napoli, Italy, and
| | - Annalisa Salis
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Gianluca Damonte
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Chantal Abergel
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France
| | - Michela G Tonetti
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy,
| |
Collapse
|
24
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
25
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
26
|
Stoichevska V, Peng YY, Vashi AV, Werkmeister JA, Dumsday GJ, Ramshaw JAM. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes. J Biomed Mater Res A 2016; 105:806-813. [PMID: 27806444 DOI: 10.1002/jbm.a.35957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022]
Abstract
Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017.
Collapse
Affiliation(s)
| | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168, Australia
| | - Aditya V Vashi
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168, Australia
| | | | - Geoff J Dumsday
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168, Australia
| | | |
Collapse
|
27
|
Giant mimivirus R707 encodes a glycogenin paralogue polymerizing glucose through α- and β-glycosidic linkages. Biochem J 2016; 473:3451-3462. [PMID: 27433018 DOI: 10.1042/bcj20160280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 11/17/2022]
Abstract
Acanthamoeba polyphaga mimivirus is a giant virus encoding 1262 genes among which many were previously thought to be exclusive to cellular life. For example, mimivirus genes encode enzymes involved in the biosynthesis of nucleotide sugars and putative glycosyltransferases. We identified in mimivirus a glycogenin-1 homologous gene encoded by the open reading frame R707. The R707 protein was found to be active as a polymerizing glucosyltransferase enzyme. Like glycogenin-1, R707 activity was divalent-metal-ion-dependent and relied on an intact DXD motif. In contrast with glycogenin-1, R707 was, however, not self-glucosylating. Interestingly, the product of R707 catalysis featured α1-6, β1-6 and α1-4 glycosidic linkages. Mimivirus R707 is the first reported glycosyltransferase able to catalyse the formation of both α and β linkages. Mimivirus-encoded glycans play a role in the infection of host amoebae. Co-infection of Acanthamoeba with mimivirus and amylose and chitin hydrolysate reduced the number of infected amoebae, thus supporting the importance of polysaccharide chains in the uptake of mimivirus by amoebae. The identification of a glycosyltransferase capable of forming α and β linkages underlines the peculiarity of mimivirus and enforces the concept of a host-independent glycosylation machinery in mimivirus.
Collapse
|
28
|
The Autonomous Glycosylation of Large DNA Viruses. Int J Mol Sci 2015; 16:29315-28. [PMID: 26690138 PMCID: PMC4691112 DOI: 10.3390/ijms161226169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.
Collapse
|
29
|
Abergel C, Legendre M, Claverie JM. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol Rev 2015; 39:779-96. [PMID: 26391910 DOI: 10.1093/femsre/fuv037] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2015] [Indexed: 12/31/2022] Open
Abstract
More than a century ago, the term 'virus' was introduced to describe infectious agents that are invisible by light microscopy and capable of passing through sterilizing filters. In addition to their extremely small size, most viruses have minimal genomes and gene contents, and rely almost entirely on host cell-encoded functions to multiply. Unexpectedly, four different families of eukaryotic 'giant viruses' have been discovered over the past 10 years with genome sizes, gene contents and particle dimensions overlapping with that of cellular microbes. Their ongoing analyses are challenging accepted ideas about the diversity, evolution and origin of DNA viruses.
Collapse
Affiliation(s)
- Chantal Abergel
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, 13288 Marseille, France
| | - Matthieu Legendre
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, 13288 Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, 13288 Marseille, France Assistance Publique des Hôpitaux de Marseille, La Timone, 13005 Marseille, France
| |
Collapse
|
30
|
Acanthamoeba polyphaga mimivirus and other giant viruses: an open field to outstanding discoveries. Virol J 2014; 11:120. [PMID: 24976356 PMCID: PMC4083134 DOI: 10.1186/1743-422x-11-120] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/16/2014] [Indexed: 12/30/2022] Open
Abstract
In 2003, Acanthamoeba polyphaga mimivirus (APMV) was first described and began to impact researchers around the world, due to its structural and genetic complexity. This virus founded the family Mimiviridae. In recent years, several new giant viruses have been isolated from different environments and specimens. Giant virus research is in its initial phase and information that may arise in the coming years may change current conceptions of life, diversity and evolution. Thus, this review aims to condense the studies conducted so far about the features and peculiarities of APMV, from its discovery to its clinical relevance.
Collapse
|
31
|
Tiwari R, Chakraborty S, Dhama K, Wani MY, Kumar A, Kapoor S. Wonder world of phages: potential biocontrol agents safeguarding biosphere and health of animals and humans- current scenario and perspectives. Pak J Biol Sci 2014; 17:316-28. [PMID: 24897785 DOI: 10.3923/pjbs.2014.316.328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Darwin's theory of natural selection and concept of survival of fittest of Wallace is a universal truth which derives the force of life among all live entities on this biosphere. Issues regarding food safety along with increased drug resistance and emerging zoonotic infections have proved that multidisciplinary efforts are in demand for human and animal welfare. This has led to development of various novel therapies the list of which remains incomplete without mentioning about phages. Homologous and non-homologous recombination along with point mutation and addition of new genes play role in their evolution. The rapid emergence of the antibiotic resistant strains of bacteria have created keen interest in finding necessary alternatives to check microbial infections and there comes the importance of phages. Phages kill the bacteria either by lysis or by releasing holins. Bacteriophages; the viruses that live on bacteria are nowadays considered as the best biocontrol agents. They are used as replacers of antibiotics; food industry promoter; guard of aquatic life as well as of plants; pre-slaughter treatment agents; Generally Recognized As Safe (GRAS) food additives; Typing agent of bacteria; active tool of super bug therapy; in post harvest crops and food and during post infection and also to combat intracellular pathogens viz. Mycobacteria and Mycoplasma. Cyanophages/phycophages are particularly useful in controlling blooms produced by various genera of algae and cyanobacteria. By performing centrifugation studies and based on electron microscopy certain virus like particles containing ds RNA have been confirmed as mycophages. They are well proven as threat to pathogenic fungi (both fungal hyphae and yeast). Those that infect yeasts are called zymophages. Virophages have exquisite specificity for their viral host, hence can extensively be used for genetic studies and can also act as evolutionary link. After the discovery of very first virophage till now, a total of 3 virophages have been discovered including the Sputnik virophages that are used to study genetic recombination. Virophages also find their application in antiviral therapy; as engineer of ecological system etc. In brief, present review deals with various dimensions of these beneficial viruses that are being used and can be successfully used in future for safeguarding biosphere including animal and human health.
Collapse
|
32
|
Abstract
Acanthamoeba polyphaga mimivirus is a member of the giant nucleocytoplasmic large DNA viruses, infecting various Acanthamoeba spp. The genomes of giant viruses encode components previously thought to be exclusive to cellular life, such as proteins involved in nucleic acid and protein synthesis. Recent work on enzymes involved in carbohydrate biosynthesis and metabolism show that instead of utilizing host cell resources, Mimivirus produces its own glycosylation machinery. To obtain a more detailed view of glycosylation in Mimivirus, we developed a periodate oxidation-based method to selectively enrich Mimivirus surface glycoproteins. O-Glycosylation in Mimivirus glycoproteins was identified by permethylation and matrix-assisted laser desorption/ionization-mass spectrometry analyses of beta-eliminated glycans. We sequenced 26 previously undescribed O-glycans, most of which contain glucose as their reducing end saccharide. These data will facilitate future studies on the functional significance of glycosylation in Mimivirus.
Collapse
Affiliation(s)
- Andreas J Hülsmeier
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
33
|
Recombinant expression of hydroxylated human collagen in Escherichia coli. Appl Microbiol Biotechnol 2013; 98:4445-55. [DOI: 10.1007/s00253-013-5447-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 01/09/2023]
|
34
|
Abstract
Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens.
Collapse
|
35
|
Piacente F, Bernardi C, Marin M, Blanc G, Abergel C, Tonetti MG. Characterization of a UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus. Glycobiology 2013; 24:51-61. [PMID: 24107487 DOI: 10.1093/glycob/cwt089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mimivirus is a giant DNA virus belonging to the Megaviridae family and infecting unicellular Eukaryotes of the genus Acanthamoeba. The viral particles are characterized by heavily glycosylated surface fibers. Several experiments suggest that Mimivirus and other related viruses encode an autonomous glycosylation system, forming viral glycoproteins independently of their host. In this study, we have characterized three Mimivirus proteins involved in the de novo uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) production: a glutamine-fructose-6-phosphate transaminase (CDS L619), a glucosamine-6-phosphate N-acetyltransferase (CDS L316) and a UDP-GlcNAc pyrophosphorylase (CDS R689). Sequence and enzymatic analyses have revealed some unique features of the viral pathway. While it follows the eukaryotic-like strategy, it also shares some properties of the prokaryotic pathway. Phylogenetic analyses revealed that the Megaviridae enzymes cluster in monophyletic groups, indicating that they share common ancestors, but did not support the hypothesis of recent acquisitions from one of the known hosts. Rather, viral clades branched at deep nodes in phylogenetic trees, forming independent clades outside sequenced cellular organisms. The intermediate properties between the eukaryotic and prokaryotic pathways, the phylogenetic analyses and the fact that these enzymes are shared between most of the known members of the Megaviridae family altogether suggest that the viral pathway has an ancient origin, resulting from lateral transfers of cellular genes early in the Megaviridae evolution, or from vertical inheritance from a more complex cellular ancestor (reductive evolution hypothesis). The identification of a virus-encoded UDP-GlcNAc pathway reinforces the concept that GlcNAc is a ubiquitous sugar representing a universal and fundamental process in all organisms.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine, Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 1 Genova 16132, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Piacente F, Marin M, Molinaro A, De Castro C, Seltzer V, Salis A, Damonte G, Bernardi C, Claverie JM, Abergel C, Tonetti M. Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-D-glucose (Viosamine). J Biol Chem 2012; 287:3009-18. [PMID: 22157758 PMCID: PMC3270958 DOI: 10.1074/jbc.m111.314559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|