1
|
Mao Y, Feng J. Phosphatase activity-based PPM1K: a key player in the regulation of mitochondrial function and its multifaceted impact in diseases. Mol Cell Biochem 2025; 480:2815-2826. [PMID: 39695034 DOI: 10.1007/s11010-024-05188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
PPM1K is a significant metal-dependent phosphatase predominantly located in the mitochondrial matrix, where it plays a crucial role in the metabolism of branched-chain amino acids (BCAAs). It is implicated in cellular function and development across various tissues and is associated with diseases like Alzheimer's, cardiomyopathy, and maple syrup urine disease (MSUD). This article reviews PPM1K's impact on mitochondrial function and cellular metabolism, as well as its role in disease progression. The regulation of PPM1K expression and activity by various factors is complex and highlights its therapeutic potential. PPM1K's dysfunction can lead to the accumulation of BCAAs and the excessive opening of the mitochondrial permeability transition pore (MPTP), disrupting physiological metabolism and function. It also regulates the degradation of BCAAs by acting as a specific phosphatase for the E1α subunit of the BCKD complex. Outside the mitochondria, PPM1K suppresses de novo fatty acid synthesis and promotes fatty acid oxidation by dephosphorylating ACL. Furthermore, PPM1K has anti-inflammatory effects and modulates immune cell infiltration in tumor tissues. The expression and activity of PPM1K are influenced by factors such as BCAA concentration, fructose intake, and drug treatments, making it a promising target for therapeutic applications and further basic research.
Collapse
Affiliation(s)
- Yuanling Mao
- Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jing Feng
- Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
2
|
Makarchikov AF, Wins P, Bettendorff L. Biochemical and medical aspects of vitamin B 1 research. Neurochem Int 2025; 185:105962. [PMID: 40058602 DOI: 10.1016/j.neuint.2025.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Vitamin B1 is an indispensable food factor for the human and animal body. In animals, vitamin B1 is found in the form of thiamine and its phosphate esters - thiamine mono-, di- and triphosphate, as well as an adenylated derivative - adenosine thiamine triphosphate. At present, the only vitamin B1 form with biochemical functions being elucidated is thiamine diphosphate, which serves as a coenzyme for several important enzymes involved in carbohydrate, amino acid, fatty acid and energy metabolism. Here we review the latest developments in the field of vitamin B1 research in animals. Transport, metabolism and biological role of thiamine and its derivatives are considered as well as the involvement of vitamin B1-dependent processes in human diseases and its therapeutic issues, a field that has gained momentum with several important recent developments.
Collapse
Affiliation(s)
- Alexander F Makarchikov
- Grodno State Agrarian University, 28 Tereshkova St., 230005, Grodno, Belarus; Institute of Biochemistry of Biologically Active Compounds of NAS of Belarus, 7 Antoni Tyzenhauz Square, 230023, Grodno, Belarus
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA Institute, University of Liège, Avenue Hippocrate 15, B-4000, Liege, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Institute, University of Liège, Avenue Hippocrate 15, B-4000, Liege, Belgium.
| |
Collapse
|
3
|
Kumar JP, Kosek D, Durell SR, Miller Jenkins LM, Debnath S, Coussens NP, Hall MD, Appella DH, Dyda F, Mazur SJ, Appella E. Crystal structure and mechanistic studies of the PPM1D serine/threonine phosphatase catalytic domain. J Biol Chem 2024; 300:107561. [PMID: 39002674 PMCID: PMC11342775 DOI: 10.1016/j.jbc.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Protein phosphatase 1D (PPM1D, Wip1) is induced by the tumor suppressor p53 during DNA damage response signaling and acts as an oncoprotein in several human cancers. Although PPM1D is a potential therapeutic target, insights into its atomic structure were challenging due to flexible regions unique to this family member. Here, we report the first crystal structure of the PPM1D catalytic domain to 1.8 Å resolution. The structure reveals the active site with two Mg2+ ions bound, similar to other structures. The flap subdomain and B-loop, which are crucial for substrate recognition and catalysis, were also resolved, with the flap forming two short helices and three short β-strands that are followed by an irregular loop. Unexpectedly, a nitrogen-oxygen-sulfur bridge was identified in the catalytic domain. Molecular dynamics simulations and kinetic studies provided further mechanistic insights into the regulation of PPM1D catalytic activity. In particular, the kinetic experiments demonstrated a magnesium concentration-dependent lag in PPM1D attaining steady-state velocity, a feature of hysteretic enzymes that show slow transitions compared with catalytic turnover. All combined, these results advance the understanding of PPM1D function and will support the development of PPM1D-targeted therapeutics.
Collapse
Affiliation(s)
- Jay Prakash Kumar
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Dalibor Kosek
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Stewart R Durell
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States.
| |
Collapse
|
4
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Voronova V, Sokolov V, Morias Y, Boezelman MJ, Wågberg M, Henricsson M, Hansson K, Goltsov A, Peskov K, Sundqvist M. Evaluation of therapeutic strategies targeting BCAA catabolism using a systems pharmacology model. Front Pharmacol 2022; 13:993422. [PMID: 36518669 PMCID: PMC9744226 DOI: 10.3389/fphar.2022.993422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 10/23/2023] Open
Abstract
Background: Abnormal branched-chained amino acids (BCAA) accumulation in cardiomyocytes is associated with cardiac remodeling in heart failure. Administration of branched-chain α-keto acid dehydrogenase (BCKD) kinase inhibitor BT2 has been shown to reduce cardiac BCAA levels and demonstrated positive effects on cardiac function in a preclinical setting. The current study is focused on evaluating the impact of BT2 on the systemic and cardiac levels of BCAA and their metabolites as well as activities of BCAA catabolic enzymes using a quantitative systems pharmacology model. Methods: The model is composed of an ordinary differential equation system characterizing BCAA consumption with food, disposal in the proteins, reversible branched-chain-amino-acid aminotransferase (BCAT)-mediated transamination to branched-chain keto-acids (BCKA), followed by BCKD-mediated oxidation. Activity of BCKD is regulated by the balance of BCKDK and protein phosphatase 2Cm (PP2Cm) activities, affected by BT2 treatment. Cardiac BCAA levels are assumed to directly affect left ventricular ejection fraction (LVEF). Biochemical characteristics of the enzymes are taken from the public domains, while plasma and cardiac BCAA and BCKA levels in BT2 treated mice are used to inform the model parameters. Results: The model provides adequate reproduction of the experimental data and predicts synchronous BCAA responses in the systemic and cardiac space, dictated by rapid BCAA equilibration between the tissues. The model-based simulations indicate maximum possible effect of BT2 treatment on BCAA reduction to be 40% corresponding to 12% increase in LVEF. Model sensitivity analysis demonstrates strong impact of BCKDK and PP2Cm activities as well as total BCKD and co-substrate levels (glutamate, ketoglutarate and ATP) on BCAA and BCKA levels. Conclusion: Model based simulations confirms using of plasma measurements as a marker of cardiac BCAA changes under BCKDK inhibition. The proposed model can be used for optimization of preclinical study design for novel compounds targeting BCAA catabolism.
Collapse
Affiliation(s)
| | - Victor Sokolov
- M&S Decisions LLC, Moscow, Russia
- STU Sirius, Sochi, Russia
| | - Yannick Morias
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, Gothenburg, Sweden
| | - Malin Jonsson Boezelman
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, Gothenburg, Sweden
| | - Maria Wågberg
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, Gothenburg, Sweden
| | - Marcus Henricsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, Gothenburg, Sweden
| | - Karl Hansson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, Gothenburg, Sweden
| | - Alexey Goltsov
- M&S Decisions LLC, Moscow, Russia
- Institute for Artificial Intelligence, Russian Technological University (MIREA), Moscow, Russia
| | - Kirill Peskov
- M&S Decisions LLC, Moscow, Russia
- STU Sirius, Sochi, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Monika Sundqvist
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
A Gain-of-Function Mutation on BCKDK Gene and Its Possible Pathogenic Role in Branched-Chain Amino Acid Metabolism. Genes (Basel) 2022; 13:genes13020233. [PMID: 35205278 PMCID: PMC8872256 DOI: 10.3390/genes13020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
BCKDK is an important key regulator of branched-chain ketoacid dehydrogenase complex activity by phosphorylating and so inactivating branched-chain ketoacid dehydrogenases, the rate-limiting enzyme of the branched-chain amino acid metabolism. We identified, by whole exome-sequencing analysis, the p.His162Gln variant of the BCKDK gene in a neonate, picked up by newborn screening, with a biochemical phenotype of a mild form of maple syrup urine disease (MSUD). The same biochemical and genetic picture was present in the father. Computational analysis of the mutation was performed to better understand its role. Extensive atomistic molecular dynamics simulations showed that the described mutation leads to a conformational change of the BCKDK protein, which reduces the effect of inhibitory binding bound to the protein itself, resulting in its increased activity with subsequent inactivation of BCKDC and increased plasmatic branched-chain amino acid levels. Our study describes the first evidence of the involvement of the BCKDK gene in a mild form of MSUD. Although further data are needed to elucidate the clinical relevance of the phenotype caused by this variant, awareness of this regulatory activation of BCKDK is very important, especially in newborn screening data interpretation.
Collapse
|
7
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
Abstract
Obesity is associated with an increased risk of various diseases and mortality. Although nearly 50 % of adults have been reported trying to lose weight, the prevalence of obesity has increased. One factor that hinders weight loss-induced decrease in obesity prevalence is weight regain. Although behavioural, psychological and physiological factors associated with weight regain have been reviewed, the information regarding the relationship between weight regain and genetics has not been previously summarised. In this paper, we comprehensively review the association between genetic polymorphisms and weight regain in adults and children with obesity after weight loss. Based on this information, identification of genetic polymorphism in patients who undergo weight loss intervention might be used to estimate their risks of weight regain. Additionally, the genetic-based risk estimation may be used as a guide for physicians and dietitians to provide each of their patients with the most appropriate strategies for weight loss and weight maintenance.
Collapse
|
9
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
10
|
Bedoyan JK, Hecht L, Zhang S, Tarrant S, Bergin A, Demirbas D, Yang E, Shin HK, Grahame GJ, DeBrosse SD, Hoppel CL, Kerr DS, Berry GT. A novel null mutation in the pyruvate dehydrogenase phosphatase catalytic subunit gene ( PDP1) causing pyruvate dehydrogenase complex deficiency. JIMD Rep 2019; 48:26-35. [PMID: 31392110 PMCID: PMC6606986 DOI: 10.1002/jmd2.12054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/21/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023] Open
Abstract
Congenital lactic acidosis due to pyruvate dehydrogenase phosphatase (PDP) deficiency is very rare. PDP regulates pyruvate dehydrogenase complex (PDC) and defective PDP leads to PDC deficiency. We report a case with functional PDC deficiency with low activated (+dichloroacetate) and inactivated (+fluoride) PDC activities in lymphocytes and fibroblasts, normal activity of other mitochondrial enzymes in fibroblasts, and novel biallelic frameshift mutation in the PDP1 gene, c.575dupT (p.L192FfsX5), with absent PDP1 product in fibroblasts. Unexpectedly, the patient also had low branched-chain 2-ketoacid dehydrogenase (BCKDH) activity in fibroblasts with slight elevation of branched-chain amino acids in plasma and ketoacids in urine but with no pathogenic mutations in the enzymes of BCKDH, which could suggest shared regulatory function of PDC and BCKDH in fibroblasts, potentially in other tissues or cell types as well, but this remains to be determined. The clinical presentation of this patient overlaps that of other patients with primary-specific PDC deficiency, with neonatal/infantile and childhood lactic acidosis, normal lactate to pyruvate ratio, elevated plasma alanine, delayed psychomotor development, epileptic encephalopathy, feeding difficulties, and hypotonia. This patient exhibited marked improvement of overall development following initiation of ketogenic diet at 31 months of age. To the best of our knowledge, this is the fourth case of functional PDC deficiency with a defined mutation in PDP1. SYNOPSIS Pyruvate dehydrogenase phosphatase (PDP) regulates pyruvate dehydrogenase complex (PDC) and defective PDP due to PDP1 mutations leads to PDC deficiency and congenital lactic acidosis.
Collapse
Affiliation(s)
- Jirair K. Bedoyan
- Department of Genetics and Genome SciencesCase Western Reserve University (CWRU)ClevelandOhio
- PediatricsCase Western Reserve University (CWRU)ClevelandOhio
- Center for Human GeneticsUniversity Hospitals Cleveland Medical Center (UHCMC)ClevelandOhio
- Center for Inherited Disorders of Energy Metabolism (CIDEM)University Hospitals Cleveland Medical Center (UHCMC)ClevelandOhio
| | - Leah Hecht
- Division of Genetics and Genomics, The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Shulin Zhang
- Pathology and Laboratory MedicineUniversity of KentuckyLexingtonKentucky
| | - Stacey Tarrant
- Division of Genetics and Genomics, The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Ann Bergin
- Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Didem Demirbas
- Division of Genetics and Genomics, The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Edward Yang
- RadiologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Ha Kyung Shin
- School of MedicineCase Western Reserve University (CWRU)ClevelandOhio
| | - George J. Grahame
- Center for Inherited Disorders of Energy Metabolism (CIDEM)University Hospitals Cleveland Medical Center (UHCMC)ClevelandOhio
| | - Suzanne D. DeBrosse
- Department of Genetics and Genome SciencesCase Western Reserve University (CWRU)ClevelandOhio
- PediatricsCase Western Reserve University (CWRU)ClevelandOhio
- Center for Human GeneticsUniversity Hospitals Cleveland Medical Center (UHCMC)ClevelandOhio
| | - Charles L. Hoppel
- Center for Inherited Disorders of Energy Metabolism (CIDEM)University Hospitals Cleveland Medical Center (UHCMC)ClevelandOhio
- MedicineCase Western Reserve University (CWRU)ClevelandOhio
- PharmacologyCase Western Reserve University (CWRU)ClevelandOhio
| | - Douglas S. Kerr
- PediatricsCase Western Reserve University (CWRU)ClevelandOhio
- Center for Inherited Disorders of Energy Metabolism (CIDEM)University Hospitals Cleveland Medical Center (UHCMC)ClevelandOhio
| | - Gerard T. Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
11
|
Dolatabad MR, Guo LL, Xiao P, Zhu Z, He QT, Yang DX, Qu CX, Guo SC, Fu XL, Li RR, Ge L, Hu KJ, Liu HD, Shen YM, Yu X, Sun JP, Zhang PJ. Crystal structure and catalytic activity of the PPM1K N94K mutant. J Neurochem 2019; 148:550-560. [DOI: 10.1111/jnc.14631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Meisam Rostaminasab Dolatabad
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lu-lu Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Zhongliang Zhu
- School of Life Sciences; University of Science and Technology of China; Hefei Anhui China
| | - Qing-tao He
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Du-xiao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Chang-xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Sheng-chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Xiao-lei Fu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Rui-rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Ke-jia Hu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Hong-da Liu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Pharmacology and Chemical Biology; School of Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Yue-mao Shen
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Xiao Yu
- Department of Physiology; Shandong University; School of Medicine; Jinan Shandong China
| | - Jin-peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Peking University; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Beijing China
| | - Peng-ju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| |
Collapse
|
12
|
Mazur SJ, Gallagher ES, Debnath S, Durell SR, Anderson KW, Miller Jenkins LM, Appella E, Hudgens JW. Conformational Changes in Active and Inactive States of Human PP2Cα Characterized by Hydrogen/Deuterium Exchange-Mass Spectrometry. Biochemistry 2017; 56:2676-2689. [PMID: 28481111 DOI: 10.1021/acs.biochem.6b01220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PPM serine/threonine protein phosphatases function in signaling pathways and require millimolar concentrations of Mn2+ or Mg2+ ions for activity. Whereas the crystal structure of human PP2Cα displayed two tightly bound Mn2+ ions in the active site, recent investigations of PPM phosphatases have characterized the binding of a third, catalytically essential metal ion. The binding of the third Mg2+ to PP2Cα was reported to have millimolar affinity and to be entropically driven, suggesting it may be structurally and catalytically important. Here, we report the use of hydrogen/deuterium exchange-mass spectrometry and molecular dynamics to characterize conformational changes in PP2Cα between the active and inactive states. In the presence of millimolar concentrations of Mg2+, metal-coordinating residues in the PP2Cα active site are maintained in a more rigid state over the catalytically relevant time scale of 30-300 s. Submillimolar Mg2+ concentrations or introduction of the D146A mutation increased the conformational mobility in the Flap subdomain and in buttressing helices α1 and α2. Residues 192-200, located in the Flap subdomain, exhibited the greatest interplay between effects of Mg2+ concentration and the D146A mutation. Molecular dynamics simulations suggest that the presence of the third metal ion and the D146A mutation each produce distinct conformational realignments in the Flap subdomain. These observations suggest that the binding of Mg2+ to the D146/D239 binding site stabilizes the conformation of the active site and the Flap subdomain.
Collapse
Affiliation(s)
- Sharlyn J Mazur
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Elyssia S Gallagher
- Bioprocess Measurement Group, Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.,Institute for Bioscience and Biotechnology Research , Rockville, Maryland 20850, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Stewart R Durell
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kyle W Anderson
- Bioprocess Measurement Group, Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.,Institute for Bioscience and Biotechnology Research , Rockville, Maryland 20850, United States
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jeffrey W Hudgens
- Bioprocess Measurement Group, Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.,Institute for Bioscience and Biotechnology Research , Rockville, Maryland 20850, United States
| |
Collapse
|
13
|
Mahendran Y, Jonsson A, Have CT, Allin KH, Witte DR, Jørgensen ME, Grarup N, Pedersen O, Kilpeläinen TO, Hansen T. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia 2017; 60:873-878. [PMID: 28184960 DOI: 10.1007/s00125-017-4222-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/25/2017] [Indexed: 01/21/2023]
Abstract
AIMS/HYPOTHESIS Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic variants associated with circulating BCAA levels and insulin resistance as instrumental variables. METHODS We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome-wide association study (GWAS) results from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) (n = 46,186) and from a GWAS of serum BCAA levels (n = 24,925). We used a genetic risk score (GRS), calculated using ten established fasting serum insulin associated variants, as an instrumental variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. RESULTS Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (β 0.137 [95% CI 0.08, 0.19] p = 6 × 10-7). However, the GRS for circulating BCAA levels was not associated with fasting insulin levels or HOMA-IR in ADDITION-PRO (β -0.011 [95% CI -0.053, 0.032] p = 0.6 and β -0.011 [95% CI -0.054, 0.031] p = 0.6, respectively) or in GWAS results for HOMA-IR from MAGIC (β for valine-increasing GRS -0.012 [95% CI -0.069, 0.045] p = 0.7). By contrast, the insulin-resistance-increasing GRS was significantly associated with increased BCAA levels in ADDITION-PRO (β 0.027 [95% CI 0.005, 0.048] p = 0.01) and in GWAS results for serum BCAA levels (β 1.22 [95% CI 0.71, 1.73] p = 4 × 10-6, β 0.96 [95% CI 0.45, 1.47] p = 3 × 10-4, and β 0.67 [95% CI 0.16, 1.18] p = 0.01 for isoleucine, leucine and valine levels, respectively) and instrumental variable analyses in ADDITION-PRO indicated that HOMA-IR is causally related to higher circulating fasting BCAA levels (β 0.73 [95% CI 0.26, 1.19] p = 0.002). CONCLUSIONS/INTERPRETATION Our results suggest that higher BCAA levels do not have a causal effect on insulin resistance while increased insulin resistance drives higher circulating fasting BCAA levels.
Collapse
Affiliation(s)
- Yuvaraj Mahendran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
- The Danish Diabetes Academy, Odense, Denmark
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Kristine H Allin
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Daniel R Witte
- The Danish Diabetes Academy, Odense, Denmark
- Institute of Public Health, University of Aarhus, Aarhus, Denmark
| | | | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids 2017; 49:1005-1028. [DOI: 10.1007/s00726-017-2412-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
|
15
|
Brautigam CA, Zhao H, Vargas C, Keller S, Schuck P. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat Protoc 2016; 11:882-94. [PMID: 27055097 PMCID: PMC7466939 DOI: 10.1038/nprot.2016.044] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.
Collapse
Affiliation(s)
- Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, U.S.A
| | - Carolyn Vargas
- Molecular Biophysics, University of Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Germany
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, U.S.A
| |
Collapse
|
16
|
Zhao H, Piszczek G, Schuck P. SEDPHAT--a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 2015; 76:137-148. [PMID: 25477226 PMCID: PMC4380758 DOI: 10.1016/j.ymeth.2014.11.012] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/02/2023] Open
Abstract
Isothermal titration calorimetry experiments can provide significantly more detailed information about molecular interactions when combined in global analysis. For example, global analysis can improve the precision of binding affinity and enthalpy, and of possible linkage parameters, even for simple bimolecular interactions, and greatly facilitate the study of multi-site and multi-component systems with competition or cooperativity. A pre-requisite for global analysis is the departure from the traditional binding model, including an 'n'-value describing unphysical, non-integral numbers of sites. Instead, concentration correction factors can be introduced to account for either errors in the concentration determination or for the presence of inactive fractions of material. SEDPHAT is a computer program that embeds these ideas and provides a graphical user interface for the seamless combination of biophysical experiments to be globally modeled with a large number of different binding models. It offers statistical tools for the rigorous determination of parameter errors, correlations, as well as advanced statistical functions for global ITC (gITC) and global multi-method analysis (GMMA). SEDPHAT will also take full advantage of error bars of individual titration data points determined with the unbiased integration software NITPIC. The present communication reviews principles and strategies of global analysis for ITC and its extension to GMMA in SEDPHAT. We will also introduce a new graphical tool for aiding experimental design by surveying the concentration space and generating simulated data sets, which can be subsequently statistically examined for their information content. This procedure can replace the 'c'-value as an experimental design parameter, which ceases to be helpful for multi-site systems and in the context of gITC.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Tso SC, Gui WJ, Wu CY, Chuang JL, Qi X, Skvora KJ, Dork K, Wallace AL, Morlock LK, Lee BH, Hutson SM, Strom SC, Williams NS, Tambar UK, Wynn RM, Chuang DT. Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain α-ketoacid dehydrogenase kinase. J Biol Chem 2015; 289:20583-93. [PMID: 24895126 DOI: 10.1074/jbc.m114.569251] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation.BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6- dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC(50) = 3.19 μM). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T(1⁄2) = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[ b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[ b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations.
Collapse
|
18
|
García-Cazorla A, Oyarzabal A, Fort J, Robles C, Castejón E, Ruiz-Sala P, Bodoy S, Merinero B, Lopez-Sala A, Dopazo J, Nunes V, Ugarte M, Artuch R, Palacín M, Rodríguez-Pombo P, Alcaide P, Navarrete R, Sanz P, Font-Llitjós M, Vilaseca MA, Ormaizabal A, Pristoupilova A, Agulló SB. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum Mutat 2014; 35:470-7. [PMID: 24449431 DOI: 10.1002/humu.22513] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/10/2014] [Indexed: 12/22/2022]
Abstract
Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention.
Collapse
Affiliation(s)
- Angels García-Cazorla
- Department of Neurology, Hospital Sant Joan de Déu (HSJD), CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanoue K, Miller Jenkins LM, Durell SR, Debnath S, Sakai H, Tagad HD, Ishida K, Appella E, Mazur SJ. Binding of a third metal ion by the human phosphatases PP2Cα and Wip1 is required for phosphatase activity. Biochemistry 2013; 52:5830-43. [PMID: 23906386 DOI: 10.1021/bi4005649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PPM phosphatases require millimolar concentrations of Mg²⁺ or Mn²⁺ to activate phosphatase activity in vitro. The human phosphatases PP2Cα (PPM1A) and Wip1 (PPM1D) differ in their physiological function, substrate specificity, and apparent metal affinity. A crystallographic structure of PP2Cα shows only two metal ions in the active site. However, recent structural studies of several bacterial PP2C phosphatases have indicated three metal ions in the active site. Two residues that coordinate the third metal ion are highly conserved, suggesting that human PP2C phosphatases may also bind a third ion. Here, isothermal titration calorimetry analysis of Mg²⁺ binding to PP2Cα distinguished binding of two ions to high affinity sites from the binding of a third ion with a millimolar affinity, similar to the apparent metal affinity required for catalytic activity. Mutational analysis indicated that Asp239 and either Asp146 or Asp243 was required for low-affinity binding of Mg²⁺, but that both Asp146 and Asp239 were required for catalysis. Phosphatase activity assays in the presence of MgCl₂, MnCl₂, or mixtures of the two, demonstrate high phosphatase activity toward a phosphopeptide substrate when Mg²⁺ was bound to the low-affinity site, whether Mg²⁺ or Mn²⁺ ions were bound to the high affinity sites. Mutation of the corresponding putative third metal ion-coordinating residues of Wip1 affected catalytic activity similarly both in vitro and in human cells. These results suggest that phosphatase activity toward phosphopeptide substrates by PP2Cα and Wip1 requires the binding of a Mg²⁺ ion to the low-affinity site.
Collapse
Affiliation(s)
- Kan Tanoue
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase. Proc Natl Acad Sci U S A 2013; 110:9728-33. [PMID: 23716694 DOI: 10.1073/pnas.1303220110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure.
Collapse
|
21
|
Xu M, Qi Q, Liang J, Bray GA, Hu FB, Sacks FM, Qi L. Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 2013; 127:1283-9. [PMID: 23446828 DOI: 10.1161/circulationaha.112.000586] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Circulating branched-chain amino acids and aromatic amino acids were recently related to insulin resistance and diabetes mellitus in prospective cohorts. We tested the effects of a genetic determinant of branched-chain amino acid/aromatic amino acid ratio on changes in body weight and insulin resistance in a 2-year diet intervention trial. METHODS AND RESULTS We genotyped the branched-chain amino acid/aromatic amino acid ratio-associated variant rs1440581 near the PPM1K gene in 734 overweight or obese adults who were assigned to 1 of 4 diets varying in macronutrient content. At 6 months, dietary fat significantly modified genetic effects on changes in weight, fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) after adjustment for the confounders (all P for interaction ≤0.006). Further adjustment for weight change did not appreciably change the interactions for fasting insulin and HOMA-IR. In the high-fat diet group, the C allele was related to less weight loss and smaller decreases in serum insulin and HOMA-IR (all P ≤ 0.02 in an additive pattern), whereas an opposite genotype effect on changes in insulin and HOMA-IR was observed in the low-fat diet group (P=0.02 and P=0.04, respectively). At 2 years, the gene-diet interactions remained significant for weight loss (P=0.008) but became null for changes in serum insulin and HOMA-IR resulting from weight regain. CONCLUSIONS Individuals carrying the C allele of the branched-chain amino acid/aromatic amino acid ratio-associated variant rs1440581 may benefit less in weight loss and improvement of insulin sensitivity than those without this allele when undertaking an energy-restricted high-fat diet. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00072995.
Collapse
Affiliation(s)
- Min Xu
- Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Oyarzabal A, Martínez-Pardo M, Merinero B, Navarrete R, Desviat LR, Ugarte M, Rodríguez-Pombo P. A novel regulatory defect in the branched-chain α-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. Hum Mutat 2012; 34:355-62. [PMID: 23086801 DOI: 10.1002/humu.22242] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/04/2012] [Indexed: 11/11/2022]
Abstract
This article describes a hitherto unreported involvement of the phosphatase PP2Cm, a recently described member of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, in maple syrup urine disease (MSUD). The disease-causing mutation was identified in a patient with a mild variant phenotype, involving a gene not previously associated with MSUD. SNP array-based genotyping showed a copy-neutral homozygous pattern for chromosome 4 compatible with uniparental isodisomy. Mutation analysis of the candidate gene, PPM1K, revealed a homozygous c.417_418delTA change predicted to result in a truncated, unstable protein. No PP2Cm mutant protein was detected in immunocytochemical or Western blot expression analyses. The transient expression of wild-type PPM1K in PP2Cm-deficient fibroblasts recovered 35% of normal BCKDH activity. As PP2Cm has been described essential for cell survival, apoptosis and metabolism, the impact of its deficiency on specific metabolic stress variables was evaluated in PP2Cm-deficient fibroblasts. Increases were seen in ROS levels along with the activation of specific stress-signaling MAP kinases. Similar to that described for the pyruvate dehydrogenase complex, a defect in the regulation of BCKDH caused the aberrant metabolism of its substrate, contributing to the patient's MSUD phenotype--and perhaps others.
Collapse
Affiliation(s)
- Alfonso Oyarzabal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CIBERER U746, IDIPAZ, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, Ahlqvist E, Jonsson A, Lyssenko V, Vikman P, Hansson O, Parikh H, Korsgren O, Soni A, Krus U, Zhang E, Jing XJ, Esguerra JLS, Wollheim CB, Salehi A, Rosengren A, Renström E, Groop L. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 2012; 16:122-34. [PMID: 22768844 DOI: 10.1016/j.cmet.2012.06.006] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/05/2012] [Accepted: 06/18/2012] [Indexed: 12/13/2022]
Abstract
Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified gene coexpression and protein-protein interaction networks that were strongly associated with islet insulin secretion and HbA(1c). We integrated our data to form a rank list of putative T2D genes, of which CHL1, LRFN2, RASGRP1, and PPM1K were validated in INS-1 cells to influence insulin secretion, whereas GPR120 affected apoptosis in islets. Expression variation of the top 20 genes explained 24% of the variance in HbA(1c) with no claim of the direction. The data present a global map of genes associated with islet dysfunction and demonstrate the value of systems genetics for the identification of genes potentially involved in T2D.
Collapse
Affiliation(s)
- Jalal Taneera
- Lund University Diabetes Center, Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital Malmö, Lund University, Malmö 20502, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|