1
|
Buoso E, Masi M, Limosani RV, Fagiani F, Oliviero C, Colombo G, Cari L, Gentili M, Lusenti E, Rosati L, Pisati F, Pasini A, Lenti MV, Di Sabatino A, Mobbs CL, Przyborski S, Ronchetti S, Travelli C, Racchi M. Disruption of Epithelial Barrier Integrity via Altered GILZ/c-Rel/RACK1 Signaling in Inflammatory Bowel Disease. J Crohns Colitis 2025; 19:jjae191. [PMID: 39693354 DOI: 10.1093/ecco-jcc/jjae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS Given the role of Receptor for Activated C Kinase 1 (RACK1) in both immune cell activation and in the maintenance of the intestinal epithelial barrier integrity, we investigated whether it was involved in inflammatory bowel disease (IBD). METHODS RACK1 expression was analyzed in intestinal mucosal samples of healthy and IBD patients, in mice with chemically induced colitis, and in diseased in vitro 2D and 3D coculture models by luciferase assay, reverse transcription-quantitative PCR, Western blotting, immunofluorescence, and immunohistochemistry. Based on our finding that glucocorticoid-induced leucine zipper (GILZ or tsc22d3) positively correlates with RACK1 expression in IBD patients, GILZ knockout mice and cell silencing experiments were performed. RESULTS RACK1 was significantly decreased in IBD, especially in ulcerative colitis. This was associated with an NF-κB/c-Rel-related mechanism, correlating with decreased GILZ protein expression. GILZ depletion confirmed a decrease in RACK1 expression, which favored SRC activation and led to a significant reduction in E-cadherin, resulting in impaired epithelial barrier integrity. Finally, our data highlighted that this novel mechanism could be considered to develop new therapies since dexamethasone, the first line of treatment in IBD, restored RACK1 expression through the glucocorticoid receptor in a c-Rel/GILZ-independent manner. CONCLUSIONS We provide the first evidence that an alteration of RACK1/SRC/E-cadherin regulatory mechanism, correlating with decreased GILZ protein expression, is involved in epithelial barrier disruption. The clinical relevance is based on the fact that this mechanism involving GILZ/c-Rel-related RACK1 expression could be considered to improve IBD therapies, particularly in patients with low or no response to glucocorticoid treatment.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany St W302 Boston, MA 02215, USA
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
- University School of Advanced Studies IUSS, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
| | | | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Chiara Oliviero
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2/3, 28100 Novara, Italy
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Eleonora Lusenti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Lucrezia Rosati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Federica Pisati
- Cogentech Ltd. Benefit Corporation With a Sole Shareholder, via Adamello 16, 20139 Milan, Italy
| | - Alessandra Pasini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | | | - Stefan Przyborski
- Department of Biosciences, Durham University, South Rd, Durham DH1 3LE, UK
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cristina Travelli
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| |
Collapse
|
2
|
Cai Z, Yao B, Tan Y, Liu Y, Su J. Seasonal piRNA Expression Profile Changes in the Testes of Plateau Zokor ( Eospalax baileyi). Animals (Basel) 2024; 14:2620. [PMID: 39272405 PMCID: PMC11394656 DOI: 10.3390/ani14172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Seasonal reproduction is a mammalian behavior that has developed over an extended evolutionary period and requires animals to respond to external environmental changes to facilitate reproduction. In this study, we investigated the role of PIWI-interacting RNA (piRNA) in the seasonal reproduction of plateau zokors (Eospalax baileyi). piRNA expression profiles in plateau zokor testes during both breeding and non-breeding seasons were examined. The piRNAs had a distinctive ping-pong signature and ranged from 27 to 32 nt with a peak at 30 nt. Testicular piRNAs predominantly aligned to specific genomic regions, including repeat and gene regions. Analysis of the piRNA-mRNA interaction network and functional enrichment of differentially expressed piRNAs targeting mRNAs revealed their association with testicular development and spermatogenesis. Significantly, PIWIL4 is an mRNA gene that interacts with piRNA and exhibits high expression levels within the testes during the non-breeding phase. This study provides a foundation to improve our understanding of piRNA regulatory mechanisms during testicular development and spermatogenesis in seasonally reproducing animals and, specifically, in the plateau zokor.
Collapse
Affiliation(s)
- Zhiyuan Cai
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yuchen Tan
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongjie Liu
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Rusev S, Thon P, Dyck B, Ziehe D, Rahmel T, Marko B, Palmowski L, Nowak H, Ellger B, Limper U, Schwier E, Henzler D, Ehrentraut SF, Bergmann L, Unterberg M, Adamzik M, Koos B, Rump K. High expression of L-GILZ transcript variant 1 (GILZ TV 1) is associated with increased 30-day sepsis mortality, and a high expression ratio possibly contraindicates hydrocortisone administration. Crit Care 2024; 28:270. [PMID: 39135180 PMCID: PMC11321204 DOI: 10.1186/s13054-024-05056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Sepsis presents a challenge due to its complex immune responses, where balance between inflammation and anti-inflammation is critical for survival. Glucocorticoid-induced leucine zipper (GILZ) is key protein in achieving this balance, suppressing inflammation and mediating glucocorticoid response. This study aims to investigate GILZ transcript variants in sepsis patients and explore their potential for patient stratification and optimizing glucocorticoid therapy. METHODS Sepsis patients meeting the criteria outlined in Sepsis-3 were enrolled, and RNA was isolated from whole blood samples. Quantitative mRNA expression of GILZ transcript variants in both sepsis patient samples (n = 121) and the monocytic U937 cell line (n = 3), treated with hydrocortisone and lipopolysaccharides, was assessed using quantitative PCR (qPCR). RESULTS Elevated expression of GILZ transcript variant 1 (GILZ TV 1) serves as a marker for heightened 30-day mortality in septic patients. Increased levels of GILZ TV 1 within the initial day of sepsis onset are associated with a 2.2-[95% CI 1.2-4.3] fold rise in mortality, escalating to an 8.5-[95% CI 2.0-36.4] fold increase by day eight. GILZ TV1 expression is enhanced by glucocorticoids in cell culture but remains unaffected by inflammatory stimuli such as LPS. In septic patients, GILZ TV 1 expression increases over the course of sepsis and in response to hydrocortisone treatment. Furthermore, a high expression ratio of transcript variant 1 relative to all GILZ mRNA TVs correlates with a 2.3-fold higher mortality rate in patients receiving hydrocortisone treatment. CONCLUSION High expression of GILZ TV 1 is associated with a higher 30-day sepsis mortality rate. Moreover, a high expression ratio of GILZ TV 1 relative to all GILZ transcript variants is a parameter for identifying patient subgroups in which hydrocortisone may be contraindicated.
Collapse
Affiliation(s)
- Stefan Rusev
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Birte Dyck
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309, Dortmund, Germany
| | - Ulrich Limper
- Department of Anesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, 51109, Cologne, Germany
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049, Herford, Germany
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049, Herford, Germany
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127, Bonn, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany.
| |
Collapse
|
4
|
Hecksteden A, Hoppstädter J, Bizjak DA, Jerg A, Kirsten J, Krüger K, Niess A, Steinacker J, Kiemer AK. Effects of acute exercise and training status on glucocorticoid-induced leucine zipper (GILZ) expression in human skeletal muscle. J Sci Med Sport 2023; 26:707-710. [PMID: 37951824 DOI: 10.1016/j.jsams.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Interactions between statin therapy and physical exercise complicate effective cardiovascular prevention. Emerging evidence suggests that muscle strain related changes in the expression of the glucocorticoid-induced leucine zipper (GILZ) may be involved. Therefore, we measured GILZ mRNA expression levels in M. vastus lateralis samples of 32 healthy individuals before and after a standardized bout of strength or endurance exercise. Overall, we found a highly significant downregulation of GILZ after exercise training (p < 0.001). Within-subgroup changes were statistically significant only after strength training, supporting the role of muscle (as opposed to cardiocirculatory) strain. If confirmed, this may help fitting training recommendations and medication.
Collapse
Affiliation(s)
- A Hecksteden
- Universität Innsbruck, Institute of Sport Science, Austria; Medical University Innsbruck, Institute of Physiology, Austria.
| | - J Hoppstädter
- Saarland University, Department of Pharmacy, Chair of Pharmaceutical Biology, Germany
| | - D A Bizjak
- University of Ulm, Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Germany
| | - A Jerg
- University of Ulm, Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Germany
| | - J Kirsten
- University of Ulm, Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Germany
| | - K Krüger
- University of Giessen, Department of Exercise Physiology and Sports Therapy, Germany
| | - A Niess
- University Hospital Tübingen, Department of Sports Medicine, Germany
| | - J Steinacker
- University of Ulm, Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Germany
| | - A K Kiemer
- Saarland University, Department of Pharmacy, Chair of Pharmaceutical Biology, Germany
| |
Collapse
|
5
|
Sgambellone S, Febo M, Durante M, Marri S, Villano S, Bereshchenko O, Migliorati G, Masini E, Riccardi C, Bruscoli S, Lucarini L. Role of histamine H 4 receptor in the anti-inflammatory pathway of glucocorticoid-induced leucin zipper (GILZ) in a model of lung fibrosis. Inflamm Res 2023; 72:2037-2052. [PMID: 37815550 PMCID: PMC10611623 DOI: 10.1007/s00011-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION This study investigates the interactions between histaminergic system and glucocorticoid-induced leucin zipper (GILZ) in the inflammatory process and glucocorticoid modulation in lung fibrosis. METHODS Wild-type (WT) and GILZ Knock-Out (KO) mice were treated with bleomycin (0.05 IU) or saline, delivered by intra-tracheal injection. After surgery, mice received a continuous infusion of JNJ7777120 (JNJ, 2 mg/kg b.wt.) or vehicle for 21 days. Lung function was studied by measuring airway resistance to air insufflation through the analysis of pressure at airway opening (PAO). Lung samples were collected to evaluate the expression of histamine H4R, Anx-A1, and p65-NF-kB, the activity of myeloperoxidase (MPO), and the production of pro-inflammatory cytokines. RESULTS Airway fibrosis and remodeling were assessed by measuring TGF-β production and α-SMA deposition. JNJ reduces PAO in WT but not in GILZ KO mice (from 22 ± 1 mm to 15 ± 0.5 and from 24 ± 1.5 to 19 ± 0.5 respectively), MPO activity (from 204 ± 3.13 pmol/mg to 73.88 ± 2.63 in WT and from 221 ± 4.46 pmol/mg to 107 ± 5.54 in GILZ KO), the inflammatory response, TGF-β production, and α-SMA deposition in comparison to WT and GILZ KO vehicle groups. CONCLUSION In conclusion, the role of H4R and GILZ in relation to glucocorticoids could pave the way for innovative therapies to counteract pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Marta Febo
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Mariaconcetta Durante
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Silvia Marri
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Serafina Villano
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06100, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Emanuela Masini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
6
|
Mozaffari MS, Abdelsayed R, Emami S, Kavuri S. Expression profiles of glucocorticoid-inducible proteins in human papilloma virus-related oropharyngeal squamous cell carcinoma. FRONTIERS IN ORAL HEALTH 2023; 4:1285139. [PMID: 37954869 PMCID: PMC10634427 DOI: 10.3389/froh.2023.1285139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human papillomavirus virus-related oropharyngeal squamous cell carcinoma (HPV-OPSCC) comprises a significant portion of head and neck cancers. Several glucocorticoid-inducible proteins play important roles in pathogenesis of some cancers but their status and roles in HPV-OPSCC remain elusive; these include the glucocorticoid-induced leucine zipper (GILZ), Annexin-A1 and serum glucocorticoid-regulated kinase-1 (SGK-1). Methods We determined expression profiles of these proteins, using immunohistochemistry, in archived biopsy samples of patients diagnosed with HPV-OPSCC; samples of non-cancer oral lesions (e.g., hyperkeratosis) were used as controls. Results GILZ staining was primarily confined to nuclei of all tissues but, in HPV-OPSCC specimens, neoplastic cells exhibiting mitosis displayed prominent cytoplasmic GILZ expression. On the other hand, nuclear, cytoplasmic and membranous Annexin-A1 staining was observed in suprabasal cell layers of control specimens. A noted feature of the HPV-OPSCC specimens was few clusters of matured and differentiated nonbasaloid cells that showed prominent nuclear and cytoplasmic Annexin-A1 staining while the remainder of the tumor mass was devoid of staining. Cytoplasmic and nuclear staining for SGK-1 was prominent for control than PV-OPSCC specimens while staining for phosphorylated SGK-1 (pSGK-1; active) was prominent for cell membrane and cytoplasm of control specimens but HPV-OPSCC specimens showed mild and patchy nuclear and cytoplasmic staining. Semi-quantitative analysis of GILZ immunostaining indicated increased staining area but similar normalized staining for HPV-OPSCC compared to control specimens. By contrast, staining area and normalized staining were reduced for other proteins in HPV-OPSCC than control specimens. Discussion Our collective observations suggest differential cellular localization and expression of glucocorticoid-inducible proteins in HPV-OPSCC suggestive of different functional roles in pathogenesis of this condition.
Collapse
Affiliation(s)
- Mahmood S. Mozaffari
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Rafik Abdelsayed
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sahar Emami
- Departmentof Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sravan Kavuri
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Grossi LC, Zaidan I, Souza JAM, Carvalho AFS, Sanches RCO, Cardoso C, Lara ES, Montuori-Andrade ACM, Bruscoli S, Marchetti MC, Riccardi C, Teixeira MM, Tavares LP, Vago JP, Sousa LP. GILZ Modulates the Recruitment of Monocytes/Macrophages Endowed with a Resolving Phenotype and Favors Resolution of Escherichia coli Infection. Cells 2023; 12:1403. [PMID: 37408237 DOI: 10.3390/cells12101403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Macrophages are important effectors of inflammation resolution that contribute to the elimination of pathogens and apoptotic cells and restoration of homeostasis. Pre-clinical studies have evidenced the anti-inflammatory and pro-resolving actions of GILZ (glucocorticoid-induced leucine zipper). Here, we evaluated the role of GILZ on the migration of mononuclear cells under nonphlogistic conditions and Escherichia coli-evoked peritonitis. TAT-GILZ (a cell-permeable GILZ-fusion protein) injection into the pleural cavity of mice induced monocyte/macrophage influx alongside increased CCL2, IL-10 and TGF-β levels. TAT-GILZ-recruited macrophages showed a regulatory phenotype, exhibiting increased expression of CD206 and YM1. During the resolving phase of E. coli-induced peritonitis, marked by an increased recruitment of mononuclear cells, lower numbers of these cells and CCL2 levels were found in the peritoneal cavity of GILZ-deficient mice (GILZ-/-) when compared to WT. In addition, GILZ-/- showed higher bacterial loads, lower apoptosis/efferocytosis counts and a lower number of macrophages with pro-resolving phenotypes. TAT-GILZ accelerated resolution of E. coli-evoked neutrophilic inflammation, which was associated with increased peritoneal numbers of monocytes/macrophages, enhanced apoptosis/efferocytosis counts and bacterial clearance through phagocytosis. Taken together, we provided evidence that GILZ modulates macrophage migration with a regulatory phenotype, inducing bacterial clearance and accelerating the resolution of peritonitis induced by E. coli.
Collapse
Affiliation(s)
- Laís C Grossi
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Isabella Zaidan
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jéssica Amanda Marques Souza
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Felipe S Carvalho
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Hospital das Clínicas da Universidade Federal de Minas Gerais/Ebserh, Belo Horizonte 30130-100, Brazil
| | - Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Camila Cardoso
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Edvaldo S Lara
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ana Clara M Montuori-Andrade
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Maria Cristina Marchetti
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Mauro M Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana P Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lirlândia P Sousa
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
8
|
Zvick J, Tarnowska-Sengül M, Ghosh A, Bundschuh N, Gjonlleshaj P, Hinte LC, Trautmann CL, Noé F, Qabrati X, Domenig SA, Kim I, Hennek T, von Meyenn F, Bar-Nur O. Exclusive generation of rat spermatozoa in sterile mice utilizing blastocyst complementation with pluripotent stem cells. Stem Cell Reports 2022; 17:1942-1958. [PMID: 35931077 PMCID: PMC9481912 DOI: 10.1016/j.stemcr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Blastocyst complementation denotes a technique that aims to generate organs, tissues, or cell types in animal chimeras via injection of pluripotent stem cells (PSCs) into genetically compromised blastocyst-stage embryos. Here, we report on successful complementation of the male germline in adult chimeras following injection of mouse or rat PSCs into mouse blastocysts carrying a mutation in Tsc22d3, an essential gene for spermatozoa production. Injection of mouse PSCs into Tsc22d3-Knockout (KO) blastocysts gave rise to intraspecies chimeras exclusively embodying PSC-derived functional spermatozoa. In addition, injection of rat embryonic stem cells (rESCs) into Tsc22d3-KO embryos produced interspecies mouse-rat chimeras solely harboring rat spermatids and spermatozoa capable of fertilizing oocytes. Furthermore, using single-cell RNA sequencing, we deconstructed rat spermatogenesis occurring in a mouse-rat chimera testis. Collectively, this study details a method for exclusive xenogeneic germ cell production in vivo, with implications that may extend to rat transgenesis, or endangered animal species conservation efforts.
Collapse
Affiliation(s)
- Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Christine L Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Seraina A Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Thomas Hennek
- ETH Phenomics Center, ETH Zurich, Zurich 8049, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
9
|
The Role of GILZ in Lipid Metabolism and Adipocyte Biology. Prostaglandins Other Lipid Mediat 2022; 163:106668. [DOI: 10.1016/j.prostaglandins.2022.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
|
10
|
Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022; 37:621-636. [PMID: 35388905 DOI: 10.14670/hh-18-457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.
Collapse
Affiliation(s)
- Kuang-Qi Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Souza JAM, Carvalho AFS, Grossi LC, Zaidan I, de Oliveira LC, Vago JP, Cardoso C, Machado MG, Souza GVS, Queiroz-Junior CM, Morand EF, Bruscoli S, Riccardi C, Teixeira MM, Tavares LP, Sousa LP. Glucocorticoid-Induced Leucine Zipper Alleviates Lung Inflammation and Enhances Bacterial Clearance During Pneumococcal Pneumonia. Cells 2022; 11:cells11030532. [PMID: 35159341 PMCID: PMC8834062 DOI: 10.3390/cells11030532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumonia is a leading cause of morbidity and mortality. While inflammation is a host protective response that ensures bacterial clearance, a finely regulated response is necessary to prevent bystander tissue damage. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a GC-induced protein with anti-inflammatory and proresolving bioactions, yet the therapeutical role of GILZ in infectious diseases remains unexplored. Herein, we investigate the role and effects of GILZ during acute lung injury (ALI) induced by LPS and Streptococcus pneumoniae infection. GILZ deficient mice (GILZ−/−) presented more severe ALI, characterized by increased inflammation, decreased macrophage efferocytosis and pronounced lung damage. In contrast, pulmonary inflammation, and damage were attenuated in WT mice treated with TAT-GILZ fusion protein. During pneumococcal pneumonia, TAT-GILZ reduced neutrophilic inflammation and prevented the associated lung damage. There was also enhanced macrophage efferocytosis and bacterial clearance in TAT-GILZ-treated mice. Mechanistically, TAT-GILZ enhanced macrophage phagocytosis of pneumococcus, which was lower in GILZ−/− macrophages. Noteworthy, early treatment with TAT-GILZ rescued 30% of S. pneumoniae-infected mice from lethal pneumonia. Altogether, we present evidence that TAT-GILZ enhances host resilience and resistance to pneumococcal pneumonia by controlling pulmonary inflammation and bacterial loads leading to decreased lethality. Exploiting GILZ pathways holds promise for the treatment of severe respiratory infections.
Collapse
Affiliation(s)
- Jéssica Amanda Marques Souza
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Felipe S. Carvalho
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lais C. Grossi
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Leonardo Camilo de Oliveira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Juliana P. Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Camila Cardoso
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Marina G. Machado
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Geovanna V. Santos Souza
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Eric F. Morand
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne 3168, Australia;
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06156 Perugia, Italy; (S.B.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06156 Perugia, Italy; (S.B.); (C.R.)
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
| | - Luciana P. Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Lirlândia P. Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.A.M.S.); (A.F.S.C.); (L.C.G.); (I.Z.); (C.C.); (M.G.M.); (G.V.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.C.d.O.); (C.M.Q.-J.); (M.M.T.)
- Correspondence: ; Tel.: +55-31-3409-6883
| |
Collapse
|
12
|
Bruscoli S, Riccardi C, Ronchetti S. GILZ as a Regulator of Cell Fate and Inflammation. Cells 2021; 11:cells11010122. [PMID: 35011684 PMCID: PMC8750894 DOI: 10.3390/cells11010122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
One of the human body’s initial responses to stress is the adrenal response, involving the release of mediators that include adrenaline and glucocorticoids (GC). GC are involved in controlling the inflammatory and immune response mechanisms. Of these, the molecular mechanisms that contribute to anti-inflammatory effects warrant more investigation. Previously, we found that GC induced GILZ (glucocorticoid-induced leucine zipper) quickly and widely in thymocytes, T lymphocytes, and other leukocytes. GILZ regulates the activation of cells and is an essential mediator of endogenous GC and the majority of GC anti-inflammatory effects. Further research in this regard could lead to the development of an anti-inflammatory treatment that yields the therapeutic outcomes of GC but without their characteristic adverse effects. Here, we examine the mechanisms of GILZ in the context of GC. Specifically, we review its role in the proliferation and differentiation of cells and in apoptosis. We also examine its involvement in immune cells (macrophages, neutrophils, dendritic cells, T and B lymphocytes), and in non-immune cells, including cancer cells. In conclusion, GILZ is an anti-inflammatory molecule that could mediate the immunomodulatory activities of GC, with less adverse effects, and could be a target molecule for designing new therapies to treat inflammatory diseases.
Collapse
|
13
|
Ricci E, Roselletti E, Gentili M, Sabbatini S, Perito S, Riccardi C, Migliorati G, Monari C, Ronchetti S. Glucocorticoid-Induced Leucine Zipper-Mediated TLR2 Downregulation Accounts for Reduced Neutrophil Activity Following Acute DEX Treatment. Cells 2021; 10:2228. [PMID: 34571877 PMCID: PMC8472062 DOI: 10.3390/cells10092228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are the most powerful anti-inflammatory and immunosuppressive pharmacological drugs available, despite their adverse effects. Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced gene that shares several anti-inflammatory properties with glucocorticoids. Although immunosuppressive effects of glucocorticoids on neutrophils remain poorly understood, we previously demonstrated that GILZ suppresses neutrophil activation under glucocorticoid treatment. Here, we sought to explore the regulation of Toll-like receptor 2 (TLR2) by the synthetic glucocorticoid dexamethasone (DEX) on neutrophils and the associated GILZ involvement. Peripheral blood neutrophils were isolated from wild type and GILZ-knock-out (KO) mice. TLR2 was found to be downregulated by the in vivo administration of glucocorticoids in wild type but not in GILZ-KO neutrophils, suggesting the involvement of GILZ in TLR2 downregulation. Accordingly, the TLR2-associated anti-fungal activity of neutrophils was reduced by DEX treatment in wild type but not GILZ-KO neutrophils. Furthermore, GILZ did not interact with NF-κB but was found to bind with STAT5, a pivotal factor in the regulation of TLR2 expression. A similar modulation of TLR2 expression, impaired phagocytosis, and killing activity was observed in circulating human neutrophils treated in vitro with DEX. These results demonstrate that glucocorticoids reduce the ability of neutrophils to respond to infections by downregulating TLR2 via GILZ, thereby reducing critical functions.
Collapse
Affiliation(s)
- Erika Ricci
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Elena Roselletti
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Stefano Perito
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| |
Collapse
|
14
|
Blythe MJ, Kocer A, Rubio-Roldan A, Giles T, Abakir A, Ialy-Radio C, Wheldon LM, Bereshchenko O, Bruscoli S, Kondrashov A, Drevet JR, Emes RD, Johnson AD, McCarrey JR, Gackowski D, Olinski R, Cocquet J, Garcia-Perez JL, Ruzov A. LINE-1 transcription in round spermatids is associated with accretion of 5-carboxylcytosine in their open reading frames. Commun Biol 2021; 4:691. [PMID: 34099857 PMCID: PMC8184969 DOI: 10.1038/s42003-021-02217-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis. We show that the open reading frames of active and evolutionary young LINE-1s are 5caC-enriched in round spermatids and 5caC is eliminated from LINE-1s and spermiogenesis-specific genes during spermatid maturation, being simultaneously retained at promoters and introns of developmental genes. Our results reveal an association of 5caC with activity of LINE-1 retrotransposons suggesting a potential direct role for this DNA modification in fine regulation of their transcription.
Collapse
Affiliation(s)
- Martin J Blythe
- Deep Seq, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Ayhan Kocer
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Alejandro Rubio-Roldan
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Tom Giles
- Digital Research Service, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Abdulkadir Abakir
- School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Côme Ialy-Radio
- INSERM U1016, Institut Cochin - CNRS UMR8104 - Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lee M Wheldon
- Medical Molecular Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Oxana Bereshchenko
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | | - Joël R Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Richard D Emes
- Digital Research Service, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK. .,School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK.
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Daniel Gackowski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Julie Cocquet
- INSERM U1016, Institut Cochin - CNRS UMR8104 - Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jose L Garcia-Perez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexey Ruzov
- School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
15
|
Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis 2021; 12:421. [PMID: 33927191 PMCID: PMC8085011 DOI: 10.1038/s41419-021-03704-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Liver fibrosis (LF) is a dangerous clinical condition with no available treatment. Inflammation plays a critical role in LF progression. Glucocorticoid-induced leucine zipper (GILZ, encoded in mice by the Tsc22d3 gene) mimics many of the anti-inflammatory effects of glucocorticoids, but its role in LF has not been directly addressed. Here, we found that GILZ deficiency in mice was associated with elevated CCL2 production and pro-inflammatory leukocyte infiltration at the early LF stage, resulting in enhanced LF development. RNA interference-mediated in vivo silencing of the CCL2 receptor CCR2 abolished the increased leukocyte recruitment and the associated hepatic stellate cell activation in the livers of GILZ knockout mice. To highlight the clinical relevance of these findings, we found that TSC22D3 mRNA expression was significantly downregulated and was inversely correlated with that of CCL2 in the liver samples of patients with LF. Altogether, these data demonstrate a protective role of GILZ in LF and uncover the mechanism, which can be targeted therapeutically. Therefore, modulating GILZ expression and its downstream targets represents a novel avenue for pharmacological intervention for treating LF and possibly other liver inflammatory disorders.
Collapse
|
16
|
Cappetta D, De Angelis A, Flamini S, Cozzolino A, Bereshchenko O, Ronchetti S, Cianflone E, Gagliardi A, Ricci E, Rafaniello C, Rossi F, Riccardi C, Berrino L, Bruscoli S, Urbanek K. Deficit of glucocorticoid-induced leucine zipper amplifies angiotensin-induced cardiomyocyte hypertrophy and diastolic dysfunction. J Cell Mol Med 2021; 25:217-228. [PMID: 33247627 PMCID: PMC7810940 DOI: 10.1111/jcmm.15913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Antonella De Angelis
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Sara Flamini
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Anna Cozzolino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and EducationUniversity of PerugiaPerugiaItaly
| | - Simona Ronchetti
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Eleonora Cianflone
- Department of Medical and Surgical SciencesUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| | - Andrea Gagliardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Erika Ricci
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Francesco Rossi
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Carlo Riccardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Stefano Bruscoli
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Konrad Urbanek
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
- Department of Experimental and Clinical MedicineUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| |
Collapse
|
17
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Ronchetti S, Gentili M, Ricci E, Migliorati G, Riccardi C. Glucocorticoid-Induced Leucine Zipper as a Druggable Target in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:1017-1025. [PMID: 31961437 DOI: 10.1093/ibd/izz331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex pathogenesis, affecting people of all ages. They are characterized by alternating phases of clinical relapse and remission, depending on the fine balance between immune cells and the gut microbiota. The cross talk between cells of the immune system and the gut microbiota can result in either tolerance or inflammation, according to multifactorial triggers, ranging from environmental factors to genetic susceptibility. Glucocorticoid (GC) administration remains the first-line treatment for IBDs, although long-term use is limited by development of serious adverse effects. Recently, new alternative pharmacological therapies have been developed, although these are not always effective in IBD patients. There is a constant demand for effective new drug targets to guarantee total remission and improve the quality of life for IBD patients. The glucocorticoid-induced leucine zipper (GILZ) has been implicated as a promising candidate for this purpose, in view of its powerful anti-inflammatory effects that mimic those of GCs while avoiding their unwanted adverse reactions. Here we present and discuss the latest findings about the involvement of GILZ in IBDs.
Collapse
Affiliation(s)
- Simona Ronchetti
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | - Marco Gentili
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | | | - Carlo Riccardi
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| |
Collapse
|
19
|
Valbuena Perez JV, Linnenberger R, Dembek A, Bruscoli S, Riccardi C, Schulz MH, Meyer MR, Kiemer AK, Hoppstädter J. Altered glucocorticoid metabolism represents a feature of macroph-aging. Aging Cell 2020; 19:e13156. [PMID: 32463582 PMCID: PMC7294787 DOI: 10.1111/acel.13156] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process is characterized by a chronic, low‐grade inflammatory state, termed “inflammaging.” It has been suggested that macrophage activation plays a key role in the induction and maintenance of this state. In the present study, we aimed to elucidate the mechanisms responsible for aging‐associated changes in the myeloid compartment of mice. The aging phenotype, characterized by elevated cytokine production, was associated with a dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis and diminished serum corticosteroid levels. In particular, the concentration of corticosterone, the major active glucocorticoid in rodents, was decreased. This could be explained by an impaired expression and activity of 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1), an enzyme that determines the extent of cellular glucocorticoid responses by reducing the corticosteroids cortisone/11‐dehydrocorticosterone to their active forms cortisol/corticosterone, in aged macrophages and peripheral leukocytes. These changes were accompanied by a downregulation of the glucocorticoid receptor target gene glucocorticoid‐induced leucine zipper (GILZ) in vitro and in vivo. Since GILZ plays a central role in macrophage activation, we hypothesized that the loss of GILZ contributed to the process of macroph‐aging. The phenotype of macrophages from aged mice was indeed mimicked in young GILZ knockout mice. In summary, the current study provides insight into the role of glucocorticoid metabolism and GILZ regulation during aging.
Collapse
Affiliation(s)
| | - Rebecca Linnenberger
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Anna Dembek
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Stefano Bruscoli
- Pharmacology Department of Medicine Perugia University Perugia Italy
| | - Carlo Riccardi
- Pharmacology Department of Medicine Perugia University Perugia Italy
| | - Marcel H. Schulz
- Institute for Cardiovascular Regeneration Goethe University Frankfurt am Main Germany
- German Center for Cardiovascular Research (DZHK) Partner Site RheinMain Frankfurt am Main Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology Institute of Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS) Saarland University Homburg Germany
| | - Alexandra K. Kiemer
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Jessica Hoppstädter
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| |
Collapse
|
20
|
Ingawale DK, Mandlik SK. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol Immunotoxicol 2020; 42:59-73. [PMID: 32070175 DOI: 10.1080/08923973.2020.1728765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological intrinsic host response to injury meant for removal of noxious stimuli and maintenance of homeostasis. It is a defensive body mechanism that involves immune cells, blood vessels and molecular mediators of inflammation. Glucocorticoids (GCs) are steroidal hormones responsible for regulation of homeostatic and metabolic functions of body. Synthetic GCs are the most useful anti-inflammatory drugs used for the treatment of chronic inflammatory diseases such as asthma, chronic obstructive pulmonary disease (COPD), allergies, multiple sclerosis, tendinitis, lupus, atopic dermatitis, ulcerative colitis, rheumatoid arthritis and osteoarthritis whereas, the long term use of GCs are associated with many side effects. The anti-inflammatory and immunosuppressive (desired) effects of GCs are usually mediated by transrepression mechanism whereas; the metabolic and toxic (undesired) effects are usually manifested by transactivation mechanism. Though GCs are most potent anti-inflammatory and immunosuppressive drugs, the common problem associated with their use is GC resistance. Several research studies are rising to comprehend these mechanisms, which would be helpful in improving the GC resistance in asthma and COPD patients. This review aims to focus on identification of new drug targets in inflammation which will be helpful in the resolution of inflammation. The ample understanding of GC mechanisms of action helps in the development of novel anti-inflammatory drugs for the treatment of inflammatory and autoimmune disease with reduced side effects and minimal toxicity.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
21
|
Marchetti MC, Cannarile L, Ronchetti S, Delfino DV, Riccardi C, Ayroldi E. L-GILZ binds and inhibits nuclear factor κB nuclear translocation in undifferentiated thyroid cancer cells. J Chemother 2020; 32:263-267. [PMID: 32067575 DOI: 10.1080/1120009x.2020.1728862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proto-oncogene mutations and abnormal activation of mitogen-activated protein kinase (MAPK) signalling are recurrently found in thyroid cancers. Some thyroid neoplasms respond to drugs that inhibit MAPK pathway activation. Previously, we showed that pharmacological inhibition of MAPK in thyroid cancer cells inhibits cell proliferation and upregulates L-GILZ (long glucocorticoid-induced leucine zipper), a protein with anti-oncogenic and antiproliferative activity, and that L-GILZ is partially responsible for the antiproliferative activity of MAPK inhibitors. Here, we demonstrate that pharmacological inhibition of MAPK in the anaplastic thyroid cancer cell line CAL-62 upregulated L-GILZ, which bound nuclear factor κB (NF-κB) and inhibited its nuclear translocation. These data demonstrate a unique L-GILZ-mediated molecular mechanism that, by trapping NF-κB in the cytoplasm, contributes to the inhibition of proliferation induced by drugs targeting the MAPK transduction cascade. Enhanced knowledge of the mechanism of action of MAPK pathway-inhibiting drugs may improve their clinical use.
Collapse
Affiliation(s)
- Maria Cristina Marchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Emira Ayroldi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Kuo CE, Chen YM. Characterization of gonadal glucocorticoid-induced leucine zipper (GILZ) protein expression during sex change in the protogynous orange-spotted grouper, Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol 2020; 242:110416. [PMID: 32017989 DOI: 10.1016/j.cbpb.2020.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 11/27/2022]
Abstract
Steroid hormones have been proven as a key drive of sex change in sequentially hermaphroditic organisms. However, the upstream mechanism of sex steroid hormones regulation that affect sex change remain unknown. The main glucocorticoid in teleost fish is cortisol, which both regulates steroidogenesis and has antistress action. Thus, cortisol might be one of the prime factors in sex change. In this study, the glucocorticoid-induced leucine zipper (GILZ) gene, was proven to have a dramatic effect in orange-spotted groupers (Epinephelus coioides) during sex change at the early stage of gonadal transition. The specific action of the GILZ protein is at the pouch-shaped proliferative spermatogonia instead of the degenerative oocyte at the onset of sex change. Immunohistochemical (IHC) evidence revealed that GILZ performs intensively at undifferentiated spermatogonia in the early testis stage. These results imply that cortisol provokes a rise of GILZ through regulation caused by steroid hormones leading to sex change.
Collapse
Affiliation(s)
- Cham-En Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 92641, Taiwan, ROC
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| |
Collapse
|
23
|
Hoppstädter J, Valbuena Perez JV, Linnenberger R, Dahlem C, Legroux TM, Hecksteden A, Tse WKF, Flamini S, Andreas A, Herrmann J, Herr C, Müller R, Meyer T, Bals R, Riccardi C, Bruscoli S, Kiemer AK. The glucocorticoid-induced leucine zipper mediates statin-induced muscle damage. FASEB J 2020; 34:4684-4701. [PMID: 32030813 DOI: 10.1096/fj.201902557rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
Statins, the most prescribed class of drugs for the treatment of hypercholesterolemia, can cause muscle-related adverse effects. It has been shown that the glucocorticoid-induced leucine zipper (GILZ) plays a key role in the anti-myogenic action of dexamethasone. In the present study, we aimed to evaluate the role of GILZ in statin-induced myopathy. Statins induced GILZ expression in C2C12 cells, primary murine myoblasts/myotubes, primary human myoblasts, and in vivo in zebrafish embryos and human quadriceps femoris muscle. Gilz induction was mediated by FOXO3 activation and binding to the Gilz promoter, and could be reversed by the addition of geranylgeranyl, but not farnesyl, pyrophosphate. Atorvastatin decreased Akt phosphorylation and increased cleaved caspase-3 levels in myoblasts. This effect was reversed in myoblasts from GILZ knockout mice. Similarly, myofibers isolated from knockout animals were more resistant toward statin-induced cell death than their wild-type counterparts. Statins also impaired myoblast differentiation, and this effect was accompanied by GILZ induction. The in vivo relevance of our findings was supported by the observation that gilz overexpression in zebrafish embryos led to impaired embryonic muscle development. Taken together, our data point toward GILZ as an essential mediator of the molecular mechanisms leading to statin-induced muscle damage.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | | - Rebecca Linnenberger
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Thierry M Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Anne Hecksteden
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - William K F Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Sara Flamini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Anastasia Andreas
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
24
|
Zhou H, Zeng Z, Koentgen F, Khan M, Mombaerts P. The testicular soma of Tsc22d3 knockout mice supports spermatogenesis and germline transmission from spermatogonial stem cell lines upon transplantation. Genesis 2019; 57:e23295. [PMID: 31001916 PMCID: PMC6617806 DOI: 10.1002/dvg.23295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
Abstract
Spermatogonial stem cells (SSCs) are adult stem cells that are slowly cycling and self-renewing. The pool of SSCs generates very large numbers of male gametes throughout the life of the individual. SSCs can be cultured in vitro for long periods of time, and established SSC lines can be manipulated genetically. Upon transplantation into the testes of infertile mice, long-term cultured mouse SSCs can differentiate into fertile spermatozoa, which can give rise to live offspring. Here, we show that the testicular soma of mice with a conditional knockout (conKO) in the X-linked gene Tsc22d3 supports spermatogenesis and germline transmission from cultured mouse SSCs upon transplantation. Infertile males were produced by crossing homozygous Tsc22d3 floxed females with homozygous ROSA26-Cre males. We obtained 96 live offspring from six long-term cultured SSC lines with the aid of intracytoplasmic sperm injection. We advocate the further optimization of Tsc22d3-conKO males as recipients for testis transplantation of SSC lines.
Collapse
Affiliation(s)
- Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Zhen Zeng
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | | | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| |
Collapse
|
25
|
Moreira BP, Oliveira PF, Alves MG. Molecular Mechanisms Controlled by mTOR in Male Reproductive System. Int J Mol Sci 2019; 20:ijms20071633. [PMID: 30986927 PMCID: PMC6480367 DOI: 10.3390/ijms20071633] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
In recent years, the mammalian target of rapamycin (mTOR) has emerged as a master integrator of upstream inputs, such as amino acids, growth factors and insulin availability, energy status and many others. The integration of these signals promotes a response through several downstream effectors that regulate protein synthesis, glucose metabolism and cytoskeleton organization, among others. All these biological processes are essential for male fertility, thus it is not surprising that novel molecular mechanisms controlled by mTOR in the male reproductive tract have been described. Indeed, since the first clinical evidence showed that men taking rapamycin were infertile, several studies have evidenced distinct roles for mTOR in spermatogenesis. However, there is a lack of consensus whether mTOR inhibition, which remains the experimental approach that originates the majority of available data, has a negative or positive impact on male reproductive health. Herein we discuss the latest findings concerning mTOR activity in testes, particularly its role on spermatogonial stem cell (SSC) maintenance and differentiation, as well as in the physiology of Sertoli cells (SCs), responsible for blood–testis barrier maintenance/restructuring and the nutritional support of spermatogenesis. Taken together, these recent advances highlight a crucial role for mTOR in determining the male reproductive potential.
Collapse
Affiliation(s)
- Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
26
|
Bereshchenko O, Migliorati G, Bruscoli S, Riccardi C. Glucocorticoid-Induced Leucine Zipper: A Novel Anti-inflammatory Molecule. Front Pharmacol 2019; 10:308. [PMID: 30971930 PMCID: PMC6445858 DOI: 10.3389/fphar.2019.00308] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are the most commonly used drugs for treatment of autoimmune and inflammatory diseases. Their efficacy is due to their ability to bind cytoplasmic receptors (glucocorticoid receptors, GR) and other cytoplasmic proteins, thus regulating gene expression. Although GCs are potent life-saving drugs, their therapeutic effects are transitory and chronic use of GCs is accompanied by serious side effects. Therefore, new drugs are needed to replace GCs. We have identified a gene, glucocorticoid-induced leucine zipper (GILZ or tsc22d3), that is rapidly and invariably induced by GCs. Human GILZ is a 135-amino acid protein that mediates many GC effects, including inhibition of the NF-κB and MAPK pathways. Similar to GCs, GILZ exerts anti-inflammatory activity in experimental disease models, including inflammatory bowel diseases and arthritis. While transgenic mice that overexpress GILZ are more resistant, GILZ knockout mice develop worse inflammatory diseases. Moreover, the anti-inflammatory effect of GCs is attenuated in GILZ-deficient mice. Importantly, in vivo delivery of recombinant GILZ protein cured colitis and facilitated resolution of lipopolysaccharide-induced inflammation without apparent toxic effects. A synthetic GILZ-derived peptide, corresponding to the GILZ region that interacts with NF-κB, was able to suppress experimental autoimmune encephalomyelitis. Collectively, these findings indicate that GILZ is an anti-inflammatory molecule that may serve as the basis for designing new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Hoppstädter J, Diesel B, Linnenberger R, Hachenthal N, Flamini S, Minet M, Leidinger P, Backes C, Grässer F, Meese E, Bruscoli S, Riccardi C, Huwer H, Kiemer AK. Amplified Host Defense by Toll-Like Receptor-Mediated Downregulation of the Glucocorticoid-Induced Leucine Zipper (GILZ) in Macrophages. Front Immunol 2019; 9:3111. [PMID: 30723476 PMCID: PMC6349698 DOI: 10.3389/fimmu.2018.03111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Activation of toll-like receptors (TLRs) plays a pivotal role in the host defense against bacteria and results in the activation of NF-κB-mediated transcription of proinflammatory mediators. Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory mediator, which inhibits NF-κB activity in macrophages. Thus, we aimed to investigate the regulation and role of GILZ expression in primary human and murine macrophages upon TLR activation. Treatment with TLR agonists, e.g., Pam3CSK4 (TLR1/2) or LPS (TLR4) rapidly decreased GILZ mRNA and protein levels. In consequence, GILZ downregulation led to enhanced induction of pro-inflammatory mediators, increased phagocytic activity, and a higher capacity to kill intracellular bacteria (Salmonella enterica serovar typhimurium), as shown in GILZ knockout macrophages. Treatment with the TLR3 ligand polyinosinic: polycytidylic acid [Poly(I:C)] did not affect GILZ mRNA levels, although GILZ protein expression was decreased. This effect was paralleled by sensitization toward TLR1/2- and TLR4-agonists. A bioinformatics approach implicated more than 250 miRNAs as potential GILZ regulators. Microarray analysis revealed that the expression of several potentially GILZ-targeting miRNAs was increased after Poly(I:C) treatment in primary human macrophages. We tested the ability of 11 of these miRNAs to target GILZ by luciferase reporter gene assays. Within this small set, four miRNAs (hsa-miR-34b*,−222,−320d,−484) were confirmed as GILZ regulators, suggesting that GILZ downregulation upon TLR3 activation is a consequence of the synergistic actions of multiple miRNAs. In summary, our data show that GILZ downregulation promotes macrophage activation. GILZ downregulation occurs both via MyD88-dependent and -independent mechanisms and can involve decreased mRNA or protein stability and an attenuated translation.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Britta Diesel
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Rebecca Linnenberger
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Nina Hachenthal
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sara Flamini
- Pharmacology, Department of Medicine, Perugia University, Perugia, Italy
| | - Marie Minet
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Petra Leidinger
- Human Genetics, Department of Medicine, Saarland University, Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Friedrich Grässer
- Virology, Department of Medicine, Saarland University, Homburg, Germany
| | - Eckart Meese
- Human Genetics, Department of Medicine, Saarland University, Homburg, Germany
| | - Stefano Bruscoli
- Pharmacology, Department of Medicine, Perugia University, Perugia, Italy
| | - Carlo Riccardi
- Pharmacology, Department of Medicine, Perugia University, Perugia, Italy
| | - Hanno Huwer
- Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Alexandra K Kiemer
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
28
|
Gu R, Tang W, Lei B, Jiang C, Song F, Xu G. Synthesized glucocorticoid-induced leucine zipper peptide inhibits photoreceptor apoptosis and protects retinal function in light-induced retinal degeneration model. Clin Exp Ophthalmol 2019; 47:646-657. [PMID: 30474307 DOI: 10.1111/ceo.13452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ruiping Gu
- Department of Ophthalmology; Eye and ENT Hospital of Fudan University; Shanghai China
| | - Wenyi Tang
- Department of Ophthalmology; Eye and ENT Hospital of Fudan University; Shanghai China
| | - Boya Lei
- Department of Ophthalmology; Eye and ENT Hospital of Fudan University; Shanghai China
| | - Chen Jiang
- Department of Ophthalmology; Eye and ENT Hospital of Fudan University; Shanghai China
| | - Fang Song
- Department of Ophthalmology; Eye and ENT Hospital of Fudan University; Shanghai China
| | - Gezhi Xu
- Department of Ophthalmology; Eye and ENT Hospital of Fudan University; Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration; Fudan University; Shanghai China
- NHC Key Laboratory of Myopia; Fudan University; Shanghai China
- Laboratory of Myopia; Chinese Academy of Medical Sciences; Shanghai China
| |
Collapse
|
29
|
Chohan H, Esfandiarei M, Arman D, Van Raamsdonk CD, van Breemen C, Friedman JM, Jett KA. Neurofibromin haploinsufficiency results in altered spermatogenesis in a mouse model of neurofibromatosis type 1. PLoS One 2018; 13:e0208835. [PMID: 30571760 PMCID: PMC6301684 DOI: 10.1371/journal.pone.0208835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/24/2018] [Indexed: 11/18/2022] Open
Abstract
The fertility of men with neurofibromatosis 1 (NF1) is reduced. Despite this observation, gonadal function has not been examined in patients with NF1. In order to assess the role of reduced neurofibromin in the testes, we examined testicular morphology and function in an Nf1+/- mouse model. We found that although Nf1+/- male mice are able to reproduce, they have significantly fewer pups per litter than Nf1+/+ control males. Reduced fertility in Nf1+/- male mice is associated with disorganization of the seminiferous epithelium, with exfoliation of germ cells and immature spermatids into the tubule lumen. Morphometric analysis shows that these alterations are associated with decreased Leydig cell numbers and increased spermatid cell numbers. We hypothesized that hyper-activation of Ras in Nf1+/- males affects ectoplasmic specialization, a Sertoli-spermatid adherens junction involved in spermiation. Consistent with this idea, we found increased expression of phosphorylated ERK, a downstream effector of Ras that has been shown to alter ectoplasmic specialization, in Nf1+/- males in comparison to control Nf1+/+ littermates. These data demonstrate that neurofibromin haploinsufficiency impairs spermatogenesis and fertility in a mouse model of NF1.
Collapse
Affiliation(s)
- Harleen Chohan
- Department of Medical Genetics, BC Children Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Mitra Esfandiarei
- Department of Anesthesiology, Pharmacology and Therapeutics, BC Children Hospital Research Institute, University of British Columbia, Vancouver, Canada
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States of America
- * E-mail:
| | - Darian Arman
- Department of Anesthesiology, Pharmacology and Therapeutics, BC Children Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Catherine D. Van Raamsdonk
- Department of Medical Genetics, BC Children Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Cornelis van Breemen
- Department of Anesthesiology, Pharmacology and Therapeutics, BC Children Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, BC Children Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Kimberly A. Jett
- Department of Medical Genetics, BC Children Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
La HM, Chan AL, Legrand JMD, Rossello FJ, Gangemi CG, Papa A, Cheng Q, Morand EF, Hobbs RM. GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development 2018; 145:dev.165324. [PMID: 30126904 DOI: 10.1242/dev.165324] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Male fertility is dependent on spermatogonial stem cells (SSCs) that self-renew and produce differentiating germ cells. Growth factors produced within the testis are essential for SSC maintenance but intrinsic factors that dictate the SSC response to these stimuli are poorly characterised. Here, we have studied the role of GILZ, a TSC22D family protein and spermatogenesis regulator, in spermatogonial function and signalling. Although broadly expressed in the germline, GILZ was prominent in undifferentiated spermatogonia and Gilz deletion in adults resulted in exhaustion of the GFRα1+ SSC-containing population and germline degeneration. GILZ loss was associated with mTORC1 activation, suggesting enhanced growth factor signalling. Expression of deubiquitylase USP9X, an mTORC1 modulator required for spermatogenesis, was disrupted in Gilz mutants. Treatment with an mTOR inhibitor rescued GFRα1+ spermatogonial failure, indicating that GILZ-dependent mTORC1 inhibition is crucial for SSC maintenance. Analysis of cultured undifferentiated spermatogonia lacking GILZ confirmed aberrant activation of ERK MAPK upstream mTORC1 plus USP9X downregulation and interaction of GILZ with TSC22D proteins. Our data indicate an essential role for GILZ-TSC22D complexes in ensuring the appropriate response of undifferentiated spermatogonia to growth factors via distinct inputs to mTORC1.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Ai-Leen Chan
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Julien M D Legrand
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Christina G Gangemi
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Qiang Cheng
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria 3800, Australia .,Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
31
|
Bruscoli S, Sorcini D, Flamini S, Gagliardi A, Adamo F, Ronchetti S, Migliorati G, Bereshchenko O, Riccardi C. Glucocorticoid-Induced Leucine Zipper Inhibits Interferon-Gamma Production in B Cells and Suppresses Colitis in Mice. Front Immunol 2018; 9:1720. [PMID: 30083167 PMCID: PMC6064738 DOI: 10.3389/fimmu.2018.01720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) is transcriptionally upregulated by glucocorticoids (GCs) and mediates many of the anti-inflammatory effects of GCs. Since B cell activity has been linked to cytokine production and modulation of inflammatory responses, we herein investigated the role of GILZ in B cells during colitis development. B cell-specific gilz knock-out (gilz B cKO) mice exhibited increased production of the pro-inflammatory cytokine IFN-γ in B cells, and consequently CD4+ T cell activation. Increased IFN-γ production in B cells was associated with enhanced transcriptional activity of the transcription factor activator protein-1 (AP-1) on the IFN-γ promoter. Moreover, GILZ deficiency in B cells was linked to enhanced susceptibility to experimental colitis in mice, and this was reversed by administering GILZ protein. Interestingly, we observed increased production of IFN-γ in both B and T cells infiltrating the lamina propria (LP) of gilz B cKO mice. Together, these findings indicate that GILZ controls IFN-γ production in B cells, which also affects T cell activity, and increased production of IFN-γ by B and T cells in LP is associated with predisposition to inflammatory colitis in mice.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- Section of Hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Flamini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Gagliardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Adamo
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Oxana Bereshchenko
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
32
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
33
|
Vétillard M, Schlecht-Louf G. Glucocorticoid-Induced Leucine Zipper: Fine-Tuning of Dendritic Cells Function. Front Immunol 2018; 9:1232. [PMID: 29915587 PMCID: PMC5994841 DOI: 10.3389/fimmu.2018.01232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that control the induction of both tolerance and immunity. Understanding the molecular mechanisms regulating DCs commitment toward a regulatory- or effector-inducing profile is critical for better designing prophylactic and therapeutic approaches. Initially identified in dexamethasone-treated thymocytes, the glucocorticoid-induced leucine zipper (GILZ) protein has emerged as a critical factor mediating most, but not all, glucocorticoids effects in both non-immune and immune cells. This intracellular protein exerts pleiotropic effects through interactions with transcription factors and signaling proteins, thus modulating signal transduction and gene expression. GILZ has been reported to control the proliferation, survival, and differentiation of lymphocytes, while its expression confers anti-inflammatory phenotype to monocytes and macrophages. In the past twelve years, a growing set of data has also established that GILZ expression in DCs is a molecular switch controlling their T-cell-priming capacity. Here, after a brief presentation of GILZ isoforms and functions, we summarize current knowledge regarding GILZ expression and regulation in DCs, in both health and disease. We further present the functional consequences of GILZ expression on DCs capacity to prime effector or regulatory T-cell responses and highlight recent findings pointing to a broader role of GILZ in the fine tuning of antigen capture, processing, and presentation by DCs. Finally, we discuss future prospects regarding the possible roles for GILZ in the control of DCs function in the steady state and in the context of infections and chronic pathologies.
Collapse
Affiliation(s)
- Mathias Vétillard
- UMR996-Inflammation, Chimiokines et Immunopathologie, INSERM, Faculté de médecine, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Géraldine Schlecht-Louf
- UMR996-Inflammation, Chimiokines et Immunopathologie, INSERM, Faculté de médecine, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| |
Collapse
|
34
|
Ayroldi E, Cannarile L, Delfino DV, Riccardi C. A dual role for glucocorticoid-induced leucine zipper in glucocorticoid function: tumor growth promotion or suppression? Cell Death Dis 2018; 9:463. [PMID: 29695779 PMCID: PMC5916931 DOI: 10.1038/s41419-018-0558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GCs), important therapeutic tools to treat inflammatory and immunosuppressive diseases, can also be used as part of cancer therapy. In oncology, GCs are used as anticancer drugs for lymphohematopoietic malignancies, while in solid neoplasms primarily to control the side effects of chemo/radiotherapy treatments. The molecular mechanisms underlying the effects of GCs are numerous and often overlapping, but not all have been elucidated. In normal, cancerous, and inflammatory tissues, the response to GCs differs based on the tissue type. The effects of GCs are dependent on several factors: the tumor type, the GC therapy being used, the expression level of the glucocorticoid receptor (GR), and the presence of any other stimuli such as signals from immune cells and the tumor microenvironment. Therefore, GCs may either promote or suppress tumor growth via different molecular mechanisms. Stress exposure results in dysregulation of the hypothalamic-pituitary-adrenal axis with increased levels of endogenous GCs that promote tumorigenesis, confirming the importance of GCs in tumor growth. Most of the effects of GCs are genomic and mediated by the modulation of GR gene transcription. Moreover, among the GR-induced genes, glucocorticoid-induced leucine zipper (GILZ), which was cloned and characterized primarily in our laboratory, mediates many GC anti-inflammatory effects. In this review, we analyzed the possible role for GILZ in the effects GCs have on tumors cells. We also suggest that GILZ, by affecting the immune system, tumor microenvironment, and directly cancer cell biology, has a tumor-promoting function. However, it may also induce apoptosis or decrease the proliferation of cancer cells, thus inhibiting tumor growth. The potential therapeutic implications of GILZ activity on tumor cells are discussed here.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.
| | - Lorenza Cannarile
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
35
|
Ayroldi E, Petrillo MG, Marchetti MC, Cannarile L, Ronchetti S, Ricci E, Cari L, Avenia N, Moretti S, Puxeddu E, Riccardi C. Long glucocorticoid-induced leucine zipper regulates human thyroid cancer cell proliferation. Cell Death Dis 2018; 9:305. [PMID: 29467389 PMCID: PMC5833869 DOI: 10.1038/s41419-018-0346-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Long glucocorticoid-induced leucine zipper (L-GILZ) has recently been implicated in cancer cell proliferation. Here, we investigated its role in human thyroid cancer cells. L-GILZ protein was highly expressed in well-differentiated cancer cells from thyroid cancer patients and differentiated thyroid cancer cell lines, but poorly expressed in anaplastic tumors. A fusion protein containing L-GILZ, when overexpressed in an L-GILZ-deficient 8505C cell line derived from undifferentiated human thyroid cancer tissue, inhibited cellular proliferation in vitro. In addition, when this protein was injected into nude mice, in which cells from line 8505C had been transplanted, xenograft growth was reduced. Since the mitogen-activated protein kinase (MAPK) pathway is frequently hyperactivated in thyroid cancer cells as a result of the BRAFV600E or Ras mutation, we sought to further investigate the role of L-GILZ in the MAPK pathway. To this end, we analyzed L-GILZ expression and function in cells treated with MAPK inhibitors. We used 8505C cells, which have the BRAFV600E mutation, or the CAL-62 cell line, which harbors a Ras mutation. The cells were treated with the BRAF-specific drug vemurafenib (PLX4032) or the MEK1/2 inhibitor, U0126, respectively. Treatment with these agents inhibited MAPK activation, reduced cell proliferation, and upregulated L-GILZ expression. L-GILZ silencing reversed the antiproliferative activity of the MAPK inhibitors, consistent with an antiproliferative role. Treatment with MAPK inhibitors led to the phosphorylation of the cAMP/response element-binding protein (CREB), and active CREB bound to the L-GILZ promoter, contributing to its transcription. We suggest that the CREB signaling pathway, frequently deregulated in thyroid tumors, is involved in L-GILZ upregulation and that L-GILZ regulates thyroid cancer cell proliferation, which may have potential in cancer treatment.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.
| | - Maria Grazia Petrillo
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.,Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Maria Cristina Marchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Nicola Avenia
- Department of Surgical and Biomedical Sciences, Medical School, University of Perugia, Perugia, Italy
| | - Sonia Moretti
- Department of Medicine, Section of Endocrinology, Medical School, University of Perugia, Perugia, Italy
| | - Efisio Puxeddu
- Department of Medicine, Section of Endocrinology, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
36
|
Lichawska-Cieslar A, Pietrzycka R, Ligeza J, Kulecka M, Paziewska A, Kalita A, Dolicka DD, Wilamowski M, Miekus K, Ostrowski J, Mikula M, Jura J. RNA sequencing reveals widespread transcriptome changes in a renal carcinoma cell line. Oncotarget 2018; 9:8597-8613. [PMID: 29492220 PMCID: PMC5823589 DOI: 10.18632/oncotarget.24269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022] Open
Abstract
We used RNA sequencing (RNA-Seq) technology to investigate changes in the transcriptome profile in the Caki-1 clear cell renal cell carcinoma (ccRCC) cells, which overexpress monocyte chemoattractant protein-induced protein 1 (MCPIP1). RNA-Seq data showed changes in 11.6% and 41.8% of the global transcriptome of Caki-1 cells overexpressing wild-type MCPIP1 or its D141N mutant, respectively. Gene ontology and KEGG pathway functional analyses showed that these transcripts encoded proteins involved in cell cycle progression, protein folding in the endoplasmic reticulum, hypoxia response and cell signalling. We identified 219 downregulated transcripts in MCPIP1-expressing cells that were either unchanged or upregulated in D141N-expressing cells. We validated downregulation of 15 transcripts belonging to different functional pathways by qRT-PCR. The growth and viability of MCPIP1-expressing cells was reduced because of elevated p21Cip1 levels. MCPIP1-expressing cells also showed reduced levels of DDB1 transcript that encodes component of the E3 ubiquitin ligase that degrades p21Cip1. These results demonstrate that MCPIP1 influences the growth and viability of ccRCC cells by increasing or decreasing the transcript levels for proteins involved in cell cycle progression, protein folding, hypoxia response, and cell signaling.
Collapse
Affiliation(s)
- Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Roza Pietrzycka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Janusz Ligeza
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Kulecka
- Departments of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Departments of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agata Kalita
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dobrochna D. Dolicka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wilamowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Ostrowski
- Departments of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
37
|
Zhao L, Zhu Z, Yao C, Huang Y, Zhi E, Chen H, Tian R, Li P, Yuan Q, Xue Y, Wan Z, Yang C, Gong Y, He Z, Li Z. VEGFC/VEGFR3 Signaling Regulates Mouse Spermatogonial Cell Proliferation via the Activation of AKT/MAPK and Cyclin D1 Pathway and Mediates the Apoptosis by affecting Caspase 3/9 and Bcl-2. Cell Cycle 2018; 17:225-239. [PMID: 29169284 DOI: 10.1080/15384101.2017.1407891] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that the transcript levels of Vegfc and its receptor Vegfr3 were high in spermatogonia and extremely low in spermatocytes and spermatids. However, it remains unknown about the functions and the mechanisms of VEGFC/VEGFR3 signaling in regulating the fate determinations of spermatogonia. To this end, here we explored the role and signaling pathways of VEGFC/VEGFR3 by using a cell line derived from immortalized mouse spermatogonia retaining markers of mitotic germ cells, namely GC-1 cells. VEGFR3 was expressed in mouse primary spermatogonia and GC-1 cells. VEGFC stimulated the proliferation and DNA synthesis of GC-1 cells and enhanced the phosphorylation of PI3K-AKT and MAPK, whereas LY294002 (an inhibitor for AKT) and CI-1040 (an inhibitor for MAPK) blocked the effect of VEGFC on GC-1 cell proliferation. Furthermore, VEGFC increased the transcripts of c-fos and Egr1 and protein levels of cyclin D1, PCNA and Bcl-2. Conversely, the blocking of VEGFC/VEGFR3 signaling by VEGFR3 knockdown reduced the phosphorylation of AKT/MAPK and decreased the levels of cyclin D1 and PCNA. Additionally, VEGFR3 knockdown not only resulted in more apoptosis of GC-1 cells but also led to a decrease of Bcl-2 and promoted the cleavage of Caspase-3/9 and PARP. Collectively, these data suggested that VEGFC/VEGFR3 signaling promotes the proliferation of GC-1 cells via the AKT /MAPK and cyclin D1 pathway and it inhibits the cell apoptosis through Caspase-3/9, PARP and Bcl-2. Thus, this study sheds a novel insight to the molecular mechanisms underlying the fate decisions of mammalian spermatogonia.
Collapse
Affiliation(s)
- Liangyu Zhao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zijue Zhu
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chencheng Yao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuhua Huang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Erlei Zhi
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Huixing Chen
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Ruhui Tian
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Peng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Qingqing Yuan
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yunjing Xue
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zhong Wan
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chao Yang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuehua Gong
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zuping He
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Zheng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| |
Collapse
|
38
|
Chen J, Cai T, Zheng C, Lin X, Wang G, Liao S, Wang X, Gan H, Zhang D, Hu X, Wang S, Li Z, Feng Y, Yang F, Han C. MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins. Nucleic Acids Res 2017; 45:4142-4157. [PMID: 27998933 PMCID: PMC5397178 DOI: 10.1093/nar/gkw1287] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tanxi Cai
- University of Chinese Academy of Sciences, Beijing 100049, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuxia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyun Gan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, Beijing 100049, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Ricci E, Ronchetti S, Pericolini E, Gabrielli E, Cari L, Gentili M, Roselletti E, Migliorati G, Vecchiarelli A, Riccardi C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression. FASEB J 2017; 31:3054-3065. [PMID: 28373208 DOI: 10.1096/fj.201601315r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
The glucocorticoid-induced leucine zipper (GILZ) gene is a pivotal mediator of the anti-inflammatory effects of glucocorticoids (GCs) that are known to regulate the function of both adaptive and innate immunity cells. Our aim was to investigate the role of GILZ in GC-induced inhibition of neutrophil migration, as this role has not been investigated before. We found that GILZ expression was induced by dexamethasone (DEX), a synthetic GC, in neutrophils, and that it regulated migration of these cells into inflamed tissues under DEX treatment. Of note, inhibition of neutrophil migration was not observed in GILZ-knockout mice with peritonitis that were treated by DEX. This was because DEX was unable to up-regulate annexin A1 (Anxa1) expression in the absence of GILZ. Furthermore, we showed that GILZ mediates Anxa1 induction by GCs by transactivating Anxa1 expression at the promoter level via binding with the transcription factor, PU.1. The present findings shed light on the role of GILZ in the mechanism of induction of Anxa1 by GCs. As Anxa1 is an important protein for the resolution of inflammatory response, GILZ may represent a new pharmacologic target for treatment of inflammatory diseases.-Ricci, E., Ronchetti, S., Pericolini, E., Gabrielli, E., Cari, L., Gentili, M., Roselletti, E., Migliorati, G., Vecchiarelli, A., Riccardi, C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression.
Collapse
Affiliation(s)
- Erika Ricci
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Eva Pericolini
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Department of Diagnostic, Clinic, and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marco Gentili
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elena Roselletti
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy;
| |
Collapse
|
40
|
Rashmi P, Colussi G, Ng M, Wu X, Kidwai A, Pearce D. Glucocorticoid-induced leucine zipper protein regulates sodium and potassium balance in the distal nephron. Kidney Int 2017; 91:1159-1177. [PMID: 28094030 DOI: 10.1016/j.kint.2016.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
Glucocorticoid induced leucine zipper protein (GILZ) is an aldosterone-regulated protein that controls sodium transport in cultured kidney epithelial cells. Mice lacking GILZ have been reported previously to have electrolyte abnormalities. However, the mechanistic basis has not been explored. Here we provide evidence supporting a role for GILZ in modulating the balance of renal sodium and potassium excretion by regulating the sodium-chloride cotransporter (NCC) activity in the distal nephron. Gilz-/- mice have a higher plasma potassium concentration and lower fractional excretion of potassium than wild type mice. Furthermore, knockout mice are more sensitive to NCC inhibition by thiazides than are the wild type mice, and their phosphorylated NCC expression is higher. Despite increased NCC activity, knockout mice do not have higher blood pressure than wild type mice. However, during sodium deprivation, knockout mice come into sodium balance more quickly, than do the wild type, without a significant increase in plasma renin activity. Upon prolonged sodium restriction, knockout mice develop frank hyperkalemia. Finally, in HEK293T cells, exogenous GILZ inhibits NCC activity at least in part by inhibiting SPAK phosphorylation. Thus, GILZ promotes potassium secretion by inhibiting NCC and enhancing distal sodium delivery to the epithelial sodium channel. Additionally, Gilz-/- mice have features resembling familial hyperkalemic hypertension, a human disorder that manifests with hyperkalemia associated variably with hypertension.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - GianLuca Colussi
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Michael Ng
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Xinhao Wu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Atif Kidwai
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
41
|
Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget 2016; 6:38446-57. [PMID: 26498359 PMCID: PMC4770713 DOI: 10.18632/oncotarget.6197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Induction of glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids has been reported to be essential for their anti-inflammatory actions. At the same time, GILZ is actively downregulated under inflammatory conditions, resulting in an enhanced pro-inflammatory response. Two papers published in the recent past showed elevated GILZ expression in the late stage of an inflammation. Still, the manuscripts suggest seemingly contradictory roles of endogenous GILZ: one of them suggested compensatory actions by elevated corticosterone levels in GILZ knockout mice, while our own manuscript showed a distinct phenotype upon GILZ knockout in vivo. Herein, we discuss the role of GILZ in inflammation with a special focus on the influence of endogenous GILZ on macrophage responses and suggest a cell-type specific action of GILZ as an explanation for the conflicting results as presented in recent reports.
Collapse
|
42
|
Glucocorticoid-induced leucine zipper (GILZ) is involved in glucocorticoid-induced and mineralocorticoid-induced leptin production by osteoarthritis synovial fibroblasts. Arthritis Res Ther 2016; 18:219. [PMID: 27716396 PMCID: PMC5050640 DOI: 10.1186/s13075-016-1119-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Background Glucocorticoid-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory activities of glucocorticoids. However, GILZ deletion does not impair the anti-inflammatory activities of exogenous glucocorticoids in mice arthritis models and GILZ could also mediate some glucocorticoid-related adverse events. Osteoarthritis (OA) is a metabolic disorder that is partly attributed to adipokines such as leptin, and we previously observed that glucocorticoids induced leptin secretion in OA synovial fibroblasts. The purpose of this study was to position GILZ in OA through its involvement in the anti-inflammatory activities of glucocorticoids and/or in the metabolic pathway of leptin induction. The influences of mineralocorticoids on GILZ and leptin expression were also investigated. Methods Human synovial fibroblasts were isolated from OA patients during knee replacement surgery. Then, the cells were treated with a glucocorticoid (prednisolone), a mineralocorticoid (aldosterone), a glucocorticoid receptor (GR) antagonist (mifepristone), a selective glucocorticoid receptor agonist (Compound A), mineralocorticoid receptor (MR) antagonists (eplerenone and spironolactone), TNF-α or transforming growth factor (TGF)-β. Cells were transfected with shRNA lentiviruses for the silencing of GILZ and GR. The leptin, IL-6, IL-8 and matrix metalloproteinase (MMP)-1 levels were measured by ELISA. Leptin, the leptin receptor (Ob-R), GR and GILZ expression levels were analyzed by western blotting and/or RT-qPCR. Results (1) The glucocorticoid prednisolone and the mineralocorticoid aldosterone induced GILZ expression dose-dependently in OA synovial fibroblasts, through GR but not MR. Similar effects on leptin and Ob-R were observed: leptin secretion and Ob-R expression were also induced by prednisolone and aldosterone through GR; (2) GILZ silencing experiments demonstrated that GILZ was involved in the glucocorticoid-induced and mineralocorticoid-induced leptin secretion and Ob-R expression in OA synovial fibroblasts; and (3) GILZ inhibition did not alter the production of pro-inflammatory cytokines by OA synovial fibroblast or the anti-inflammatory properties of glucocorticoids. Conclusions The absence of GILZ prevents corticoid-induced leptin and Ob-R expression without affecting the anti-inflammatory properties of glucocorticoids in OA synovial fibroblasts. Mineralocorticoids also induce leptin and Ob-R expression through GILZ.
Collapse
|
43
|
Koentgen F, Lin J, Katidou M, Chang I, Khan M, Watts J, Mombaerts P. Exclusive transmission of the embryonic stem cell-derived genome through the mouse germline. Genesis 2016; 54:326-33. [PMID: 27012318 PMCID: PMC5084746 DOI: 10.1002/dvg.22938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
Gene targeting in embryonic stem (ES) cells remains best practice for introducing complex mutations into the mouse germline. One aspect in this multistep process that has not been streamlined with regard to the logistics and ethics of mouse breeding is the efficiency of germline transmission: the transmission of the ES cell‐derived genome through the germline of chimeras to their offspring. A method whereby male chimeras transmit exclusively the genome of the injected ES cells to their offspring has been developed. The new technology, referred to as goGermline, entails injecting ES cells into blastocysts produced by superovulated homozygous Tsc22d3 floxed females mated with homozygous ROSA26‐Cre males. This cross produces males that are sterile due to a complete cell‐autonomous defect in spermatogenesis. The resulting male chimeras can be sterile but when fertile, they transmit the ES cell‐derived genome to 100% of their offspring. The method was validated extensively and in two laboratories for gene‐targeted ES clones that were derived from the commonly used parental ES cell lines Bruce4, E14, and JM8A3. The complete elimination of the collateral birth of undesired, non‐ES cell‐derived offspring in goGermline technology fulfills the reduction imperative of the 3R principle of humane experimental technique with animals. genesis 54:326–333, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frank Koentgen
- Ozgene Pty Ltd, Bentley, Western Australia, 6983, Australia
| | - Jiangwei Lin
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, Frankfurt, 60438, Germany
| | - Markella Katidou
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, Frankfurt, 60438, Germany
| | - Isabelle Chang
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, Frankfurt, 60438, Germany
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, Frankfurt, 60438, Germany
| | - Jacqui Watts
- Ozgene Pty Ltd, Bentley, Western Australia, 6983, Australia
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, Frankfurt, 60438, Germany
| |
Collapse
|
44
|
Hu YC, Namekawa SH. Functional significance of the sex chromosomes during spermatogenesis. Reproduction 2016; 149:R265-77. [PMID: 25948089 DOI: 10.1530/rep-14-0613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2.
Collapse
Affiliation(s)
- Yueh-Chiang Hu
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
45
|
Chihara M, Yoshihara K, Ishiguro T, Adachi S, Okada H, Kashima K, Sato T, Tanaka A, Tanaka K, Enomoto T. Association of NR3C1/Glucocorticoid Receptor gene SNP with azoospermia in Japanese men. J Obstet Gynaecol Res 2015; 42:59-66. [PMID: 26556219 DOI: 10.1111/jog.12877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
AIM The molecular pathogenesis of non-obstructive azoospermia (NOA) is unclear. Our aim was to identify the genetic susceptibility for NOA in Japanese men by using a combination of transcriptome network analysis and SNP genotyping. MATERIAL AND METHODS We searched for candidate genes using RNA transcriptome network analysis of 2611 NOA-related genes that we had previously reported. We analyzed candidate genes for disease linkage with single nucleotide polymorphisms (SNP) in the genomes of 335 Japanese men with NOA and 410 healthy controls using SNP-specific real-time polymerase chain reaction TaqMan assays. RESULTS Three candidate genes (NR3C1, YBX2, and BCL2) were identified by the transcriptome network analysis, each with three SNP. Allele frequency analysis of the nine SNP indicated a significantly higher frequency of the NR3C1 rs852977 G allele in NOA cases compared with controls (corrected P = 5.7e-15; odds ratio = 3.20; 95% confidence interval, 2.40-4.26). The other eight candidate polymorphisms showed no significant association. CONCLUSION The NR3C1 rs852977 polymorphism is a potential marker for genetic susceptibility to NOA in Japanese men. Further studies are necessary to clarify the association between the NR3C1 polymorphism and alterations of glucocorticoid signaling pathway leading to male infertility.
Collapse
Affiliation(s)
- Makoto Chihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Okada
- Department of Obstetrics and Gynecology, Joetsu General Hospital, Joetsu, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takaaki Sato
- Department of Obstetrics and Gynecology, Tachikawa Hospital, Nagaoka, Japan
| | | | - Kenichi Tanaka
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Niigata Medical Center Hospital, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
46
|
A focused Real Time PCR strategy to determine GILZ expression in mouse tissues. RESULTS IN IMMUNOLOGY 2015; 5:37-42. [PMID: 26697291 PMCID: PMC4664734 DOI: 10.1016/j.rinim.2015.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Glucocorticoid-Induced Leucine Zipper (GILZ) is a glucocorticoid-inducible gene that mediates glucocorticoid anti-inflammatory effects. GILZ and the isoform L-GILZ are expressed in a variety of cell types, especially of hematopoietic origin, including macrophages, lymphocytes and epithelial cells, and strongly upregulated upon glucocorticoid treatment. A quantitative analysis of GILZ expression in mouse tissues is technically difficult to perform because of the presence of a pseudogene and the high homology of GILZ gene with other genes of TSC22 family. We here propose specific primer pairs to be used in Real Time PCR to avoid unwanted amplification of GILZ pseudogene and TSC-22 family member d1iso3. These primer pairs were used to determine GILZ and L-GILZ expression, in either untreated or in vivo and in vitro dexamethasone-treated tissues. Results indicate that GILZ and L-GILZ are upregulated by glucocorticoids, being GILZ more sensitive to glucocorticoid induction than L-GILZ, but they are differently expressed in all examined tissues, confirming a different role in specific cells. An inappropriate primer pair amplified also GILZ pseudogene and TSC22d1iso3, thus producing misleading results. This quantitative evaluation may be used to better characterize the role of GILZ and L-GILZ in mice and may be translated to humans.
Collapse
|
47
|
Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood 2015; 126:1790-801. [PMID: 26276664 DOI: 10.1182/blood-2015-03-631580] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/09/2015] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoids (GC) are widely used as antiinflammatory/immunosuppressive drugs and antitumor agents in several types of lymphoma and leukemia. Therapeutic doses of GC induce growth-suppressive and cytotoxic effects on various leukocytes including B cells. Molecular mechanisms of GC action include induction of GC target genes. Glucocorticoid-induced leucine zipper (GILZ) is a rapidly, potently, and invariably GC-induced gene. It mediates a number of GC effects, such as control of cell proliferation, differentiation, and apoptosis. Here we show that deletion of GILZ in mice leads to an accumulation of B lymphocytes in the bone marrow, blood, and lymphoid tissues. Gilz knockout (KO) mice develop a progressive nonlethal B lymphocytosis, with expansion of B220(+) cells in the bone marrow and in the periphery, dependent on increased B-cell survival. Decreased B-cell apoptosis in mice lacking GILZ correlates with increased NF-κB transcriptional activity and Bcl-2 expression. B cell-specific gilz KO mice confirmed that the effect of GILZ deletion is B-cell self-intrinsic. These results establish GILZ as an important regulator of B-cell survival and suggest that the deregulation of GILZ expression could be implicated in the pathogenesis of B-cell disorders.
Collapse
|
48
|
Hoppstädter J, Kessler SM, Bruscoli S, Huwer H, Riccardi C, Kiemer AK. Glucocorticoid-Induced Leucine Zipper: A Critical Factor in Macrophage Endotoxin Tolerance. THE JOURNAL OF IMMUNOLOGY 2015; 194:6057-6067. [DOI: 10.4049/jimmunol.1403207] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Induction of glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids plays a key role in their anti-inflammatory action. In activated macrophages, GILZ levels are downregulated via tristetraprolin-mediated GILZ mRNA destabilization. To assess the functional significance of GILZ downregulation, we generated myeloid-specific GILZ knockout (KO) mice. GILZ-deficient macrophages displayed a higher responsiveness toward LPS, as indicated by increased TNF-α and IL-1β expression. This effect was due to an activation of ERK, which was significantly amplified in GILZ KO cells. The LPS-induced activation of macrophages is attenuated upon pretreatment of macrophages with low-dose LPS, an effect termed endotoxin tolerance. In LPS-tolerant macrophages, GILZ mRNA was stabilized, whereas ERK activation was strongly decreased. In contrast, GILZ KO macrophages exhibited a strongly reduced desensitization. To explore the contribution of GILZ expression in macrophages to endotoxin tolerance in vivo, we treated GILZ KO mice with repeated i.p. injections of low-dose LPS followed by treatment with high-dose LPS. LPS pretreatment resulted in reduced proinflammatory mediator expression upon high-dose LPS treatment in serum and tissues. In contrast, cytokine induction was preserved in tolerized GILZ KO animals. In summary, our data suggest that GILZ is a key regulator of macrophage functions.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- *Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Sonja M. Kessler
- *Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Stefano Bruscoli
- †Section of Pharmacology, Department of Medicine, University of Perugia, 06100 Perugia, Italy; and
| | - Hanno Huwer
- ‡Department of Cardiothoracic Surgery, Völklingen Heart Centre, 66333 Völklingen, Germany
| | - Carlo Riccardi
- †Section of Pharmacology, Department of Medicine, University of Perugia, 06100 Perugia, Italy; and
| | - Alexandra K. Kiemer
- *Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany
| |
Collapse
|
49
|
Leonard PH, Grzenda A, Mathison A, Morbeck DE, Fredrickson JR, de Assuncao TM, Christensen T, Salisbury J, Calvo E, Iovanna J, Coddington CC, Urrutia R, Lomberk G. The Aurora A-HP1γ pathway regulates gene expression and mitosis in cells from the sperm lineage. BMC DEVELOPMENTAL BIOLOGY 2015; 15:23. [PMID: 26021315 PMCID: PMC4448908 DOI: 10.1186/s12861-015-0073-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 05/12/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND HP1γ, a well-known regulator of gene expression, has been recently identified to be a target of Aurora A, a mitotic kinase which is important for both gametogenesis and embryogenesis. The purpose of this study was to define whether the Aurora A-HP1γ pathway supports cell division of gametes and/or early embryos, using western blot, immunofluorescence, immunohistochemistry, electron microscopy, shRNA-based knockdown, site-directed mutagenesis, and Affymetrix-based genome-wide expression profiles. RESULTS We find that the form of HP1γ phosphorylated by Aurora A, P-Ser83 HP1γ, is a passenger protein, which localizes to the spermatozoa centriole and axoneme. In addition, disruption in this pathway causes centrosomal abnormalities and aberrations in cell division. Expression profiling of male germ cell lines demonstrates that HP1γ phosphorylation is critical for the regulation of mitosis-associated gene expression networks. In female gametes, we observe that P-Ser83-HP1γ is not present in meiotic centrosomes of M2 oocytes, but after syngamy, it becomes detectable during cleavage divisions, coinciding with early embryonic genome activation. CONCLUSIONS These results support the idea that phosphorylation of HP1γ by Aurora A plays a role in the regulation of gene expression and mitotic cell division in cells from the sperm lineage and in early embryos. Combined, this data is relevant to better understanding the function of HP1γ in reproductive biology.
Collapse
Affiliation(s)
- Phoebe H Leonard
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Adrienne Grzenda
- Department of Medicine, Mayo Clinic, Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Guggenheim 10, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Angela Mathison
- Department of Medicine, Mayo Clinic, Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Guggenheim 10, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Dean E Morbeck
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Jolene R Fredrickson
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Thiago M de Assuncao
- Department of Medicine, Mayo Clinic, Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Guggenheim 10, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Trace Christensen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Jeffrey Salisbury
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Ezequiel Calvo
- Molecular Endocrinology and Oncology Research Center, Centre Hospitalier de l'Universite Laval (CHUL) Research Center, Quebec, QC, G1V 4G2, Canada.
| | - Juan Iovanna
- Centre de Recherché en Cancérologie de Marseille (CRCM), Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 624, Stress Cellulaire, 163 Avenue de Luminy, Case 915, Parc Scientifique et Technologique de Luminy, Marseille Cedex 9, 13288, France.
| | - Charles C Coddington
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Raul Urrutia
- Department of Medicine, Mayo Clinic, Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Guggenheim 10, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA. .,Translational Epigenomics Program, Center for Individualized Medicine, Rochester, MN, 55905, USA.
| | - Gwen Lomberk
- Department of Medicine, Mayo Clinic, Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Guggenheim 10, 200 First Street SW, Rochester, MN, 55905, USA. .,Translational Epigenomics Program, Center for Individualized Medicine, Rochester, MN, 55905, USA. .,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Pépin A, Biola-Vidamment A, Latré de Laté P, Espinasse MA, Godot V, Pallardy M. Les protéines de la famille TSC-22D. Med Sci (Paris) 2015; 31:75-83. [DOI: 10.1051/medsci/20153101016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|