1
|
Yu Y, Dong H, Zhao Q, Zhu S, Wang H, Yao Y, Huang W, Han H. Combined transcriptome and whole genome sequencing analyses reveal candidate drug-resistance genes of Eimeria tenella. iScience 2025; 28:111592. [PMID: 39811641 PMCID: PMC11732515 DOI: 10.1016/j.isci.2024.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Avian coccidiosis is a widespread intestinal disease found in poultry that causes substantial economic losses. To extensively investigate the molecular mechanism of drug resistance in Eimeria tenella, we analyzed the sporozoites and second-generation merozoites of drug-sensitive (DS), diclazuril-resistant (DZR) strain, and salinomycin-resistant (SMR) strains of E. tenella through transcriptome sequencing. Whole genome sequencing analyses were performed on resistant strains at different concentrations-11 sensitive strains, 16 field diclazuril-resistant strains, and 15 field salinomycin-resistant strains of E. tenella. Co-analysis indicated that the ABC transporter protein showed differential expression and base mutations in the two resistant strains compared with the DS strain. KEGG pathway analysis demonstrated that the expression of pABAS and HPPK-DHPS, which are associated with the folate biosynthetic pathway, showed downregulation only in the DZR strain with respect to the DS strain. Several key enzymes in the glycolytic pathway were differentially expressed between DS and SMR strains.
Collapse
Affiliation(s)
- Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Yawen Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Wenhao Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| |
Collapse
|
2
|
von Känel C, Stettler P, Esposito C, Berger S, Amodeo S, Oeljeklaus S, Calderaro S, Durante IM, Rašková V, Warscheid B, Schneider A. Pam16 and Pam18 were repurposed during Trypanosoma brucei evolution to regulate the replication of mitochondrial DNA. PLoS Biol 2024; 22:e3002449. [PMID: 39146359 PMCID: PMC11349236 DOI: 10.1371/journal.pbio.3002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/27/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Protein import and genome replication are essential processes for mitochondrial biogenesis and propagation. The J-domain proteins Pam16 and Pam18 regulate the presequence translocase of the mitochondrial inner membrane. In the protozoan Trypanosoma brucei, their counterparts are TbPam16 and TbPam18, which are essential for the procyclic form (PCF) of the parasite, though not involved in mitochondrial protein import. Here, we show that during evolution, the 2 proteins have been repurposed to regulate the replication of maxicircles within the intricate kDNA network, the most complex mitochondrial genome known. TbPam18 and TbPam16 have inactive J-domains suggesting a function independent of heat shock proteins. However, their single transmembrane domain is essential for function. Pulldown of TbPam16 identifies a putative client protein, termed MaRF11, the depletion of which causes the selective loss of maxicircles, akin to the effects observed for TbPam18 and TbPam16. Moreover, depletion of the mitochondrial proteasome results in increased levels of MaRF11. Thus, we have discovered a protein complex comprising TbPam18, TbPam16, and MaRF11, that controls maxicircle replication. We propose a working model in which the matrix protein MaRF11 functions downstream of the 2 integral inner membrane proteins TbPam18 and TbPam16. Moreover, we suggest that the levels of MaRF11 are controlled by the mitochondrial proteasome.
Collapse
Affiliation(s)
- Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Carmela Esposito
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Stephan Berger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simona Amodeo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Salvatore Calderaro
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ignacio M. Durante
- Institute of Parasitology, Biology Centre, České Budějovice, Czech Republic
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
von Känel C, Oeljeklaus S, Wenger C, Stettler P, Harsman A, Warscheid B, Schneider A. Intermembrane space-localized TbTim15 is an essential subunit of the single mitochondrial inner membrane protein translocase of trypanosomes. Mol Microbiol 2024; 121:1112-1126. [PMID: 38622999 DOI: 10.1111/mmi.15262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
All mitochondria import >95% of their proteins from the cytosol. This process is mediated by protein translocases in the mitochondrial membranes, whose subunits are generally highly conserved. Most eukaryotes have two inner membrane protein translocases (TIMs) that are specialized to import either presequence-containing or mitochondrial carrier proteins. In contrast, the parasitic protozoan Trypanosoma brucei has a single TIM complex consisting of one conserved and five unique subunits. Here, we identify candidates for new subunits of the TIM or the presequence translocase-associated motor (PAM) using a protein-protein interaction network of previously characterized TIM and PAM subunits. This analysis reveals that the trypanosomal TIM complex contains an additional trypanosomatid-specific subunit, designated TbTim15. TbTim15 is associated with the TIM complex, lacks transmembrane domains, and localizes to the intermembrane space. TbTim15 is essential for procyclic and bloodstream forms of trypanosomes. It contains two twin CX9C motifs and mediates import of both presequence-containing and mitochondrial carrier proteins. While the precise function of TbTim15 in mitochondrial protein import is unknown, our results are consistent with the notion that it may function as an import receptor for the non-canonical trypanosomal TIM complex.
Collapse
Affiliation(s)
- Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anke Harsman
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Darden C, Donkor JE, Korolkova O, Barozai MYK, Chaudhuri M. Distinct structural motifs are necessary for targeting and import of Tim17 in Trypanosoma brucei mitochondrion. mSphere 2024; 9:e0055823. [PMID: 38193679 PMCID: PMC10871166 DOI: 10.1128/msphere.00558-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location-specific mitochondrial targeting signals and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, targeting signals of multi-pass Tims are less defined. Here, we report the characterization of the targeting signals of Trypanosoma brucei Tim17 (TbTim17), an essential component of the most divergent TIM complex. TbTim17 possesses a characteristic secondary structure including four predicted transmembrane (TM) domains in the center with hydrophilic N- and C-termini. After examining mitochondrial localization of various deletion and site-directed mutants of TbTim17 in T. brucei using subcellular fractionation and confocal microscopy, we located at least two internal targeting signals (ITS): (i) within TM1 (31-50 AAs) and (ii) TM4 + loop 3 (120-136 AAs). Both signals are required for proper targeting and integration of TbTim17 in the membrane. Furthermore, a positively charged residue (K122) is critical for mitochondrial localization of TbTim17. This is the first report of characterizing the ITS for a multipass inner membrane protein in a divergent eukaryote, like T. brucei.IMPORTANCEAfrican trypanosomiasis (AT) is a deadly disease in human and domestic animals, caused by the parasitic protozoan Trypanosoma brucei. Therefore, AT is not only a concern for human health but also for economic development in the vast area of sub-Saharan Africa. T. brucei possesses a single mitochondrion per cell that imports hundreds of nuclear-encoded mitochondrial proteins for its functions. T. brucei Tim17 (TbTim17), an essential component of the TbTIM17 complex, is a nuclear-encoded protein; thus, it is necessary to be imported from the cytosol to form the TbTIM17 complex. Here, we demonstrated that the internal targeting signals within the transmembrane 1 (TM1) and TM4 with loop 3, and residue K122 are required collectively for import and integration of TbTim17 in the T. brucei mitochondrion. This information could be utilized to block TbTim17 function and parasite growth.
Collapse
Affiliation(s)
- Chauncey Darden
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Joseph E. Donkor
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Olga Korolkova
- The Consolidated Research Instrumentation, Informatics, Statistics, and Learning Integration Suite (CRISALIS), Meharry Medical College, Nashville, Tennessee, USA
| | | | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Quiñones LS, Gonzalez FS, Darden C, Khan M, Tripathi A, Smith JT, Davis J, Misra S, Chaudhuri M. Unique Interactions of the Small Translocases of the Mitochondrial Inner Membrane (Tims) in Trypanosoma brucei. Int J Mol Sci 2024; 25:1415. [PMID: 38338692 PMCID: PMC10855554 DOI: 10.3390/ijms25031415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infectious agent for African trypanosomiasis, Trypanosoma brucei, possesses a unique and essential translocase of the mitochondrial inner membrane, known as the TbTIM17 complex. TbTim17 associates with six small TbTims (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction patterns of these smaller TbTims with each other and TbTim17 are not clear. Through yeast two-hybrid (Y2H) and co-immunoprecipitation analyses, we demonstrate that all six small TbTims interact with each other. Stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. However, TbTim10 shows weaker associations with TbTim13, which has a stronger connection with TbTim17. Each of the small TbTims also interacts strongly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial for maintaining the steady-state levels of the TbTIM17 complex. Further analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except for TbTim13, is present in ~70 kDa complexes, possibly existing in heterohexameric forms. In contrast, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionates with TbTim17. Altogether, our results demonstrate that, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific to T. brucei.
Collapse
Affiliation(s)
- Linda S. Quiñones
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Fidel Soto Gonzalez
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Chauncey Darden
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Muhammad Khan
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Anuj Tripathi
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Joseph T. Smith
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Smita Misra
- Department of Biomedical Science, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| |
Collapse
|
6
|
Zhou X, Yang Y, Wang G, Wang S, Sun D, Ou X, Lian Y, Li L. Molecular pathway of mitochondrial preprotein import through the TOM-TIM23 supercomplex. Nat Struct Mol Biol 2023; 30:1996-2008. [PMID: 37696957 DOI: 10.1038/s41594-023-01103-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Over half of mitochondrial proteins are imported from the cytosol via the pre-sequence pathway, controlled by the TOM complex in the outer membrane and the TIM23 complex in the inner membrane. The mechanisms through which proteins are translocated via the TOM and TIM23 complexes remain unclear. Here we report the assembly of the active TOM-TIM23 supercomplex of Saccharomyces cerevisiae with translocating polypeptide substrates. Electron cryo-microscopy analyses reveal that the polypeptide substrates pass the TOM complex through the center of a Tom40 subunit, interacting with a glutamine-rich region. Structural and biochemical analyses show that the TIM23 complex contains a heterotrimer of the subunits Tim23, Tim17 and Mgr2. The polypeptide substrates are shielded from lipids by Mgr2 and Tim17, which creates a translocation pathway characterized by a negatively charged entrance and a central hydrophobic region. These findings reveal an unexpected pre-sequence pathway through the TOM-TIM23 supercomplex spanning the double membranes of mitochondria.
Collapse
Affiliation(s)
- Xueyin Zhou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuqi Yang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Guopeng Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Shanshan Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dongjie Sun
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiaomin Ou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yuke Lian
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Long Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
7
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
8
|
Sim SI, Chen Y, Lynch DL, Gumbart JC, Park E. Structural basis of mitochondrial protein import by the TIM23 complex. Nature 2023; 621:620-626. [PMID: 37344598 PMCID: PMC11495887 DOI: 10.1038/s41586-023-06239-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yuanyuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Darden C, Donkor J, Korolkova O, Khan Barozai MY, Chaudhuri M. Distinct structural motifs are necessary for targeting and import of Tim17 in Trypanosoma brucei mitochondrion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548172. [PMID: 37461662 PMCID: PMC10350046 DOI: 10.1101/2023.07.07.548172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location specific mitochondrial targeting signals (MTSs) and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, MTSs of multi-pass Tims are less defined. Here we report the characterization of the MTSs of Trypanosoma brucei Tim17 (TbTim17), an essential component of the most divergent TIM complex. TbTim17 possesses a characteristic secondary structure including four predicted transmembrane (TM) domains in the center with hydrophilic N- and C-termini. After examining mitochondrial localization of various deletion and site-directed mutants of TbTim17 in T. brucei using subcellular fractionation and confocal microscopy we located at least two internal signals, 1) within TM1 (31-50 AAs) and 2) TM4 + Loop 3 (120-136 AAs). Both signals are required for proper targeting and integration of TbTim17 in the membrane. Furthermore, a positively charged residue (K 122 ) is critical for mitochondrial localization of TbTim17. This is the first report of characterizing the internal mitochondrial targeting signals (ITS) for a multipass inner membrane protein in a divergent eukaryote, like T. brucei . Summary Internal targeting signals within the TM1, TM4 with Loop 3, and residue K122 are required collectively for import and integration of TbTim17 in the T. brucei mitochondrion. This information could be utilized to block parasite growth.
Collapse
|
10
|
Quiñones Guillén LS, Gonzalez FS, Darden C, Khan M, Tripathi A, Smith JT, Cooley A, Paromov V, Davis J, Misra S, Chaudhuri M. Unique interactions and functions of the mitochondrial small Tims in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542777. [PMID: 37398442 PMCID: PMC10312748 DOI: 10.1101/2023.05.29.542777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Trypanosoma brucei is an early divergent parasitic protozoan that causes a fatal disease, African trypanosomiasis. T. brucei possesses a unique and essential translocase of the mitochondrial inner membrane, the TbTIM17 complex. TbTim17 associates with 6 small TbTims, (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction pattern of the small TbTims with each other and TbTim17 are not clear. Here, we demonstrated by yeast two-hybrid (Y2H) analysis that all six small TbTims interact with each other, but stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. Each of the small TbTims also interact directly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial to maintain the steady-state levels of the TbTIM17 complex. Co-immunoprecipitation analyses from T. brucei mitochondrial extracts also showed that TbTim10 has a stronger association with TbTim9 and TbTim8/13, but a weaker association with TbTim13, whereas TbTim13 has a stronger connection with TbTim17. Analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except TbTim13, is present in ∼70 kDa complexes, which could be heterohexameric forms of the small TbTims. However, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionated with TbTim17. Altogether, our results demonstrated that TbTim13 is a part of the TbTIM complex and the smaller complexes of the small TbTims likely interact with the larger complex dynamically. Therefore, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific in T. brucei .
Collapse
|
11
|
Liao X, Ruan X, Wu X, Deng Z, Qin S, Jiang H. Identification of Timm13 protein translocase of the mitochondrial inner membrane as a potential mediator of liver fibrosis based on bioinformatics and experimental verification. J Transl Med 2023; 21:188. [PMID: 36899394 PMCID: PMC9999505 DOI: 10.1186/s12967-023-04037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE To explore the association between translocase of the inner mitochondrial membrane 13 (Timm13) and liver fibrosis. METHODS Gene expression profiles of GSE167033 were collected from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between liver disease and normal samples were analyzed using GEO2R. Gene Ontology and Enrichment function were performed, a protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and the hub genes of the PPI network were calculated by MCODE plug-in in Cytoscape. We validated the transcriptional and post-transcriptional expression levels of the top correlated genes using fibrotic animal and cell models. A cell transfection experiment was conducted to silence Timm13 and detect the expression of fibrosis genes and apoptosis genes. RESULTS 21,722 genes were analyzed and 178 DEGs were identified by GEO2R analysis. The top 200 DEGs were selected and analyzed in STRING for PPI network analysis. Timm13 was one of the hub genes via the PPI network. We found that the mRNA levels of Timm13 in fibrotic liver tissue decreased (P < 0.05), and the mRNA and protein levels of Timm13 also decreased when hepatocytes were stimulated with transforming growth factor-β1. Silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes. CONCLUSIONS The results showed that Timm13 is closely related to liver fibrosis and silencing Timm13 significantly reduced the expression of profibrogenic genes and apoptosis related genes, which will provide novel ideas and targets for the clinical diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianxian Ruan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianbin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Zhejun Deng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
12
|
Soto-Gonzalez F, Tripathi A, Cooley A, Paromov V, Rana T, Chaudhuri M. A novel connection between Trypanosoma brucei mitochondrial proteins TbTim17 and TbTRAP1 is discovered using Biotinylation Identification (BioID). J Biol Chem 2022; 298:102647. [PMID: 36309084 PMCID: PMC9694106 DOI: 10.1016/j.jbc.2022.102647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
The protein translocase of the mitochondrial inner membrane in Trypanosoma brucei, TbTIM17, forms a modular complex in association with several other trypanosome-specific proteins. To identify transiently interacting proximal partner(s) of TbTim17, we used Biotinylation Identification (BioID) by expressing a modified biotin ligase-TbTim17 (BirA∗-TbTim17) fusion protein in T. brucei. BirA∗-TbTim17 was targeted to mitochondria and assembled in the TbTIM complex. In the presence of biotin, BirA∗-TbTim17 biotinylated several mitochondrial proteins. Interestingly, TbHsp84/TbTRAP1, a mitochondrial Hsp90 homolog, was identified as the highest enriched biotinylated proteins. We validated that interaction and colocalization of TbTim17 and TbHsp84 in T. brucei mitochondria by coimmunoprecipitation analysis and confocal microscopy, respectively. TbTim17 association with TbTRAP1 increased several folds during denaturation/renaturation of mitochondrial proteins in vitro, suggesting TbTRAP1 acts as a chaperone for TbTim17 refolding. We demonstrated that knockdown of TbTRAP1 reduced cell growth and decreased the levels of the TbTIM17, TbTim62, and mitochondrial (m)Hsp70 complexes. However, ATPase, VDAC, and Atom69 complexes were minimally affected. Additionally, the steady state levels of TbTim17, TbTim62, and mHsp70 were reduced significantly, but Atom69, ATPase β, and RBP16 were mostly unaltered due to TbTRAP1 knockdown. Quantitative proteomics analysis also showed significant reduction of TbTim62 along with a few other mitochondrial proteins due to TbTRAP1 knockdown. Finally, TbTRAP1 depletion did not hamper the import of the ectopically expressed TbTim17-2xMyc into mitochondria but reduced its assembly into the TbTIM17 complex, indicating TbTRAP1 is critical for assembly of TbTim17. This is the first report showing the role of TRAP1 in the TIM complex assembly in eukaryotes.
Collapse
Affiliation(s)
- Fidel Soto-Gonzalez
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Anuj Tripathi
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Ayorinde Cooley
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Victor Paromov
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Tanu Rana
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA.
| |
Collapse
|
13
|
Tachezy J, Makki A, Hrdý I. The hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 2022; 69:e12922. [PMID: 35567536 DOI: 10.1111/jeu.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
Collapse
Affiliation(s)
- Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
14
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
15
|
Trypanosoma brucei Tim50 Possesses PAP Activity and Plays a Critical Role in Cell Cycle Regulation and Parasite Infectivity. mBio 2021; 12:e0159221. [PMID: 34517757 PMCID: PMC8546626 DOI: 10.1128/mbio.01592-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma brucei, the infective agent for African trypanosomiasis, possesses a homologue of the translocase of the mitochondrial inner membrane 50 (TbTim50). It has a pair of characteristic phosphatase signature motifs, DXDX(T/V). Here, we demonstrated that, besides its protein phosphatase activity, the recombinant TbTim50 binds and hydrolyzes phosphatidic acid in a concentration-dependent manner. Mutations of D242 and D244, but not of D345and D347, to alanine abolished these activities. In silico structural homology models identified the putative binding interfaces that may accommodate different phosphosubstrates. Interestingly, TbTim50 depletion in the bloodstream form (BF) of T. brucei reduced cardiolipin (CL) levels and decreased mitochondrial membrane potential (ΔΨ). TbTim50 knockdown (KD) also reduced the population of G2/M phase and increased that of G1 phase cells; inhibited segregation and caused overreplication of kinetoplast DNA (kDNA), and reduced BF cell growth. Depletion of TbTim50 increased the levels of AMPK phosphorylation, and parasite morphology was changed with upregulation of expression of a few stumpy marker genes. Importantly, we observed that TbTim50-depleted parasites were unable to establish infection in mice. Proteomics analysis showed reductions in levels of the translation factors, flagellar transport proteins, and many proteasomal subunits, including those of the mitochondrial heat shock locus ATPase (HslVU), which is known to play a role in regulation of kinetoplast DNA (kDNA) replication. Reduction of the level of HslV in TbTim50 KD cells was further validated by immunoblot analysis. Together, our results showed that TbTim50 is essential for mitochondrial function, regulation of kDNA replication, and the cell cycle in the BF. Therefore, TbTim50 is an important target for structure-based drug design to combat African trypanosomiasis.
Collapse
|
16
|
Chaudhuri M, Tripathi A, Gonzalez FS. Diverse Functions of Tim50, a Component of the Mitochondrial Inner Membrane Protein Translocase. Int J Mol Sci 2021; 22:7779. [PMID: 34360547 PMCID: PMC8346121 DOI: 10.3390/ijms22157779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are essential in eukaryotes. Besides producing 80% of total cellular ATP, mitochondria are involved in various cellular functions such as apoptosis, inflammation, innate immunity, stress tolerance, and Ca2+ homeostasis. Mitochondria are also the site for many critical metabolic pathways and are integrated into the signaling network to maintain cellular homeostasis under stress. Mitochondria require hundreds of proteins to perform all these functions. Since the mitochondrial genome only encodes a handful of proteins, most mitochondrial proteins are imported from the cytosol via receptor/translocase complexes on the mitochondrial outer and inner membranes known as TOMs and TIMs. Many of the subunits of these protein complexes are essential for cell survival in model yeast and other unicellular eukaryotes. Defects in the mitochondrial import machineries are also associated with various metabolic, developmental, and neurodegenerative disorders in multicellular organisms. In addition to their canonical functions, these protein translocases also help maintain mitochondrial structure and dynamics, lipid metabolism, and stress response. This review focuses on the role of Tim50, the receptor component of one of the TIM complexes, in different cellular functions, with an emphasis on the Tim50 homologue in parasitic protozoan Trypanosoma brucei.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (A.T.); (F.S.G.)
| | | | | |
Collapse
|
17
|
Singha UK, Tripathi A, Smith JT, Quinones L, Saha A, Singha T, Chaudhuri M. Novel IM-associated protein Tim54 plays a role in the mitochondrial import of internal signal-containing proteins in Trypanosoma brucei. Biol Cell 2021; 113:39-57. [PMID: 33084070 PMCID: PMC8265390 DOI: 10.1111/boc.202000054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The translocase of the mitochondrial inner membrane (TIM) imports most of the nucleus-encoded proteins that are destined for the matrix, inner membrane (IM) and the intermembrane space (IMS). Trypanosoma brucei, the infectious agent for African trypanosomiasis, possesses a unique TIM complex consisting of several novel proteins in association with a relatively conserved protein TbTim17. Tandem affinity purification of the TbTim17 protein complex revealed TbTim54 as a potential component of this complex. RESULTS TbTim54, a trypanosome-specific IMS protein, is peripherally associated with the IM and is present in a protein complex slightly larger than the TbTim17 complex. TbTim54 knockdown (KD) reduced the import of TbTim17 and compromised the integrity of the TbTim17 complex. TbTim54 KD inhibited the in vitro mitochondrial import and assembly of the internal signal-containing mitochondrial carrier proteins MCP3, MCP5 and MCP11 to a greater extent than TbTim17 KD. Furthermore, TbTim54 KD, but not TbTim17 KD, significantly hampered the mitochondrial targeting of ectopically expressed MCP3 and MCP11. These observations along with our previous finding that the mitochondrial import of N-terminal signal-containing proteins like cytochrome oxidase subunit 4 and MRP2 was affected to a greater extent by TbTim17 KD than TbTim54 KD indicating a substrate-specificity of TbTim54 for internal-signal containing mitochondrial proteins. In other organisms, small Tim chaperones in the IMS are known to participate in the translocation of MCPs. We found that TbTim54 can directly interact with at least two of the six known small TbTim proteins, TbTim11 and TbTim13, as well as with the N-terminal domain of TbTim17. CONCLUSION TbTim54 interacts with TbTim17. It also plays a crucial role in the mitochondrial import and complex assembly of internal signal-containing IM proteins in T. brucei. SIGNIFICANCE We are the first to characterise TbTim54, a novel TbTim that is involved primarily in the mitochondrial import of MCPs and TbTim17 in T. brucei.
Collapse
|
18
|
Shikha S, Huot JL, Schneider A, Niemann M. tRNA import across the mitochondrial inner membrane in T. brucei requires TIM subunits but is independent of protein import. Nucleic Acids Res 2020; 48:12269-12281. [PMID: 33231678 PMCID: PMC7708065 DOI: 10.1093/nar/gkaa1098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 01/27/2023] Open
Abstract
Mitochondrial tRNA import is widespread, but mechanistic insights of how tRNAs are translocated across mitochondrial membranes remain scarce. The parasitic protozoan T. brucei lacks mitochondrial tRNA genes. Consequently, it imports all organellar tRNAs from the cytosol. Here we investigated the connection between tRNA and protein translocation across the mitochondrial inner membrane. Trypanosomes have a single inner membrane protein translocase that consists of three heterooligomeric submodules, which all are required for import of matrix proteins. In vivo depletion of individual submodules shows that surprisingly only the integral membrane core module, including the protein import pore, but not the presequence-associated import motor are required for mitochondrial tRNA import. Thus we could uncouple import of matrix proteins from import of tRNAs even though both substrates are imported into the same mitochondrial subcompartment. This is reminiscent to the outer membrane where the main protein translocase but not on-going protein translocation is required for tRNA import. We also show that import of tRNAs across the outer and inner membranes are coupled to each other. Taken together, these data support the 'alternate import model', which states that tRNA and protein import while mechanistically independent use the same translocation pores but not at the same time.
Collapse
Affiliation(s)
- Shikha Shikha
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jonathan L Huot
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
19
|
Chaudhuri M, Darden C, Soto Gonzalez F, Singha UK, Quinones L, Tripathi A. Tim17 Updates: A Comprehensive Review of an Ancient Mitochondrial Protein Translocator. Biomolecules 2020; 10:E1643. [PMID: 33297490 PMCID: PMC7762337 DOI: 10.3390/biom10121643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The translocases of the mitochondrial outer and inner membranes, the TOM and TIMs, import hundreds of nucleus-encoded proteins into mitochondria. TOM and TIMs are multi-subunit protein complexes that work in cooperation with other complexes to import proteins in different sub-mitochondrial destinations. The overall architecture of these protein complexes is conserved among yeast/fungi, animals, and plants. Recent studies have revealed unique characteristics of this machinery, particularly in the eukaryotic supergroup Excavata. Despite multiple differences, homologues of Tim17, an essential component of one of the TIM complexes and a member of the Tim17/Tim22/Tim23 family, have been found in all eukaryotes. Here, we review the structure and function of Tim17 and Tim17-containing protein complexes in different eukaryotes, and then compare them to the single homologue of this protein found in Trypanosoma brucei, a unicellular parasitic protozoan.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, 1005 Dr. D.B. Todd, Jr., Blvd, Nashville, TN 37208, USA; (C.D.); (F.S.G.); (U.K.S.); (L.Q.); (A.T.)
| | | | | | | | | | | |
Collapse
|
20
|
Barozai MYK, Chaudhuri M. Role of the translocase of the mitochondrial inner membrane in the import of tRNAs into mitochondria in Trypanosoma brucei. Gene 2020; 748:144705. [PMID: 32339625 PMCID: PMC7304388 DOI: 10.1016/j.gene.2020.144705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Trypanosomatids are unicellular parasitic protozoa. Many of the species of this genera cause severe diseases in human, such as Leishmaniasis, African trypanosomiasis and Chagas disease. These parasites possess a single reticular mitochondrion with a concatenated structure of mitochondrial DNA known as kinetoplast or kDNA. kDNA encodes few essential mitochondrial proteins but no tRNAs. Therefore, trypanosomatid mitochondrion import a full set of nucleus-encoded tRNAs for mitochondrial translation. Recent advances indicated that mitochondrial protein translocases, particularly the subunits of the ATOM complex, are involved in the import of a tRNA in Trypanosoma brucei. However, the global picture and the role of the translocase components of the mitochondrial inner membrane (TbTims) are not well understood. Here we investigated the relative abundance of 16 different tRNAs in the cytosolic and mitochondrial fractions isolated from the six TbTims knockdown cell lines. We found that knockdown of TbTim17, one of the primary components of the TbTIM complex, reduced the abundance of all of these tRNAs into mitochondria and increased their abundance in the cytosol. Depletion of TbTim62, a TbTim17 associated proteins, also reduced the relative abundance of most of these tRNAs into mitochondria except for tRNAleu, tRNAmet, and tRNAglu. Whereas, knockdown of other TbTims, like TbTim50 and two small TbTims, TbTim10 and TbTim8/13, didn't have any effect on tRNA abundance either in the cytosol or mitochondria. Depletion of any of these TbTims showed minimal effect on the levels of total tRNAs in T. brucei. Absolute quantification of tRNA levels revealed that TbTim17 knockdown reduced the levels of different tRNAs in mitochondria from 3-6% to 0.8-1.4%, which is equivalent to ~70% reduction in average. Whereas, TbTim62 depletion showed somewhat selective effect. Overall, our results suggest that TbTim17 and TbTim62 are essential for tRNA import that further makes a connection between the tRNA and protein import into mitochondria in T. brucei.
Collapse
Affiliation(s)
- Muhammad Younas Khan Barozai
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, United States.
| |
Collapse
|
21
|
Schneider A. Evolution of mitochondrial protein import – lessons from trypanosomes. Biol Chem 2020; 401:663-676. [DOI: 10.1515/hsz-2019-0444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
AbstractThe evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail inSaccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoanTrypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
22
|
von Känel C, Muñoz-Gómez SA, Oeljeklaus S, Wenger C, Warscheid B, Wideman JG, Harsman A, Schneider A. Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes. eLife 2020; 9:52560. [PMID: 32105215 PMCID: PMC7064343 DOI: 10.7554/elife.52560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/26/2020] [Indexed: 01/13/2023] Open
Abstract
Many mitochondrial proteins contain N-terminal presequences that direct them to the organelle. The main driving force for their translocation across the inner membrane is provided by the presequence translocase-associated motor (PAM) which contains the J-protein Pam18. Here, we show that in the PAM of Trypanosoma brucei the function of Pam18 has been replaced by the non-orthologous euglenozoan-specific J-protein TbPam27. TbPam27 is specifically required for the import of mitochondrial presequence-containing but not for carrier proteins. Similar to yeast Pam18, TbPam27 requires an intact J-domain to function. Surprisingly, T. brucei still contains a bona fide Pam18 orthologue that, while essential for normal growth, is not involved in protein import. Thus, during evolution of kinetoplastids, Pam18 has been replaced by TbPam27. We propose that this replacement is linked to the transition from two ancestral and functionally distinct TIM complexes, found in most eukaryotes, to the single bifunctional TIM complex present in trypanosomes.
Collapse
Affiliation(s)
- Corinne von Känel
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Sergio A Muñoz-Gómez
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, United States
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christoph Wenger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, United States
| | - Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Andre Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Tripathi A, Singha UK, Paromov V, Hill S, Pratap S, Rose K, Chaudhuri M. The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei. mSphere 2019; 4:e00353-19. [PMID: 31391278 PMCID: PMC6686227 DOI: 10.1128/msphere.00353-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma brucei, the infectious agent of a deadly disease known as African trypanosomiasis, undergoes various stresses during its digenetic life cycle. We previously showed that downregulation of T. brucei mitochondrial inner membrane protein translocase 50 (TbTim50), an aspartate-based protein phosphatase and a component of the translocase of the mitochondrial inner membrane (TIM), increased the tolerance of procyclic cells to oxidative stress. Using comparative proteomics analysis and further validating the proteomics results by immunoblotting, here we discovered that TbTim50 downregulation caused an approximately 5-fold increase in the levels of PIP39, which is also an aspartate-based protein phosphatase and is primarily localized in glycosomes. A moderate upregulation of a number of glycosomal enzymes was also noticed due to TbTim50 knockdown. We found that the rate of mitochondrial ATP production by oxidative phosphorylation decreased and that substrate-level phosphorylation increased due to depletion of TbTim50. These results were correlated with relative increases in the levels of trypanosome alternative oxidase and hexokinase and a reduced-growth phenotype in low-glucose medium. The levels and activity of the mitochondrial superoxide dismutase and glutaredoxin levels were increased due to TbTim50 knockdown. Furthermore, we show that TbTim50 downregulation increased the cellular AMP/ATP ratio, and as a consequence, phosphorylation of AMP-activated protein kinase (AMPK) was increased. Knocking down both TbTim50 and TbPIP39 reduced PIP39 levels as well as AMPK phosphorylation and reduced T. brucei tolerance to oxidative stress. These results suggest that TbTim50 and PIP39, two protein phosphatases in mitochondria and glycosomes, respectively, cross talk via the AMPK pathway to maintain cellular homeostasis in the procyclic form of T. bruceiIMPORTANCETrypanosoma brucei, the infectious agent of African trypanosomiasis, must adapt to strikingly different host environments during its digenetic life cycle. Developmental regulation of mitochondrial activities is an essential part of these processes. We have shown previously that mitochondrial inner membrane protein translocase 50 in T. brucei (TbTim50) possesses a dually specific phosphatase activity and plays a role in the cellular stress response pathway. Using proteomics analysis, here we have elucidated a novel connection between TbTim50 and a protein phosphatase of the same family, PIP39, which is also a differentiation-related protein localized in glycosomes. We found that these two protein phosphatases cross talk via the AMPK pathway and modulate cellular metabolic activities under stress. Together, our results indicate the importance of a TbTim50 and PIP39 cascade for communication between mitochondria and other cellular parts in regulation of cell homeostasis in T. brucei.
Collapse
Affiliation(s)
- Anuj Tripathi
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Ujjal K Singha
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Victor Paromov
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Salisha Hill
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Siddharth Pratap
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Kristie Rose
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Mitochondrial protein import in trypanosomatids: Variations on a theme or fundamentally different? PLoS Pathog 2018; 14:e1007351. [PMID: 30496284 PMCID: PMC6264148 DOI: 10.1371/journal.ppat.1007351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Pyrihová E, Motycková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, Roger A, Kolísko M, Doležal P. A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes. Genome Biol Evol 2018; 10:2813-2822. [PMID: 30265292 PMCID: PMC6200312 DOI: 10.1093/gbe/evy215] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 11/14/2022] Open
Abstract
Mitochondria have evolved diverse forms across eukaryotic diversity in adaptation to anoxia. Mitosomes are the simplest and the least well-studied type of anaerobic mitochondria. Transport of proteins via TIM complexes, composed of three proteins of the Tim17 protein family (Tim17/22/23), is one of the key unifying aspects of mitochondria and mitochondria-derived organelles. However, multiple experimental and bioinformatic attempts have so far failed to identify the nature of TIM in mitosomes of the anaerobic metamonad protist, Giardia intestinalis, one of the few experimental models for mitosome biology. Here, we present the identification of a single G. intestinalis Tim17 protein (GiTim17), made possible only by the implementation of a metamonad-specific hidden Markov model. While very divergent in primary sequence and in predicted membrane topology, experimental data suggest that GiTim17 is an inner membrane mitosomal protein, forming a disulphide-linked dimer. We suggest that the peculiar GiTim17 sequence reflects adaptation to the unusual, detergent resistant, inner mitosomal membrane. Specific pull-down experiments indicate interaction of GiTim17 with mitosomal Tim44, the tethering component of the import motor complex. Analysis of TIM complexes across eukaryote diversity suggests that a "single Tim" translocase is a convergent adaptation of mitosomes in anaerobic protists, with Tim22 and Tim17 (but not Tim23), providing the protein backbone.
Collapse
Affiliation(s)
- Eva Pyrihová
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Alžbeta Motycková
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Natalia Wandyszewska
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Charles University, Praha 2, Czech Republic
| | - Gabriela Seydlová
- Department of Genetics and Microbiology, Charles University, Praha 2, Czech Republic
| | - Andrew Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Martin Kolísko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Biology Centre CAS, České Budějovice, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
26
|
Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei. mSphere 2018; 3:3/3/e00204-18. [PMID: 29925672 PMCID: PMC6010621 DOI: 10.1128/msphere.00204-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes.IMPORTANCETrypanosoma brucei is the causative agent of African sleeping sickness. The parasite's mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei, a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei, and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei.
Collapse
|
27
|
Käser S, Willemin M, Schnarwiler F, Schimanski B, Poveda-Huertes D, Oeljeklaus S, Haenni B, Zuber B, Warscheid B, Meisinger C, Schneider A. Biogenesis of the mitochondrial DNA inheritance machinery in the mitochondrial outer membrane of Trypanosoma brucei. PLoS Pathog 2017; 13:e1006808. [PMID: 29287109 PMCID: PMC5764417 DOI: 10.1371/journal.ppat.1006808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/11/2018] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondria cannot form de novo but require mechanisms that mediate their inheritance to daughter cells. The parasitic protozoan Trypanosoma brucei has a single mitochondrion with a single-unit genome that is physically connected across the two mitochondrial membranes with the basal body of the flagellum. This connection, termed the tripartite attachment complex (TAC), is essential for the segregation of the replicated mitochondrial genomes prior to cytokinesis. Here we identify a protein complex consisting of three integral mitochondrial outer membrane proteins-TAC60, TAC42 and TAC40-which are essential subunits of the TAC. TAC60 contains separable mitochondrial import and TAC-sorting signals and its biogenesis depends on the main outer membrane protein translocase. TAC40 is a member of the mitochondrial porin family, whereas TAC42 represents a novel class of mitochondrial outer membrane β-barrel proteins. Consequently TAC40 and TAC42 contain C-terminal β-signals. Thus in trypanosomes the highly conserved β-barrel protein assembly machinery plays a major role in the biogenesis of its unique mitochondrial genome segregation system.
Collapse
Affiliation(s)
- Sandro Käser
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Mathilde Willemin
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Felix Schnarwiler
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Bernd Schimanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Beat Haenni
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Fukasawa Y, Oda T, Tomii K, Imai K. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages. Mol Biol Evol 2017; 34:1574-1586. [PMID: 28369657 PMCID: PMC5455965 DOI: 10.1093/molbev/msx096] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Toshiyuki Oda
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kenichiro Imai
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
29
|
Weems E, Singha UK, Smith JT, Chaudhuri M. The divergent N-terminal domain of Tim17 is critical for its assembly in the TIM complex in Trypanosoma brucei. Mol Biochem Parasitol 2017; 218:4-15. [PMID: 28965880 DOI: 10.1016/j.molbiopara.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Trypanosoma brucei Tim17(TbTim17), the single member of the Tim17/23/22 protein family, is an essential component of the translocase of the mitochondrial inner membrane (TIM). In spite of the conserved secondary structure, the primary sequence of TbTim17, particularly the N-terminal hydrophilic region, is significantly divergent. In order to understand the function of this region we expressed two N-terminal deletion mutants (Δ20 and Δ30) of TbTim17 in T. brucei. Both of these mutants of TbTim17 were targeted to mitochondria, however, they failed to complement the growth defect of TbTim17 RNAi cells. In addition, the import defect of other nuclear encoded proteins into TbTim17 knockdown mitochondria were not restored by expression of the N-terminal deletion mutants but complemented by knock-in of the full-length protein. Further analysis revealed that Δ20-TbTim17 and Δ30-TbTim17 mutants were not localized in the mitochondrial inner membrane. Analysis of the protein complexes in the wild type and mutant mitochondria by two-dimensional Blue-native/SDS-PAGE revealed that none of these mutants are assembled into the TbTim17 protein complex. However, FL-TbTim17 was integrated into the mitochondrial inner membrane and assembled into TbTim17 complex. Co-immunoprecipitation analysis showed that unlike the FL-TbTim17, mutant proteins are not associated with the endogenous TbTim17 as well as its interacting partner TbTim62, a novel trypanosome specific Tim. Together, these results show that the N-terminal domain of TbTim17 plays unique and essential roles for its sorting and assembly into the TbTim17 protein complex.
Collapse
Affiliation(s)
- Ebony Weems
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States
| | - Joseph T Smith
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States.
| |
Collapse
|
30
|
Harsman A, Schneider A. Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic 2017; 18:96-109. [PMID: 27976830 DOI: 10.1111/tra.12463] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero-oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence-containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Harsman A, Oeljeklaus S, Wenger C, Huot JL, Warscheid B, Schneider A. The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nat Commun 2016; 7:13707. [PMID: 27991487 PMCID: PMC5187411 DOI: 10.1038/ncomms13707] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial protein import is essential for all eukaryotes. Here we show that the early diverging eukaryote Trypanosoma brucei has a non-canonical inner membrane (IM) protein translocation machinery. Besides TbTim17, the single member of the Tim17/22/23 family in trypanosomes, the presequence translocase contains nine subunits that co-purify in reciprocal immunoprecipitations and with a presequence-containing substrate that is trapped in the translocation channel. Two of the newly discovered subunits are rhomboid-like proteins, which are essential for growth and mitochondrial protein import. Rhomboid-like proteins were proposed to form the protein translocation pore of the ER-associated degradation system, suggesting that they may contribute to pore formation in the presequence translocase of T. brucei. Pulldown of import-arrested mitochondrial carrier protein shows that the carrier translocase shares eight subunits with the presequence translocase. This indicates that T. brucei may have a single IM translocase that with compositional variations mediates import of presequence-containing and carrier proteins.
The mitochondrial protein import machinery is crucial for eukaryotes but little is known about its evolutionary origin. Here, the authors characterize the translocase of the inner membrane (TIM) in trypanosomes, showing that it contains two rhomboid-like proteins essential for protein import.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 18, Freiburg 79104, Germany
| | - Christoph Wenger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Jonathan L Huot
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 18, Freiburg 79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg 79104, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| |
Collapse
|
32
|
Singha UK, Hamilton V, Chaudhuri M. Tim62, a Novel Mitochondrial Protein in Trypanosoma brucei, Is Essential for Assembly and Stability of the TbTim17 Protein Complex. J Biol Chem 2015; 290:23226-39. [PMID: 26240144 DOI: 10.1074/jbc.m115.663492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, possesses non-canonical mitochondrial protein import machinery. Previously, we characterized the essential translocase of the mitochondrial inner membrane (TIM) consisting of Tim17 in T. brucei. TbTim17 is associated with TbTim62. Here we show that TbTim62, a novel protein, is localized in the mitochondrial inner membrane, and its import into mitochondria depends on TbTim17. Knockdown (KD) of TbTim62 decreased the steady-state levels of TbTim17 post-transcriptionally. Further analysis showed that import of TbTim17 into mitochondria was not inhibited, but its half-life was reduced >4-fold due to TbTim62 KD. Blue-native gel electrophoresis revealed that TbTim62 is present primarily in ∼150-kDa and also in ∼1100-kDa protein complexes, whereas TbTim17 is present in multiple complexes within the range of ∼300 to ∼1100 kDa. TbTim62 KD reduced the levels of both TbTim62 as well as TbTim17 protein complexes. Interestingly, TbTim17 was accumulated as lower molecular mass complexes in TbTim62 KD mitochondria. Furthermore, depletion of TbTim62 hampered the assembly of the ectopically expressed TbTim17-2X-myc into TbTim17 protein complex. Co-immunoprecipitation analysis revealed that association of TbTim17 with mHSP70 was markedly reduced in TbTim62 KD mitochondria. All together our results demonstrate that TbTim62, a unique mitochondrial protein in T. brucei, is required for the formation of a stable TbTim17 protein complex. TbTim62 KD destabilizes this complex, and unassembled TbTim17 degrades. Therefore, TbTim62 acts as a novel regulatory factor to maintain the levels of TIM in T. brucei mitochondria.
Collapse
Affiliation(s)
- Ujjal K Singha
- From the Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208
| | - VaNae Hamilton
- From the Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208
| | - Minu Chaudhuri
- From the Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
33
|
Fullerton M, Singha UK, Duncan M, Chaudhuri M. Down regulation of Tim50 in Trypanosoma brucei increases tolerance to oxidative stress. Mol Biochem Parasitol 2015; 199:9-18. [PMID: 25791316 DOI: 10.1016/j.molbiopara.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei, the causative agent for African trypanosomiasis, possesses a single mitochondrion that imports hundreds of proteins from the cytosol. However, the parasite only possesses a few homologs of the canonical protein translocases found in fungi and animals. We recently characterized a homolog of the translocase of the mitochondrial inner membrane, Tim50, in T. brucei. TbTim50 knockdown (KD) moderately reduced cell growth, decreased the mitochondrial membrane potential, and inhibited import of proteins into mitochondria. In contrast to Tim50 KD, we show here that TbTim50 overexpression (OE) increased the mitochondrial membrane potential as well as increased the production of cellular reactive oxygen species (ROS). Therefore, TbTim50 OE also inhibits cell growth. In addition, TbTim50 OE and KD cells showed different responses upon treatment with H2O2. Surprisingly, TbTim50 KD cells showed a greater tolerance to oxidative stress. Further analysis revealed that TbTim50 KD inhibits transition of cells from an early to late apoptotic stage upon exposure to increasing concentrations of H2O2. On the other hand TbTim50 OE caused cells to be in a pro-apoptotic stage and thus they underwent increased cell death upon H2O2 treatment. However, externally added H2O2 similarly increased the levels of cellular ROS and decreased the mitochondrial membrane potential in both cell types, indicating that tolerance to ROS is mediated through induction of the stress-response pathway due to TbTim50 KD. Together, these results suggest that TbTim50 acts as a stress sensor and that down regulation of Tim50 could be a survival mechanism for T. brucei exposed to oxidative stress.
Collapse
Affiliation(s)
- Marjorie Fullerton
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | | | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
34
|
Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio 2015; 6:mBio.02425-14. [PMID: 25670781 PMCID: PMC4337576 DOI: 10.1128/mbio.02425-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
Collapse
|
35
|
Týč J, Klingbeil MM, Lukeš J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio 2015. [PMID: 25670781 DOI: 10.1128/mbio.02425-02414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
UNLABELLED Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. IMPORTANCE Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
Collapse
Affiliation(s)
- Jiří Týč
- Faculty of Sciences, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Michele M Klingbeil
- Department of Microbiology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | |
Collapse
|
36
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
37
|
Functional complementation analyses reveal that the single PRAT family protein of trypanosoma brucei is a divergent homolog of Tim17 in saccharomyces cerevisiae. EUKARYOTIC CELL 2015; 14:286-96. [PMID: 25576485 DOI: 10.1128/ec.00203-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis, possesses a single member of the presequence and amino acid transporter (PRAT) protein family, which is referred to as TbTim17. In contrast, three homologous proteins, ScTim23, ScTim17, and ScTim22, are found in Saccharomyces cerevisiae and higher eukaryotes. Here, we show that TbTim17 cannot rescue Tim17, Tim23, or Tim22 mutants of S. cerevisiae. We expressed S. cerevisiae Tim23, Tim17, and Tim22 in T. brucei. These heterologous proteins were properly imported into mitochondria in the parasite. Further analysis revealed that although ScTim23 and ScTim17 were integrated into the mitochondrial inner membrane and assembled into a protein complex similar in size to TbTim17, only ScTim17 was stably associated with TbTim17. In contrast, ScTim22 existed as a protease-sensitive soluble protein in the T. brucei mitochondrion. In addition, the growth defect caused by TbTim17 knockdown in T. brucei was partially restored by the expression of ScTim17 but not by the expression of either ScTim23 or ScTim22, whereas the expression of TbTim17 fully complemented the growth defect caused by TbTim17 knockdown, as anticipated. Similar to the findings for cell growth, the defect in the import of mitochondrial proteins due to depletion of TbTim17 was in part restored by the expression of ScTim17 but was not complemented by the expression of either ScTim23 or ScTim22. Together, these results suggest that TbTim17 is divergent compared to ScTim23 but that its function is closer to that of ScTim17. In addition, ScTim22 could not be sorted properly in the T. brucei mitochondrion and thus failed to complement the function of TbTim17.
Collapse
|
38
|
Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J Lipid Res 2014; 56:331-41. [PMID: 25424002 DOI: 10.1194/jlr.m054643] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Craigen R Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Hosanna Anyatonwu
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Laurence Lecordier
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - David J Leaver
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409 Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
39
|
Trypanosome alternative oxidase possesses both an N-terminal and internal mitochondrial targeting signal. EUKARYOTIC CELL 2014; 13:539-47. [PMID: 24562910 DOI: 10.1128/ec.00312-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.
Collapse
|
40
|
Changmai P, Horáková E, Long S, Černotíková-Stříbrná E, McDonald LM, Bontempi EJ, Lukeš J. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol Microbiol 2013; 89:135-51. [PMID: 23675735 DOI: 10.1111/mmi.12264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
Ferredoxins are highly conserved proteins that function universally as electron transporters. They not only require Fe-S clusters for their own activity, but are also involved in Fe-S formation itself. We identified two homologues of ferredoxin in the genome of the parasitic protist Trypanosoma brucei and named them TbFdxA and TbFdxB. TbFdxA protein, which is homologous to other eukaryotic mitochondrial ferredoxins, is essential in both the procyclic (= insect-transmitted) and bloodstream (mammalian) stage, but is more abundant in the active mitochondrion of the former stage. Depletion of TbFdxA caused disruption of Fe-S cluster biogenesis and lowered the level of intracellular haem. However, TbFdxB, which is present exclusively within kinetoplastid flagellates, was non-essential for the procyclic stage, and double knock-down with TbFdxA showed this was not due to functional redundancy between the two homologues. Heterologous expressions of human orthologues HsFdx1 and HsFdx2 fully rescued the growth and Fe-S-dependent enzymatic activities of TbFdxA knock-down. In both cases, the genuine human import signals allowed efficient import into the T. brucei mitochondrion. Given the huge evolutionary distance between trypanosomes and humans, ferredoxins clearly have ancestral and highly conserved function in eukaryotes and both human orthologues have retained the capacity to participate in Fe-S cluster assembly.
Collapse
Affiliation(s)
- Piya Changmai
- Institute of Parasitology, Biology Centre, University of South Bohemia, Branišovská 31, 37005, České Budějovice (Budweis), Czech Republic
| | | | | | | | | | | | | |
Collapse
|
41
|
Duncan MR, Fullerton M, Chaudhuri M. Tim50 in Trypanosoma brucei possesses a dual specificity phosphatase activity and is critical for mitochondrial protein import. J Biol Chem 2012; 288:3184-97. [PMID: 23212919 DOI: 10.1074/jbc.m112.436378] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, proteins are imported into mitochondria via multiprotein translocases of the mitochondrial outer and inner membranes, TOM and TIM, respectively. Trypanosoma brucei, a hemoflagellated parasitic protozoan and the causative agent of African trypanosomiasis, imports about a thousand proteins into the mitochondrion; however, the mitochondrial protein import machinery in this organism is largely unidentified. Here, we characterized a homolog of Tim50 that is localized in the mitochondrial membrane in T. brucei. Similar to Tim50 proteins from fungi and mammals, Tim50 in T. brucei (TbTim50) possesses a mitochondrial targeting signal at its N terminus and a C-terminal domain phosphatase motif at its C terminus. Knockdown of TbTim50 reduced cell growth and inhibited import of proteins that contain N-terminal targeting signals. Co-immunoprecipitation analysis revealed that TbTim50 interacts with TbTim17. Unlike its fungal counterpart but similar to the human homolog of Tim50, recombinant TbTim50 possesses a dual specificity phosphatase activity with a greater affinity for protein tyrosine phosphate than for protein serine/threonine phosphate. Mutation of the aspartic acid residues to alanine in the C-terminal domain phosphatase motif (242)DXDX(V/T)(246) abolished activity for both type of substrates. TbTim50 knockdown increased and its overexpression decreased the level of voltage-dependent anion channel (VDAC). However, the VDAC level was unaltered when the phosphatase-inactive mutant of TbTim50 was overexpressed, suggesting that the phosphatase activity of TbTim50 plays a role in regulation of VDAC expression. In contrast, phosphatase activity of the TbTim50 is required neither for mitochondrial protein import nor for its interaction with TbTim17. Overall, our results show that TbTim50 plays additional roles in mitochondrial activities besides preprotein translocation.
Collapse
Affiliation(s)
- Melanie R Duncan
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | |
Collapse
|
42
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|