1
|
Cheng H, Zhang X, Li Y, Cao D, Luo C, Zhang Q, Zhang S, Jiao Y. Age-related testosterone decline: mechanisms and intervention strategies. Reprod Biol Endocrinol 2024; 22:144. [PMID: 39543598 PMCID: PMC11562514 DOI: 10.1186/s12958-024-01316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Contemporary societies exhibit delayed reproductive age and increased life expectancy. While the male reproductive system demonstrates relatively delayed aging compared to that of females, increasing age substantially impacts its function. A characteristic manifestation is age-induced testosterone decline. Testosterone, a crucial male sex hormone, plays pivotal roles in spermatogenesis and sexual function, and contributes significantly to metabolism, psychology, and cardiovascular health. Aging exerts profound effects on the hypothalamic-pituitary-gonadal axis and Leydig cells, precipitating testosterone reduction, which adversely affects male health. Exogenous testosterone supplementation can partially ameliorate age-related testosterone deficiency; however, its long-term safety remains contentious. Preserving endogenous testosterone production capacity during the aging process warrants further investigation as a potential intervention strategy.
Collapse
Affiliation(s)
- Haoyang Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Yongheng Li
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Dezhong Cao
- First People's Hospital of Dongcheng District, Beijing, China
| | - Chenglong Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sizheng Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongzheng Jiao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Arif T, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1. Biomolecules 2024; 14:1304. [PMID: 39456237 PMCID: PMC11506819 DOI: 10.3390/biom14101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
Collapse
Affiliation(s)
- Tasleem Arif
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
3
|
Yan S, Wang Y, Wang B, Zuo S, Yu Y. Thromboxane A 2 Modulates de novo Synthesis of Adrenal Corticosterone in Mice via p38/14-3-3γ/StAR Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307926. [PMID: 38460156 PMCID: PMC11095200 DOI: 10.1002/advs.202307926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/21/2024] [Indexed: 03/11/2024]
Abstract
Prostanoids are endogenous lipid bioactive mediators that play essential roles in physiological processes such as glucocorticoid secretion. Here, it is found that the thromboxane (Tx)A2 receptor (TP) is highly expressed in the adrenal cortex of mice. Both global and adrenocortical-specific deletion of the TP receptor lead to increased adiposity in mice by elevating corticosterone synthesis. Mechanistically, the TP receptor deletion increases the phosphorylation of steroidogenic acute regulatory protein (StAR) and corticosterone synthesis in adrenal cortical cells by suppressing p-p38-mediated phosphorylation of 14-3-3γ adapter protein at S71. The activation of the p38 in the adrenal cortical cells by forced expression of the MKK6EE gene attenuates hypercortisolism in TP-deficient mice. These observations suggest that the TxA2/TP signaling regulates adrenal corticosterone homeostasis independent of the hypothalamic-pituitary-adrenal axis and the TP receptor may serve as a promising therapeutic target for hypercortisolism.
Collapse
Affiliation(s)
- Shuai Yan
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
- Division of Endocrinology, Diabetes, and MetabolismBeth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AvenueBostonMassachusetts02115USA
| | - Yuanyang Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
| | - Bei Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
| | - Shengkai Zuo
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
- Department of BiopharmaceuticsTianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070P. R. China
| | - Ying Yu
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
| |
Collapse
|
4
|
Fairley LH, Lai KO, Wong JH, Chong WJ, Vincent AS, D’Agostino G, Wu X, Naik RR, Jayaraman A, Langley SR, Ruedl C, Barron AM. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2209177120. [PMID: 36787364 PMCID: PMC9974442 DOI: 10.1073/pnas.2209177120] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/17/2022] [Indexed: 02/15/2023] Open
Abstract
Microglial phagocytosis is an energetically demanding process that plays a critical role in the removal of toxic protein aggregates in Alzheimer's disease (AD). Recent evidence indicates that a switch in energy production from mitochondrial respiration to glycolysis disrupts this important protective microglial function and may provide therapeutic targets for AD. Here, we demonstrate that the translocator protein (TSPO) and a member of its mitochondrial complex, hexokinase-2 (HK), play critical roles in microglial respiratory-glycolytic metabolism and phagocytosis. Pharmacological and genetic loss-of-function experiments showed that TSPO is critical for microglial respiratory metabolism and energy supply for phagocytosis, and its expression is enriched in phagocytic microglia of AD mice. Meanwhile, HK controlled glycolytic metabolism and phagocytosis via mitochondrial binding or displacement. In cultured microglia, TSPO deletion impaired mitochondrial respiration and increased mitochondrial recruitment of HK, inducing a switch to glycolysis and reducing phagocytosis. To determine the functional significance of mitochondrial HK recruitment, we developed an optogenetic tool for reversible control of HK localization. Displacement of mitochondrial HK inhibited glycolysis and improved phagocytosis in TSPO-knockout microglia. Mitochondrial HK recruitment also coordinated the inflammatory switch to glycolysis that occurs in response to lipopolysaccharide in normal microglia. Interestingly, cytosolic HK increased phagocytosis independent of its metabolic activity, indicating an immune signaling function. Alzheimer's beta amyloid drastically stimulated mitochondrial HK recruitment in cultured microglia, which may contribute to microglial dysfunction in AD. Thus, targeting mitochondrial HK may offer an immunotherapeutic approach to promote phagocytic microglial function in AD.
Collapse
Affiliation(s)
- Lauren H. Fairley
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Kei Onn Lai
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Wei Jing Chong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Anselm Salvatore Vincent
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Giuseppe D’Agostino
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Xiaoting Wu
- School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore
| | - Roshan R. Naik
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Anusha Jayaraman
- Center for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Sarah R. Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore
| | - Anna M. Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| |
Collapse
|
5
|
Role of STAR and SCP2/SCPx in the Transport of Cholesterol and Other Lipids. Int J Mol Sci 2022; 23:ijms232012115. [PMID: 36292972 PMCID: PMC9602805 DOI: 10.3390/ijms232012115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesterol is a lipid molecule essential for several key cellular processes including steroidogenesis. As such, the trafficking and distribution of cholesterol is tightly regulated by various pathways that include vesicular and non-vesicular mechanisms. One non-vesicular mechanism is the binding of cholesterol to cholesterol transport proteins, which facilitate the movement of cholesterol between cellular membranes. Classic examples of cholesterol transport proteins are the steroidogenic acute regulatory protein (STAR; STARD1), which facilitates cholesterol transport for acute steroidogenesis in mitochondria, and sterol carrier protein 2/sterol carrier protein-x (SCP2/SCPx), which are non-specific lipid transfer proteins involved in the transport and metabolism of many lipids including cholesterol between several cellular compartments. This review discusses the roles of STAR and SCP2/SCPx in cholesterol transport as model cholesterol transport proteins, as well as more recent findings that support the role of these proteins in the transport and/or metabolism of other lipids.
Collapse
|
6
|
Asih PR, Poljak A, Kassiou M, Ke YD, Ittner LM. Differential mitochondrial protein interaction profile between human translocator protein and its A147T polymorphism variant. PLoS One 2022; 17:e0254296. [PMID: 35522669 PMCID: PMC9075623 DOI: 10.1371/journal.pone.0254296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
The translocator protein (TSPO) has been implicated in mitochondrial transmembrane cholesterol transport, brain inflammation, and other mitochondrial functions. It is upregulated in glial cells during neuroinflammation in Alzheimer’s disease. High affinity TSPO imaging radioligands are utilized to visualize neuroinflammation. However, this is hampered by the common A147T polymorphism which compromises ligand binding. Furthermore, this polymorphism has been linked to increased risk of neuropsychiatric disorders, and possibly reduces TSPO protein stability. Here, we used immunoprecipitation coupled to mass-spectrometry (IP-MS) to establish a mitochondrial protein binding profile of wild-type (WT) TSPO and the A147T polymorphism variant. Using mitochondria from human glial cells expressing either WT or A147T TSPO, we identified 30 WT TSPO binding partners, yet only 23 for A147T TSPO. Confirming that A147T polymorphism of the TSPO might confer loss of function, we found that one of the identified interactors of WT TSPO, 14-3-3 theta (YWHAQ), a protein involved in regulating mitochondrial membrane proteins, interacts much less with A147T TSPO. Our data presents a network of mitochondrial interactions of TSPO and its A147T polymorphism variant in human glial cells and indicate functional relevance of A147T in mitochondrial protein networks.
Collapse
Affiliation(s)
- Prita R. Asih
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Yazi D. Ke
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M. Ittner
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
7
|
Li Y, Mi P, Wu J, Tang Y, Liu X, Cheng J, Huang Y, Qin W, Cheng CY, Sun F. High Throughput scRNA-Seq Provides Insights Into Leydig Cell Senescence Induced by Experimental Autoimmune Orchitis: A Prominent Role of Interstitial Fibrosis and Complement Activation. Front Immunol 2022; 12:771373. [PMID: 35111154 PMCID: PMC8801941 DOI: 10.3389/fimmu.2021.771373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Leydig cells (Lc), located in the interstitial space of the testis between seminiferous tubules, produce 95% of testosterone in male individuals, which is pivotal for male sexual differentiation, spermatogenesis, and maintenance of the male secondary sex characteristics. Lc are prone to senescence in aging testes, resulting in compromised androgen synthesis capability upon aging. However, little is known about whether Lc undergo senescence in a chronic inflammatory environment. To investigate this question, mouse models of experimental autoimmune orchitis (EAO) were used, and Lc were analyzed by high throughput scRNA-Seq. Data were screened and analyzed by correlating signaling pathways with senescence, apoptosis, androgen synthesis, and cytokine/chemokine signaling pathways. EAO did induce Lc senescence, and Lc senescence in turn antagonized androgen synthesis. Based on the correlation screening of pathways inducing Lc senescence, a plethora of pathways were found to play potential roles in triggering Lc senescence during EAO, among which the Arf6 and angiopoietin receptor pathways were highly correlated with senescence signature. Notably, complement and interstitial fibrosis activated by EAO worsened Lc senescence and strongly antagonized androgen synthesis. Furthermore, most proinflammatory cytokines enhanced both senescence and apoptosis in Lc and spermatogonia (Sg) during EAO, and proinflammatory cytokine antagonism of the glutathione metabolism pathway may be key in inducing cellular senescence during EAO.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China.,NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Jinmei Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Yingying Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, United States
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
8
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Leydig cell aging: Molecular mechanisms and treatments. VITAMINS AND HORMONES 2021; 115:585-609. [PMID: 33706963 DOI: 10.1016/bs.vh.2020.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Late-onset hypogonadism, resulting from deficiency in serum testosterone (T), affects the health and quality of life of millions of aging men. T is synthesized by Leydig cells (LCs) in response to luteinizing hormone (LH). LH binds LC plasma membrane receptors, inducing the formation of a supramolecular complex of cytosolic and mitochondrial proteins, the Steroidogenic InteracTomE (SITE). SITE proteins are involved in targeting cholesterol to CYP11A1 in the mitochondria, the first enzyme of the steroidogenic cascade. Cholesterol translocation is the rate-determining step in T formation. With aging, LC defects occur that include changes in SITE, an increasingly oxidative intracellular environment, and reduced androgen formation and serum T levels. T replacement therapy (TRT) will restore T levels, but reported side effects make it desirable to develop additional strategies for increasing T. One approach is to target LC protein-protein interactions and thus increase T production by the hypofunctional Leydig cells themselves.
Collapse
|
11
|
Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. STARD1 Functions in Mitochondrial Cholesterol Metabolism and Nascent HDL Formation. Gene Expression and Molecular mRNA Imaging Show Novel Splicing and a 1:1 Mitochondrial Association. Front Endocrinol (Lausanne) 2020; 11:559674. [PMID: 33193082 PMCID: PMC7607000 DOI: 10.3389/fendo.2020.559674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
STARD1 moves cholesterol (CHOL) from the outer mitochondrial membrane (OMM) to the inner membrane (IMM) in steroidogenic cells. This activity is integrated into CHOL trafficking and synthesis homeostasis, involving uptake through SR-B1 and LDL receptors and distribution through endosomes, ER, and lipid droplets. In adrenal cells, STARD1 is imported into the mitochondrial matrix accompanied by delivery of several hundred CHOL molecules. This transfer limits CYP11A1-mediated generation of pregnenolone. CHOL transfer is coupled to translation of STARD1 mRNA at the OMM. In testis cells, slower CHOL trafficking seems to be limiting. STARD1 also functions in a slower process through ER OMM contacts. The START domain of STARD1 is utilized by a family of genes, which includes additional STARD (forms 3-6) and GRAMD1B proteins that transfer CHOL. STARD forms 2 and 7 deliver phosphatidylcholine. STARD1 and STARD7 target their respective activities to mitochondria, via N-terminal domains (NTD) of over 50 amino acids. The NTD is not essential for steroidogenesis but exerts tissue-selective enhancement (testis>>adrenal). Three conserved sites for cleavage by the mitochondrial processing protease (MPP) generate three forms, each potentially with specific functions, as demonstrated in STARD7. STARD1 is expressed in macrophage and cardiac repair fibroblasts. Additional functions include CHOL metabolism by CYP27A1 that directs activation of LXR and CHOL export processes. STARD1 generates 3.5- and 1.6-kb mRNA from alternative polyadenylation. The 3.5-kb form exclusively binds the PKA-induced regulator, TIS11b, which binds at conserved sites in the extended 3'UTR to control mRNA translation and turnover. STARD1 expression also exhibits a novel, slow splicing that delayed splicing delivery of mRNA to mitochondria. Stimulation of transcription by PKA is directed by suppression of SIK forms that activate a CRTC/CREB/CBP promoter complex. This process is critical to pulsatile hormonal activation in vivo. sm-FISH RNA imaging shows a flow of single STARD1 mRNA particles from asymmetric accumulations of primary transcripts at gene loci to 1:1 complex of 3.5-kb mRNA with peri-nuclear mitochondria. Adrenal cells are similar but distinguished from testis cells by appreciable basal expression prior to hormonal activation. This difference is conserved in culture and in vivo.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joan S. Jorgensen
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
12
|
Obsilova V, Obsil T. A new role for 14-3-3 protein in steroidogenesis. FEBS J 2020; 287:3921-3924. [PMID: 32852115 DOI: 10.1111/febs.15507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
Steroidogenic acute regulatory protein (STARD1) is regulated by phosphorylation and 14-3-3 protein binding. STARD1 is a key player in cholesterol transport in mitochondria, and its regulation is not fully understood. Tugaeva et al. provide novel insights on the site-specific phosphorylation and subsequent 14-3-3-dependent regulation of STARD1 function. These results may help us understand the mechanism behind the regulation of steroidogenesis. Comment on: https://doi.org/10.1111/febs.15474.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Tugaeva KV, Titterington J, Sotnikov DV, Maksimov EG, Antson AA, Sluchanko NN. Molecular basis for the recognition of steroidogenic acute regulatory protein by the 14‐3‐3 protein family. FEBS J 2020; 287:3944-3966. [DOI: 10.1111/febs.15474] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Kristina V. Tugaeva
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biochemistry School of Biology M.V. Lomonosov Moscow State University Russia
| | - James Titterington
- York Structural Biology Laboratory Department of Chemistry University of York UK
| | - Dmitriy V. Sotnikov
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
| | - Eugene G. Maksimov
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biophysics School of Biology M.V. Lomonosov Moscow State University Russia
| | - Alfred A. Antson
- York Structural Biology Laboratory Department of Chemistry University of York UK
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biophysics School of Biology M.V. Lomonosov Moscow State University Russia
| |
Collapse
|
14
|
Design, expression, purification and crystallization of human 14-3-3ζ protein chimera with phosphopeptide from proapoptotic protein BAD. Protein Expr Purif 2020; 175:105707. [PMID: 32682909 DOI: 10.1016/j.pep.2020.105707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
14-3-3 protein isoforms regulate multiple processes in eukaryotes, including apoptosis and cell division. 14-3-3 proteins preferentially recognize phosphorylated unstructured motifs, justifying the protein-peptide binding approach to study 14-3-3/phosphotarget complexes. Tethering of human 14-3-3σ with partner phosphopeptides via a short linker has provided structural information equivalent to the use of synthetic phosphopeptides, simultaneously facilitating purification and crystallization. Nevertheless, the broader applicability to other 14-3-3 isoforms and phosphopeptides was unclear. Here, we designed a novel 14-3-3ζ chimera with a conserved phosphopeptide from BAD, whose complex with 14-3-3 is a gatekeeper of apoptosis regulation. The chimera could be bacterially expressed and purified without affinity tags. Co-expressed PKA efficiently phosphorylates BAD within the chimera and blocks its interaction with a known 14-3-3 phosphotarget, suggesting occupation of the 14-3-3 grooves by the tethered BAD phosphopeptide. Efficient crystallization of the engineered protein suggests suitability of the "chimeric" approach for studies of other relevant 14-3-3 complexes.
Collapse
|
15
|
Aghazadeh Y, Venugopal S, Martinez-Arguelles DB, Boisvert A, Blonder J, Papadopoulos V. Identification of Sec23ip, Part of 14-3-3γ Protein Network, as a Regulator of Acute Steroidogenesis in MA-10 Leydig Cells. Endocrinology 2020; 161:5686882. [PMID: 31875919 PMCID: PMC7007878 DOI: 10.1210/endocr/bqz036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Testosterone production occurs in the Leydig cells of the testes and is essential for virilization, development, reproduction, and quality of life. Although the steroidogenic proteins involved in cholesterol conversion to testosterone (T) are well characterized, the causes of reduced T during fetal, neonatal, and adult life remain uncertain. It is well established that normal cellular function is achieved through fine-tuning of multiple rather than single protein networks. Our objective was to use mass spectrometry (MS)-based proteomics to identify which cellular pathways, other than the steroidogenic machinery, influence testosterone production in MA-10 mouse tumor Leydig cells. The 14-3-3 family of scaffolds mediate protein-protein interactions facilitating the crosstalk between protein networks. We previously showed that in MA-10 cells, 14-3-3γ is a critical regulator of steroidogenesis. Therefore, identifying proteins that interact with 14-3-3γ during steroidogenesis could provide clues into the other networks involved. Using liquid chromatography (LC)-MS, we identified 688 proteins that interact with 14-3-3γ and thus potentially impact MA-10 cell steroidogenesis. The identified proteins belong to multiple protein networks, including endoplasmic reticulum-Golgi cargo sorting and vesicle biogenesis, micro ribonucleic acid-induced gene silencing, inflammation, and vesicle trafficking, to name a few. We found that silencing one of the candidates, Sec23ip, a protein known to be involved in vesicle trafficking, resulted in decreased steroidogenesis. We further showed that in Sec23ip-silenced MA-10 cells, cholesterol mobilization from the cytoplasmic membrane to mitochondria is impaired. Taken together these data suggest that Sec23ip is involved in cholesterol trafficking to supply cholesterol for acute steroidogenesis through its interactions with 14-3-3γ.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
- Present address: McEwen Stem Cell Center & Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sathvika Venugopal
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Daniel Benjamin Martinez-Arguelles
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Josip Blonder
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, Maryland
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, California
- Correspondence: Vassilios Papadopoulos, Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, California 90089, USA. E-mail:
| |
Collapse
|
16
|
Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod 2019; 99:101-111. [PMID: 29566165 DOI: 10.1093/biolre/ioy059] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/11/2018] [Indexed: 12/23/2022] Open
Abstract
Herein we summarize important discoveries made over many years about Leydig cell function and regulation. Fetal Leydig cells produce the high levels of androgen (testosterone or androstenedione, depending upon the species) required for differentiation of male genitalia and brain masculinization. Androgen production declines with loss of these cells, reaching a nadir at postpartum. Testosterone then gradually increases to high levels with adult Leydig cell development from stem cells. In the adult, luteinizing hormone (LH) binding to Leydig cell LH receptors stimulates cAMP production, increasing the rate of cholesterol translocation into the mitochondria. Cholesterol is metabolized to pregnenolone by the CYP11A1 enzyme at the inner mitochondrial membrane, and pregnenolone to testosterone by mitochondria and smooth endoplasmic reticulum enzymes. Cholesterol translocation to the inner mitochondrial membrane is mediated by a protein complex formed at mitochondrial contact sites that consists of the cholesterol binding translocator protein, voltage dependent anion channel, and other mitochondrial and cytosolic proteins. Steroidogenic acute regulatory protein acts at this complex to enhance cholesterol movement across the membranes and thus increase testosterone formation. The 14-3-3γ and ε adaptor proteins serve as negative regulators of steroidogenesis, controlling the maximal amount of steroid formed. Decline in testosterone production occurs in many aging and young men, resulting in metabolic and quality-of-life changes. Testosterone replacement therapy is widely used to elevate serum testosterone levels in hypogonadal men. With knowledge gained of the mechanisms involved in testosterone formation, it is also conceivable to use pharmacological means to increase serum testosterone by Leydig cell stimulation.
Collapse
Affiliation(s)
- Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
17
|
Tugaeva KV, Sluchanko NN. Steroidogenic Acute Regulatory Protein: Structure, Functioning, and Regulation. BIOCHEMISTRY (MOSCOW) 2019; 84:S233-S253. [PMID: 31213205 DOI: 10.1134/s0006297919140141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Steroidogenesis takes place mainly in adrenal and gonadal cells that produce a variety of structurally similar hormones regulating numerous body functions. The rate-limiting stage of steroidogenesis is cholesterol delivery to the inner mitochondrial membrane, where it is converted by cytochrome P450scc into pregnenolone, a common precursor of all steroid hormones. The major role of supplying mitochondria with cholesterol belongs to steroidogenic acute regulatory protein (STARD1). STARD1, which is synthesized de novo as a precursor containing mitochondrial localization sequence and sterol-binding domain, significantly accelerates cholesterol transport and production of pregnenolone. Despite a tremendous interest in STARD1 fueled by its involvement in hereditary diseases and extensive efforts of numerous laboratories worldwide, many aspects of STARD1 structure, functioning, and regulation remain obscure and debatable. This review presents current concepts on the structure of STARD1 and other lipid transfer proteins, the role of STARD1 in steroidogenesis, and the mechanism of its functioning, as well as identifies the most controversial and least studied questions related to the activity of this protein.
Collapse
Affiliation(s)
- K V Tugaeva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Lomonosov Moscow State University, Biological Faculty, Department of Biochemistry, Moscow, 119234, Russia
| | - N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Lomonosov Moscow State University, Biological Faculty, Department of Biophysics, Moscow, 119991, Russia
| |
Collapse
|
18
|
Regulation of Leydig cell steroidogenesis: intriguing network of signaling pathways and mitochondrial signalosome. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Sluchanko NN. Association of Multiple Phosphorylated Proteins with the 14-3-3 Regulatory Hubs: Problems and Perspectives. J Mol Biol 2017; 430:20-26. [PMID: 29180038 DOI: 10.1016/j.jmb.2017.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023]
Abstract
14-3-3 proteins are well-known universal regulators binding a vast number of partners by recognizing their phosphorylated motifs, typically located within the intrinsically disordered regions. The abundance of such phosphomotifs ensures the involvement of 14-3-3 proteins in sophisticated protein-protein interaction networks that govern vital cellular processes. Thousands of 14-3-3 partners have been either experimentally identified or predicted, but the spatiotemporal hierarchy of the processes based on 14-3-3 interactions is not clearly understood. This is exacerbated by the lack of available structural information on full regulatory complexes involving 14-3-3, which resist high-resolution structural studies due to the presence of intrinsically disordered regions. Although deducing three-dimensional structures is of particular urgency, structural advances are lagging behind the rate at which novel 14-3-3 partners are discovered. Here I attempted to critically review the current state of the field and in particular to dissect the unknowns, focusing on questions that could help in moving the frontiers forward.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, School of Biology, Moscow State University, 119991 Moscow, Russian Federation.
| |
Collapse
|
20
|
Shoshan-Barmatz V, Maldonado EN, Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017; 1:11-36. [PMID: 30542671 PMCID: PMC6287957 DOI: 10.15698/cst2017.10.104] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review presents current knowledge related to VDAC1 as a multi-functional mitochondrial protein acting on both sides of the coin, regulating cell life and death, and highlighting these functions in relation to disease. It is now recognized that VDAC1 plays a crucial role in regulating the metabolic and energetic functions of mitochondria. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows the control of metabolic cross-talk between mitochondria and the rest of the cell and also enables interaction of VDAC1 with proteins involved in metabolic and survival pathways. Along with regulating cellular energy production and metabolism, VDAC1 is also involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. VDAC1 functions in the release of apoptotic proteins located in the mitochondrial intermembrane space via oligomerization to form a large channel that allows passage of cytochrome c and AIF and their release to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also regulates apoptosis via interactions with apoptosis regulatory proteins, such as hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. This review also provides insight into VDAC1 function in Ca2+ homeostasis, oxidative stress, and presents VDAC1 as a hub protein interacting with over 100 proteins. Such interactions enable VDAC1 to mediate and regulate the integration of mitochondrial functions with cellular activities. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
21
|
Sluchanko NN, Tugaeva KV, Greive SJ, Antson AA. Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners. Sci Rep 2017; 7:12014. [PMID: 28931924 PMCID: PMC5607241 DOI: 10.1038/s41598-017-12214-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
In eukaryotes, several “hub” proteins integrate signals from different interacting partners that bind through intrinsically disordered regions. The 14-3-3 protein hub, which plays wide-ranging roles in cellular processes, has been linked to numerous human disorders and is a promising target for therapeutic intervention. Partner proteins usually bind via insertion of a phosphopeptide into an amphipathic groove of 14-3-3. Structural plasticity in the groove generates promiscuity allowing accommodation of hundreds of different partners. So far, accurate structural information has been derived for only a few 14-3-3 complexes with phosphopeptide-containing proteins and a variety of complexes with short synthetic peptides. To further advance structural studies, here we propose a novel approach based on fusing 14-3-3 proteins with the target partner peptide sequences. Such chimeric proteins are easy to design, express, purify and crystallize. Peptide attachment to the C terminus of 14-3-3 via an optimal linker allows its phosphorylation by protein kinase A during bacterial co-expression and subsequent binding at the amphipathic groove. Crystal structures of 14-3-3 chimeras with three different peptides provide detailed structural information on peptide-14-3-3 interactions. This simple but powerful approach, employing chimeric proteins, can reinvigorate studies of 14-3-3/phosphoprotein assemblies, including those with challenging low-affinity partners, and may facilitate the design of novel biosensors.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russian Federation. .,Department of biophysics, School of Biology, Moscow State University, 119991, Moscow, Russian Federation.
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russian Federation.,Department of biochemistry, School of Biology, Moscow State University, 119991, Moscow, Russian Federation
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
22
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A, Arif T. Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics. Front Oncol 2017; 7:154. [PMID: 28824871 PMCID: PMC5534932 DOI: 10.3389/fonc.2017.00154] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 06/28/2017] [Indexed: 01/17/2023] Open
Abstract
Cancer cells share several properties, high proliferation potential, reprogramed metabolism, and resistance to apoptotic cues. Acquiring these hallmarks involves changes in key oncogenes and non-oncogenes essential for cancer cell survival and prosperity, and is accompanied by the increased energy requirements of proliferating cells. Mitochondria occupy a central position in cell life and death with mitochondrial bioenergetics, biosynthesis, and signaling are critical for tumorigenesis. Voltage-dependent anion channel 1 (VDAC1) is situated in the outer mitochondrial membrane (OMM) and serving as a mitochondrial gatekeeper. VDAC1 allowing the transfer of metabolites, fatty acid ions, Ca2+, reactive oxygen species, and cholesterol across the OMM and is a key player in mitochondrial-mediate apoptosis. Moreover, VDAC1 serves as a hub protein, interacting with diverse sets of proteins from the cytosol, endoplasmic reticulum, and mitochondria that together regulate metabolic and signaling pathways. The observation that VDAC1 is over-expressed in many cancers suggests that the protein may play a pivotal role in cancer cell survival. However, VDAC1 is also important in mitochondria-mediated apoptosis, mediating release of apoptotic proteins and interacting with anti-apoptotic proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-xL, and hexokinase (HK), which are also highly expressed in many cancers. Strategically located in a “bottleneck” position, controlling metabolic homeostasis and apoptosis, VDAC1 thus represents an emerging target for anti-cancer drugs. This review presents an overview on the multi-functional mitochondrial protein VDAC1 performing several functions and interacting with distinct sets of partners to regulate both cell life and death, and highlights the importance of the protein for cancer cell survival. We address recent results related to the mechanisms of VDAC1-mediated apoptosis and the potential of associated proteins to modulate of VDAC1 activity, with the aim of developing VDAC1-based approaches. The first strategy involves modification of cell metabolism using VDAC1-specific small interfering RNA leading to inhibition of cancer cell and tumor growth and reversed oncogenic properties. The second strategy involves activation of cancer cell death using VDAC1-based peptides that prevent cell death induction by anti-apoptotic proteins. Finally, we discuss the potential therapeutic benefits of treatments and drugs leading to enhanced VDAC1 expression or targeting VDAC1 to induce apoptosis.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yakov Krelin
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
23
|
Response surface optimization of cholesterol extraction from lanolin alcohol by selective solvent crystallization. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0043-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochem J 2016; 473:107-21. [PMID: 26733718 DOI: 10.1042/bj20150899] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review.
Collapse
|
25
|
Midzak A, Papadopoulos V. Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies. Front Endocrinol (Lausanne) 2016; 7:106. [PMID: 27524977 PMCID: PMC4965458 DOI: 10.3389/fendo.2016.00106] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022] Open
Abstract
The adrenal cortex is critical for physiological function as the central site of glucocorticoid and mineralocorticoid synthesis. It possesses a great degree of specialized compartmentalization at multiple hierarchical levels, ranging from the tissue down to the molecular levels. In this paper, we discuss this functionalization, beginning with the tissue zonation of the adrenal cortex and how this impacts steroidogenic output. We then discuss the cellular biology of steroidogenesis, placing special emphasis on the mitochondria. Mitochondria are classically known as the "powerhouses of the cell" for their central role in respiratory adenosine triphosphate synthesis, and attention is given to mitochondrial electron transport, in both the context of mitochondrial respiration and mitochondrial steroid metabolism. Building on work demonstrating functional assembly of large protein complexes in respiration, we further review research demonstrating a role for multimeric protein complexes in mitochondrial cholesterol transport, steroidogenesis, and mitochondria-endoplasmic reticulum contact. We aim to highlight with this review the shift in steroidogenic cell biology from a focus on the actions of individual proteins in isolation to the actions of protein assemblies working together to execute cellular functions.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University, Montreal, QC, Canada
- *Correspondence: Andrew Midzak, ; Vassilios Papadopoulos,
| | - Vassilios Papadopoulos
- Research Institute of the McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- *Correspondence: Andrew Midzak, ; Vassilios Papadopoulos,
| |
Collapse
|
26
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
27
|
Di-Luoffo M, Brousseau C, Bergeron F, Tremblay JJ. The Transcription Factor MEF2 Is a Novel Regulator of Gsta Gene Class in Mouse MA-10 Leydig Cells. Endocrinology 2015; 156:4695-706. [PMID: 26393304 DOI: 10.1210/en.2015-1500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Testosterone is essential for spermatogenesis and the development of male sexual characteristics. However, steroidogenesis produces a significant amount of reactive oxygen species (ROS), which can disrupt testosterone production. The myocyte enhancer factor 2 (MEF2) is an important regulator of organogenesis and cell differentiation in various tissues. In the testis, MEF2 is present in Sertoli and Leydig cells throughout fetal and adult life. MEF2-deficient MA-10 Leydig cells exhibit a significant decrease in steroidogenesis concomitant with a reduction in glutathione S-transferase (GST) activity and in the expression of the 4 Gsta members (GST) that encode ROS inactivating enzymes. Here, we report a novel role for MEF2 in ROS detoxification by directly regulating Gsta expression in Leydig cells. Endogenous Gsta1-4 mRNA levels were decreased in MEF2-deficient MA-10 Leydig cells. Conversely, overexpression of MEF2 increased endogenous Gsta1 levels. MEF2 recruitment to the proximal Gsta1 promoter and direct binding on the -506-bp MEF2 element were confirmed by chromatin immunoprecipitation and DNA precipitation assays. In MA-10 Leydig cells, MEF2 activates the Gsta1 promoter and cooperates with Ca(2+)/calmodulin-dependent kinases I to further enhance Gsta1 promoter activity. These effects were lost when the -506-bp MEF2 element was mutated or when a MEF2-Engrailed dominant negative protein was used. Similar results were obtained on the Gsta2, Gsta3, and Gsta4 promoters, suggesting a global role for MEF2 factors in the regulation of all 4 Gsta genes. Altogether, our results identify a novel role for MEF2 in the expression of genes involved in ROS detoxification, a process essential for adequate testosterone production in Leydig cells.
Collapse
Affiliation(s)
- Mickaël Di-Luoffo
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Catherine Brousseau
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Francis Bergeron
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| |
Collapse
|
28
|
Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov Today 2015; 21:278-87. [PMID: 26456530 DOI: 10.1016/j.drudis.2015.09.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
29
|
14-3-3β and γ differentially regulate peroxisome proliferator activated receptor γ2 transactivation and hepatic lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1237-47. [PMID: 26260846 DOI: 10.1016/j.bbagrm.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator activated receptor (PPAR) γ2 plays important roles in glucose and lipid metabolism in hepatocytes. PPARγ2 is involved in metabolic disorders, including obesity, diabetes, and fatty liver disease. Although the 14-3-3 proteins participate in a variety of cell signal pathways, the roles of the 14-3-3 proteins in regulating PPARγ2 transactivation and hepatic lipid metabolism are unknown. We identified 14-3-3β and γ as PPARγ2 transcriptional regulators. We found that 14-3-3β and γ competitively interacted with the phosphorylated Ser273 of PPARγ2, which is important for regulating glucose and lipid metabolism. 14-3-3β increased the transcriptional activity of PPARγ2 and enhanced the expression levels of PPARγ2 target genes involved in lipogenesis and lipid transport. In contrast, 14-3-3γ decreased PPARγ2 transactivation and reduced the expression levels of PPARγ2 target genes. A high concentration of free fatty acids increased PPARγ2 expression and lipid accumulation. 14-3-3β enhanced hepatic lipogenesis, which is a major symptom of non-alcoholic fatty liver disease. However, 14-3-3γ suppressed hepatic lipid accumulation in the presence of high free fatty acids. These findings indicate that 14-3-3β and γ are novel PPARγ2 regulators and are involved in hepatic lipid metabolism. 14-3-3β and γ can be therapeutic target molecules to treat non-alcoholic fatty liver disease.
Collapse
|
30
|
Abstract
The translocator protein (TSPO; 18k Da) is an evolutionarily conserved outer mitochondrial membrane (OMM) protein highly expressed in steroid-synthesizing cells and found to possess a number of physiological and drug-binding partners. Extensive pharmacological, biochemical and cell biological research over the years has led to a model of TSPO involvement in mitochondrial cholesterol transport and promotion of steroid synthesis, a model guiding the design of drugs useful in stimulating neurosteroid synthesis and alleviating psychopathological symptoms. The involvement of TSPO in these processes has been called into question; however, with the publication of TSPO-deletion mouse models which saw no changes in steroid production. Here, we review work characterizing TSPO in steroidogenesis and offer perspective to research into TSPO pharmacology and its involvement in steroid biosynthesis.
Collapse
|
31
|
Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B, Midzak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol 2015; 408:90-8. [PMID: 25818881 PMCID: PMC4417383 DOI: 10.1016/j.mce.2015.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Abstract
Steroidogenesis begins with cholesterol transfer into mitochondria through the transduceosome, a complex composed of cytosolic proteins that include steroidogenesis acute regulatory protein (STAR), 14-3-3 adaptor proteins, and the outer mitochondrial membrane proteins Translocator Protein (TSPO) and Voltage-Dependent Anion Channel (VDAC). TSPO is a drug- and cholesterol-binding protein found at particularly high levels in steroid synthesizing cells. Its aberrant expression has been linked to cancer, neurodegeneration, neuropsychiatric disorders and primary hypogonadism. Brain steroids serve as local regulators of neural development and excitability. Reduced levels of these steroids have been linked to depression, anxiety and neurodegeneration. Reduced serum testosterone is common among subfertile young men and aging men, and is associated with depression, metabolic syndrome and reduced sexual function. Although testosterone-replacement therapy is available, there are undesired side-effects. TSPO drug ligands have been proposed as therapeutic agents to regulate steroid levels in the brain and testis.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jinjiang Fan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Enrico Campioli
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Midzak
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Liu S, Zhang J, Li W, Zhang T, Hu D. Acteoside reduces testosterone by inhibiting cAMP, p450scc, and StAR in rat Leydig cells. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0002-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Aghazadeh Y, Zirkin BR, Papadopoulos V. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis. VITAMINS AND HORMONES 2015; 98:189-227. [PMID: 25817870 DOI: 10.1016/bs.vh.2014.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced serum testosterone (T), or hypogonadism, is estimated to affect about 5 million American men, including both aging and young men. Low serum T has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass and bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Administering exogenous T, known as T-replacement therapy (TRT), reverses many of the symptoms of low T levels. However, this treatment can result in luteinizing hormone suppression which, in turn, can lead to reduced sperm numbers and infertility, making TRT inappropriate for men who wish to father children. Additionally, TRT may result in supraphysiologic T levels, skin irritation, and T transfer to others upon contact; and there may be increased risk of prostate cancer and cardiovascular disease, particularly in aging men. Therefore, the development of alternate therapies for treating hypogonadism would be highly desirable. To do so requires greater understanding of the series of steps leading to T formation and how they are regulated, and the identification of key steps that are amenable to pharmacological modulation so as to induce T production. We review herein our current understanding of mechanisms underlying the pharmacological induction of T formation in hypogonadal testis.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2547-75. [PMID: 25448878 DOI: 10.1016/j.bbamem.2014.10.040] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 02/06/2023]
Abstract
VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Danya Ben-Hail
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lee Admoni
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shambhoo Sharan Tripathi
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
35
|
Aghazadeh Y, Ye X, Blonder J, Papadopoulos V. Protein modifications regulate the role of 14-3-3γ adaptor protein in cAMP-induced steroidogenesis in MA-10 Leydig cells. J Biol Chem 2014; 289:26542-26553. [PMID: 25086053 DOI: 10.1074/jbc.m114.569079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The 14-3-3 protein family comprises adaptors and scaffolds that regulate intracellular signaling pathways. The 14-3-3γ isoform is a negative regulator of steroidogenesis that is hormonally induced and transiently functions at the initiation of steroidogenesis by delaying maximal steroidogenesis in MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with the cAMP analog 8-bromo-cAMP (8-Br-cAMP), which stimulates steroidogenesis, triggers the interaction of 14-3-3γ with the steroidogenic acute regulatory protein (STAR) in the cytosol, limiting STAR activity to basal levels. Over time, this interaction ceases, allowing for a 2-fold induction in STAR activity and maximal increase in the rate of steroid formation. The 14-3-3γ/STAR pattern of interaction was found to be opposite that of the 14-3-3γ homodimerization pattern. Phosphorylation and acetylation of 14-3-3γ showed similar patterns to homodimerization and STAR binding, respectively. 14-3-3γ Ser(58) phosphorylation and 14-3-3γ Lys(49) acetylation were blocked using trans-activator of HIV transcription factor 1 peptides coupled to 14-3-3γ sequences containing Ser(58) or Lys(49). Blocking either one of these modifications further induced 8-Br-cAMP-induced steroidogenesis while reducing lipid storage, suggesting that the stored cholesterol is used for steroid formation. Taken together, these results indicate that Ser(58) phosphorylation and Lys(49) acetylation of 14-3-3γ occur in a coordinated time-dependent manner to regulate 14-3-3γ homodimerization. 14-3-3γ Ser(58) phosphorylation is required for STAR interactions under control conditions, and 14-3-3γ Lys(49) acetylation is important for the cAMP-dependent induction of these interactions.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- Research Institute of the McGill University Health Centre and the Department of Medicine and McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Xiaoying Ye
- Protein Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Josip Blonder
- Protein Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre and the Department of Medicine and McGill University, Montreal, Quebec H3G 1A4, Canada; Departments of Pharmacology and Therapeutics and McGill University, Montreal, Quebec H3G 1A4, Canada; Departments of Biochemistry, McGill University, Montreal, Quebec H3G 1A4, Canada and.
| |
Collapse
|
36
|
Abstract
This review is intended to summarize the current knowledge from basic science and clinical medical literature cited within PubMed that pertain to gender-related factors and affect those individuals with hereditary ocular disorders. We consider gender-related biological factors that (a) affect disease onset and progression, (b) gender differences for major X-linked ocular disorders, (c) gender-specific conditions, (d) medications that may influence genetic eye disorders, and finally, (e) gender-related issues that influence the management and quality of life of these patients. Several studies have demonstrated the manner in which sex-related hormones in animal models are capable of influencing cell pathway and survival that are likely to affect hereditary eye disorders. There are very few clinical studies that provide compelling evidence for gender differences in human ocular conditions, other than for a number of X-linked disorders. Disease expression for X-linked disorders may be impacted by genetic mechanisms such as lyonization or uniparental disomy. Clinical evidence regarding the impact of gender-related medical conditions and therapies on eye conditions is extremely limited and primarily based on anecdotal evidence. Gender-specific factors may play a major role in the underlying biological pathways that influence the onset, rate of progression, and clinical findings associated with ocular genetic conditions. Clinicians need to be aware of the variable phenotypes observed in female carriers of X-linked disorders of gender specific issues, many of which are inadequately addressed in the current literature. Clinicians need to be sensitive to gender differences in social, cultural, and religious systems and they should also be aware of how their own gender biases may influence how they counsel patients. Finally, it is clear that the lack of effective clinical studies in this area creates an opportunity for future research that will have real benefits for these patients.
Collapse
|
37
|
Aghazadeh Y, Martinez-Arguelles DB, Fan J, Culty M, Papadopoulos V. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions. Mol Ther 2014; 22:1779-91. [PMID: 24947306 DOI: 10.1038/mt.2014.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022] Open
Abstract
Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- 1] The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel B Martinez-Arguelles
- 1] The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jinjiang Fan
- 1] The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Martine Culty
- 1] The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Medicine, McGill University, Montreal, Quebec, Canada [3] Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Vassilios Papadopoulos
- 1] The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Medicine, McGill University, Montreal, Quebec, Canada [3] Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada [4] Department of Biochemistry, McGill University, Montreal, Quebec, Canada [5] Department of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Fan J, Papadopoulos V. Evolutionary origin of the mitochondrial cholesterol transport machinery reveals a universal mechanism of steroid hormone biosynthesis in animals. PLoS One 2013; 8:e76701. [PMID: 24124589 PMCID: PMC3790746 DOI: 10.1371/journal.pone.0076701] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Steroidogenesis begins with the transport of cholesterol from intracellular stores into mitochondria via a series of protein-protein interactions involving cytosolic and mitochondrial proteins located at both the outer and inner mitochondrial membranes. In adrenal glands and gonads, this process is accelerated by hormones, leading to the production of high levels of steroids that control tissue development and function. A hormone-induced multiprotein complex, the transduceosome, was recently identified, and is composed of cytosolic and outer mitochondrial membrane proteins that control the rate of cholesterol entry into the outer mitochondrial membrane. More recent studies unveiled the steroidogenic metabolon, a bioactive, multimeric protein complex that spans the outer-inner mitochondrial membranes and is responsible for hormone-induced import, segregation, targeting, and metabolism of cholesterol by cytochrome P450 family 11 subfamily A polypeptide 1 (CYP11A1) in the inner mitochondrial membrane. The availability of genome information allowed us to systematically explore the evolutionary origin of the proteins involved in the mitochondrial cholesterol transport machinery (transduceosome, steroidogenic metabolon, and signaling proteins), trace the original archetype, and predict their biological functions by molecular phylogenetic and functional divergence analyses, protein homology modeling and molecular docking. Although most members of these complexes have a history of gene duplication and functional divergence during evolution, phylogenomic analysis revealed that all vertebrates have the same functional complex members, suggesting a common mechanism in the first step of steroidogenesis. An archetype of the complex was found in invertebrates. The data presented herein suggest that the cholesterol transport machinery is responsible for steroidogenesis among all vertebrates and is evolutionarily conserved throughout the entire animal kingdom.
Collapse
Affiliation(s)
- Jinjiang Fan
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Medicine, Biochemistry and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
39
|
Issop L, Rone MB, Papadopoulos V. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol 2013; 371:34-46. [PMID: 23246788 DOI: 10.1016/j.mce.2012.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 12/20/2022]
Abstract
Steroid biosynthesis is a multi-step process controlled by pituitary hormones, which, via cAMP-dependent signaling pathways, drive tissue-specific steroid formation. Steroidogenesis begins with the transport of the substrate, cholesterol, from intracellular stores into the inner mitochondrial membrane, where the steroidogenic enzyme CYP11A1 converts cholesterol to pregnenolone. This process is accelerated by hormones and involves a number of proteins and protein-protein interactions. Indeed, cholesterol, stored in lipid droplets and membranes, is transferred through a hormone-induced complex of proteins derived from the cytosol, mitochondria, and other organelles termed the transduceosome to the outer mitochondrial membrane. From there, cholesterol reaches CYP11A1 through outer/inner membrane contact sites. Thus, cholesterol transfer is likely achieved through a hormone-dependent reorganization of organelles and protein distribution and interactions. The findings reviewed herein suggest the presence of a hormone-dependent organelle communication network mediated by protein-protein interactions and inter-organelle trafficking, resulting in the efficient and timely delivery of cholesterol into mitochondria for steroid synthesis.
Collapse
Affiliation(s)
- Leeyah Issop
- Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4
| | | | | |
Collapse
|