1
|
Han L, Wang C, Dong Z, Xiao C, Li W, Wang L, He P, Yang P, Huang S, Bai B. Biosynthesis of Natural Acylsucroses from Sucrose and Short Branched-Chain Fatty Acids via Artificially Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9210-9220. [PMID: 40179051 DOI: 10.1021/acs.jafc.5c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Natural acylsucrose, often found in the glandular trichomes of Solanaceae plants, has potential applications in many industries, including food, cosmetics, and pharmaceuticals. In this study, we engineered an Escherichia coli strain to complete the biosynthesis of acylsucroses through whole-cell transformation. Using acylsucrose acyltransferases and CoA ligases, acylsucroses, including monoacylsucrose S1:5 ("S" represents an acylsucrose backbone, the number before the colon indicates the number of acyl chains, and the number after the colon indicates the sum of carbons in all acyl chains), diacylsucrose S2:10, triacylsucrose S3:14, and triacylsucrose S3:15 were synthesized from the substrate sucrose and short branched-chain fatty acids by the engineered E. coli EcoSE07, of which S3:15 was the primary product. Several strategies were applied to improve acylsucrose production, including codon optimization, constitutive promoter replacement, and serial resting cell assays. The use of fed-batch fermentation with an engineered E. coli strain of EcoSE22 containing a constitutive promoter further improved the production of acylsucroses. Serial resting cell assays with an optical density of 50 at 600 nm significantly increased the production of acylsucroses S3:15 and S2:10. These findings will facilitate the synthesis of natural acylsucroses through whole-cell transformations and provide the potential for future industrial applications.
Collapse
Affiliation(s)
- Li Han
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Chenhui Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Ziqiang Dong
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Chengzhi Xiao
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Wenqin Li
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Lijiao Wang
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Peixin He
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Pengfei Yang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shen Huang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Bing Bai
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
2
|
Mitra P, Chatterjee S. In silico approach on structural and functional characterization of heat shock protein from Sulfobacillus acidophilus. J Appl Genet 2025:10.1007/s13353-025-00964-6. [PMID: 40232564 DOI: 10.1007/s13353-025-00964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
The 70 kDa heat shock proteins (Hsp70 s) are highly conserved and ubiquitous molecular chaperones. Hsp70 proteins are intimately involved in different biological activities including maintaining protein homeostasis and resisting environmental stress for survival. Characterizations of eukaryotic Hsp70 s with diverse functions are well established but investigations needed for prokaryotes. For better understanding, the sequences of Sulfobacillus acidophilus were retrieved from UniProt. Retrieved stress proteins were renamed as SaHsp70 s and performed an in silico analysis to identify sequential, structural properties and functional attributes. The in silico characterization of these proteins revealed that they are acidic, mostly thermostable globular protein with NAD(P)-binding Rossmann-folding. Molecular mass of SaHsp70 s ranged from 31.9 to 68.5 kDa and mainly localized in the cytoplasm. Phylogeny revealed the evolutionary distance and relationship among retrieved proteins. Domain analyzed only SaHsp70 - 1, SaHsp70 - 3, and SaHsp70 - 14 have actual conserved domain for Hsp70 and share the same clade on phylogenetic tree. Major part of each protein was abundant with α-helix and random coil which make it thermally stable and suitable for interacting with other proteins. SAVES and ProSA server proves the reliability, stability, and consistency tertiary structure of SaHsp70 s. Functional analysis was done in terms of membrane protein topology, PPI network generation, active and proteolytic cleavage sites prediction, conserved motif and domain detection. CastP predicted Gly, Lys, Thr, Glu, Pro, Gln, Arg and Val act as catalytic residue, are important for metal ions binding. Intramolecular interaction analysis suggested Lys67, Thr12, Thr170, Gly 168, Gly 169, and Glu 141 of SaHsp70 - 14 proteins could play central role in various complex cellular functions like stress mitigation, thermal stability, and related developmental processes.
Collapse
Affiliation(s)
- Pritish Mitra
- PG Department of Botany, Ramananda College, Bishnupur, Bankura, W.B, India
| | | |
Collapse
|
3
|
Molinari G, Ribeiro SS, Müller K, Mayer BE, Rohde M, Arce‐Rodriguez A, Vargas‐Guerrero JJ, Avetisyan A, Wissing J, Tegge W, Jänsch L, Brönstrup M, Danchin A, Jahn M, Timmis KN, Ebbinghaus S, Jahn D, Borrero‐de Acuña JM. Multiple Chaperone DnaK-FliC Flagellin Interactions are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK. Microb Biotechnol 2025; 18:e70096. [PMID: 39937155 PMCID: PMC11816700 DOI: 10.1111/1751-7915.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
The DnaK (Hsp70) protein is an essential ATP-dependent chaperone foldase and holdase found in most organisms. In this study, combining multiple experimental approaches we determined FliC as major interaction partner of DnaK in the opportunistic bacterial pathogen Pseudomonas aeruginosa. Implementing immunofluorescence microscopy and electron microscopy techniques DnaK was found extracellularly associated to the assembled filament in a regular pattern. dnaK repression led to intracellular FliC accumulation and motility impairment, highlighting DnaK essentiality for FliC export and flagellum assembly. SPOT-membrane peptide arrays coupled with artificial intelligence analyses suggested a highly dynamic DnaK-FliC interaction landscape involving multiple domains and transient complexes formation. Remarkably, in vitro fast relaxation imaging (FReI) experiments mimicking ATP-deprived extracellular environment conditions exhibited DnaK ATP-independent holdase activity, regardless of its co-chaperone DnaJ and its nucleotide exchange factor GrpE. We present a model for the DnaK-FliC interactions involving dynamic states throughout the flagellum assembly stages. These results expand the classical view of DnaK chaperone functioning and introduce a new participant in the Pseudomonas flagellar system, an important trait for bacterial colonisation and virulence.
Collapse
Affiliation(s)
- Gabriella Molinari
- Central Facility for MicroscopyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Sara S. Ribeiro
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Katrin Müller
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Benjamin E. Mayer
- Computational Biology and SimulationTechnische Universität DarmstadtDarmstadtGermany
| | - Manfred Rohde
- Central Facility for MicroscopyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | | | | | - Albert Avetisyan
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Josef Wissing
- Department Cellular Proteome ResearchHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Werner Tegge
- Department of Chemical BiologyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lothar Jänsch
- Department Cellular Proteome ResearchHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of MedicineThe University of Hong KongSAR Hong KongChina
| | - Martina Jahn
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Kenneth N. Timmis
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Dieter Jahn
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
- Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigBraunschweigGermany
| | - José Manuel Borrero‐de Acuña
- Institute of MicrobiologyTechnische Universität BraunschweigBraunschweigGermany
- Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
4
|
Morizono MA, McGuire KL, Birouty NI, Herzik MA. Structural insights into GrpEL1-mediated nucleotide and substrate release of human mitochondrial Hsp70. Nat Commun 2024; 15:10815. [PMID: 39737924 DOI: 10.1038/s41467-024-54499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information. To elucidate these mechanistic details, we used cryoEM to determine structures of full-length human mortalin-GrpEL1 complexes in previously unobserved states. Our structures and molecular dynamics simulations allow us to delineate specific roles for mortalin-GrpEL1 interfaces and to identify steps in GrpEL1-mediated nucleotide and substrate release by mortalin. Subsequent analyses reveal conserved mechanisms across bacteria and mammals and facilitate a complete understanding of sequential nucleotide and substrate release for the Hsp70 chaperone system.
Collapse
Affiliation(s)
- Marc A Morizono
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Kelly L McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Natalie I Birouty
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Manjunath P, Stojkovič G, Euro L, Konovalova S, Wanrooij S, Koski K, Tyynismaa H. Preferential binding of ADP-bound mitochondrial HSP70 to the nucleotide exchange factor GRPEL1 over GRPEL2. Protein Sci 2024; 33:e5190. [PMID: 39445986 PMCID: PMC11500471 DOI: 10.1002/pro.5190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Human nucleotide exchange factors GRPEL1 and GRPEL2 play pivotal roles in the ADP-ATP exchange within the protein folding cycle of mitochondrial HSP70 (mtHSP70), a crucial chaperone facilitating protein import into the mitochondrial matrix. Studies in human cells and mice have indicated that while GRPEL1 serves as an essential co-chaperone for mtHSP70, GRPEL2 has a role regulated by stress. However, the precise structural and biochemical mechanisms underlying the distinct functions of the GRPEL proteins have remained elusive. In our study, we present evidence revealing that ADP-bound mtHSP70 exhibits remarkably higher affinity for GRPEL1 compared to GRPEL2, with the latter experiencing a notable decrease in affinity upon ADP binding. Additionally, Pi assay showed that GRPEL1, but not GRPEL2, enhanced the ATPase activity of mtHSP70. Utilizing Alphafold modeling, we propose that the interaction between GRPEL1 and mtHSP70 can induce the opening of the nucleotide binding cleft of the chaperone, thereby facilitating the release of ADP, whereas GRPEL2 lacks this capability. Additionally, our findings suggest that the redox-regulated Cys87 residue in GRPEL2 does not play a role in dimerization but rather reduces its affinity for mtHSP70. Our findings on the structural and functional disparities between GRPEL1 and GRPEL2 may have implications for mitochondrial protein folding and import processes under varying cellular conditions.
Collapse
Affiliation(s)
- Pooja Manjunath
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Gorazd Stojkovič
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
- Present address:
University Hospital of UmeåUmeåSweden
| | - Liliya Euro
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Sjoerd Wanrooij
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
- Present address:
University Hospital of UmeåUmeåSweden
| | - Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Morizono MA, McGuire KL, Birouty NI, Herzik MA. Structural insights into GrpEL1-mediated nucleotide and substrate release of human mitochondrial Hsp70. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593630. [PMID: 38798347 PMCID: PMC11118385 DOI: 10.1101/2024.05.10.593630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information. To elucidate these mechanistic details, we used cryoEM to determine the first structures of full-length human mortalin-GrpEL1 complexes in previously unobserved states. Our structures and molecular dynamics simulations allow us to delineate specific roles for mortalin-GrpEL1 interfaces and to identify steps in GrpEL1-mediated nucleotide and substrate release by mortalin. Subsequent analyses reveal conserved mechanisms across bacteria and mammals and facilitate a complete understanding of sequential nucleotide and substrate release for the Hsp70 chaperone system.
Collapse
Affiliation(s)
- Marc A. Morizono
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Kelly L. McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Natalie I. Birouty
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| |
Collapse
|
7
|
Xiao X, Fay A, Molina PS, Kovach A, Glickman MS, Li H. Structure of the M. tuberculosis DnaK-GrpE complex reveals how key DnaK roles are controlled. Nat Commun 2024; 15:660. [PMID: 38253530 PMCID: PMC10803776 DOI: 10.1038/s41467-024-44933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The molecular chaperone DnaK is essential for viability of Mycobacterium tuberculosis (Mtb). DnaK hydrolyzes ATP to fold substrates, and the resulting ADP is exchanged for ATP by the nucleotide exchange factor GrpE. It has been unclear how GrpE couples DnaK's nucleotide exchange with substrate release. Here we report a cryo-EM analysis of GrpE bound to an intact Mtb DnaK, revealing an asymmetric 1:2 DnaK-GrpE complex. The GrpE dimer ratchets to modulate both DnaK nucleotide-binding domain and the substrate-binding domain. We further show that the disordered GrpE N-terminus is critical for substrate release, and that the DnaK-GrpE interface is essential for protein folding activity both in vitro and in vivo. Therefore, the Mtb GrpE dimer allosterically regulates DnaK to concomitantly release ADP in the nucleotide-binding domain and substrate peptide in the substrate-binding domain.
Collapse
Affiliation(s)
- Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
8
|
Rossi MA, Pozhidaeva AK, Clerico EM, Petridis C, Gierasch LM. New insights into the structure and function of the complex between the Escherichia coli Hsp70, DnaK, and its nucleotide-exchange factor, GrpE. J Biol Chem 2024; 300:105574. [PMID: 38110031 PMCID: PMC10825016 DOI: 10.1016/j.jbc.2023.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
The 70 kDa heat shock proteins (Hsp70s) play a pivotal role in many cellular functions using allosteric communication between their nucleotide-binding domain (NBD) and substrate-binding domain, mediated by an interdomain linker, to modulate their affinity for protein clients. Critical to modulation of the Hsp70 allosteric cycle, nucleotide-exchange factors (NEFs) act by a conserved mechanism involving binding to the ADP-bound NBD and opening of the nucleotide-binding cleft to accelerate the release of ADP and binding of ATP. The crystal structure of the complex between the NBD of the Escherichia coli Hsp70, DnaK, and its NEF, GrpE, was reported previously, but the GrpE in the complex carried a point mutation (G122D). Both the functional impact of this mutation and its location on the NEF led us to revisit the DnaK NBD/GrpE complex structurally using AlphaFold modeling and validation by solution methods that report on protein conformation and mutagenesis. This work resulted in a new model for the DnaK NBD in complex with GrpE in which subdomain IIB of the NBD rotates more than in the crystal structure, resulting in an open conformation of the nucleotide-binding cleft, which now resembles more closely what is seen in other Hsp/NEF complexes. Moreover, the new model is consistent with the increased ADP off-rate accompanying GrpE binding. Excitingly, our findings point to an interdomain allosteric signal in DnaK triggered by GrpE binding.
Collapse
Affiliation(s)
- Maria-Agustina Rossi
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alexandra K Pozhidaeva
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Eugenia M Clerico
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Constantine Petridis
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Lila M Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
| |
Collapse
|
9
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
10
|
Upadhyay T, Karekar VV, Potteth US, Saraogi I. Investigating the functional role of a buried interchain aromatic cluster in Escherichia coli GrpE dimer. Proteins 2023; 91:108-120. [PMID: 35988048 DOI: 10.1002/prot.26414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Aromatic clusters in the core of proteins are often involved in imparting structural stability to proteins. However, their functional importance is not always clear. In this study, we investigate the thermosensing role of a phenylalanine cluster present in the GrpE homodimer. GrpE, which acts as a nucleotide exchange factor for the molecular chaperone DnaK, is well known for its thermosensing activity resulting from temperature-dependent structural changes that allow control of chaperone function. Using mutational analysis, we show that an interchain phenylalanine cluster in a four-helix bundle of the GrpE homodimer assists in the thermosensing ability of the co-chaperone. Substitution of aromatic residues with hydrophobic ones in the core of the four-helix bundle reduces the thermal stability of the bundle and that of a connected coiled-coil domain, which impacts thermosensing. Cell growth assays and SEM images of the mutants show filamentous growth of Escherichia coli cells at 42°C, which corroborates with the defect in thermosensing. Our work suggests that the interchain edge-to-face aromatic cluster is important for the propagation of the structural signal from the coiled-coil domain to the four-helical bundle of GrpE, thus facilitating GrpE-mediated thermosensing in bacteria.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| |
Collapse
|
11
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
12
|
Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Front Microbiol 2022; 12:812448. [PMID: 35046926 PMCID: PMC8762339 DOI: 10.3389/fmicb.2021.812448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Joseph D Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
13
|
Rahman ASMZ, Timmerman L, Gallardo F, Cardona ST. Identification of putative essential protein domains from high-density transposon insertion sequencing. Sci Rep 2022; 12:962. [PMID: 35046497 PMCID: PMC8770471 DOI: 10.1038/s41598-022-05028-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
A first clue to gene function can be obtained by examining whether a gene is required for life in certain standard conditions, that is, whether a gene is essential. In bacteria, essential genes are usually identified by high-density transposon mutagenesis followed by sequencing of insertion sites (Tn-seq). These studies assign the term "essential" to whole genes rather than the protein domain sequences that encode the essential functions. However, genes can code for multiple protein domains that evolve their functions independently. Therefore, when essential genes code for more than one protein domain, only one of them could be essential. In this study, we defined this subset of genes as "essential domain-containing" (EDC) genes. Using a Tn-seq data set built-in Burkholderia cenocepacia K56-2, we developed an in silico pipeline to identify EDC genes and the essential protein domains they encode. We found forty candidate EDC genes and demonstrated growth defect phenotypes using CRISPR interference (CRISPRi). This analysis included two knockdowns of genes encoding the protein domains of unknown function DUF2213 and DUF4148. These putative essential domains are conserved in more than two hundred bacterial species, including human and plant pathogens. Together, our study suggests that essentiality should be assigned to individual protein domains rather than genes, contributing to a first functional characterization of protein domains of unknown function.
Collapse
Affiliation(s)
| | - Lukas Timmerman
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Flyn Gallardo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
14
|
Comparative analysis of the coordinated motion of Hsp70s from different organelles observed by single-molecule three-color FRET. Proc Natl Acad Sci U S A 2021; 118:2025578118. [PMID: 34389669 DOI: 10.1073/pnas.2025578118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cellular function depends on the correct folding of proteins inside the cell. Heat-shock proteins 70 (Hsp70s), being among the first molecular chaperones binding to nascently translated proteins, aid in protein folding and transport. They undergo large, coordinated intra- and interdomain structural rearrangements mediated by allosteric interactions. Here, we applied a three-color single-molecule Förster resonance energy transfer (FRET) combined with three-color photon distribution analysis to compare the conformational cycle of the Hsp70 chaperones DnaK, Ssc1, and BiP. By capturing three distances simultaneously, we can identify coordinated structural changes during the functional cycle. Besides the known conformations of the Hsp70s with docked domains and open lid and undocked domains with closed lid, we observed additional intermediate conformations and distance broadening, suggesting flexibility of the Hsp70s in adopting the states in a coordinated fashion. Interestingly, the difference of this distance broadening varied between DnaK, Ssc1, and BiP. Study of their conformational cycle in the presence of substrate peptide and nucleotide exchange factors strengthened the observation of additional conformational intermediates, with BiP showing coordinated changes more clearly compared to DnaK and Ssc1. Additionally, DnaK and BiP were found to differ in their selectivity for nucleotide analogs, suggesting variability in the recognition mechanism of their nucleotide-binding domains for the different nucleotides. By using three-color FRET, we overcome the limitations of the usual single-distance approach in single-molecule FRET, allowing us to characterize the conformational space of proteins in higher detail.
Collapse
|
15
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
16
|
Mayer MP. The Hsp70-Chaperone Machines in Bacteria. Front Mol Biosci 2021; 8:694012. [PMID: 34164436 PMCID: PMC8215388 DOI: 10.3389/fmolb.2021.694012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
The ATP-dependent Hsp70s are evolutionary conserved molecular chaperones that constitute central hubs of the cellular protein quality surveillance network. None of the other main chaperone families (Tig, GroELS, HtpG, IbpA/B, ClpB) have been assigned with a comparable range of functions. Through a multitude of functions Hsp70s are involved in many cellular control circuits for maintaining protein homeostasis and have been recognized as key factors for cell survival. Three mechanistic properties of Hsp70s are the basis for their high versatility. First, Hsp70s bind to short degenerate sequence motifs within their client proteins. Second, Hsp70 chaperones switch in a nucleotide-controlled manner between a state of low affinity for client proteins and a state of high affinity for clients. Third, Hsp70s are targeted to their clients by a large number of cochaperones of the J-domain protein (JDP) family and the lifetime of the Hsp70-client complex is regulated by nucleotide exchange factors (NEF). In this review I will discuss advances in the understanding of the molecular mechanism of the Hsp70 chaperone machinery focusing mostly on the bacterial Hsp70 DnaK and will compare the two other prokaryotic Hsp70s HscA and HscC with DnaK.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
17
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
18
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2020; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
20
|
Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol 2020; 20:665-680. [PMID: 31253954 DOI: 10.1038/s41580-019-0133-3] [Citation(s) in RCA: 755] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 70-kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that act in a large variety of cellular protein folding and remodelling processes. They function virtually at all stages of the life of proteins from synthesis to degradation and are thus crucial for maintaining protein homeostasis, with direct implications for human health. A large set of co-chaperones comprising J-domain proteins and nucleotide exchange factors regulate the ATPase cycle of Hsp70s, which is allosterically coupled to substrate binding and release. Moreover, Hsp70s cooperate with other cellular chaperone systems including Hsp90, Hsp60 chaperonins, small heat shock proteins and Hsp100 AAA+ disaggregases, together constituting a dynamic and functionally versatile network for protein folding, unfolding, regulation, targeting, aggregation and disaggregation, as well as degradation. In this Review we describe recent advances that have increased our understanding of the molecular mechanisms and working principles of the Hsp70 network. This knowledge showcases how the Hsp70 chaperone system controls diverse cellular functions, and offers new opportunities for the development of chemical compounds that modulate disease-related Hsp70 activities.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-ZMBH Alliance, Heidelberg, Germany.,Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
21
|
Faust O, Rosenzweig R. Structural and Biochemical Properties of Hsp40/Hsp70 Chaperone System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:3-20. [DOI: 10.1007/978-3-030-40204-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
A History of Molecular Chaperone Structures in the Protein Data Bank. Int J Mol Sci 2019; 20:ijms20246195. [PMID: 31817979 PMCID: PMC6940948 DOI: 10.3390/ijms20246195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Thirty years ago a class of proteins was found to prevent the aggregation of Rubisco. These proteins’ ability to prevent unwanted associations led to their being called chaperones. These chaperone proteins also increased in expression as a response to heat shock, hence their label as heat shock proteins (Hsps). However, neither label encompasses the breadth of these proteins’ functional capabilities. The term “unfoldases” has been proposed, as this basic function is shared by most members of this protein family. Onto this is added specializations that allow the different family members to perform various cellular functions. This current article focuses on the resolved structural bases for these functions. It reviews the currently available molecular structures in the Protein Data Bank for several classes of Hsps (Hsp60, Hsp70, Hsp90, and Hsp104). When possible, it discusses the complete structures for these proteins, and the types of molecular machines to which they have been assigned. The structures of domains and the associated functions are discussed in order to illustrate the rationale for the proposed unfoldase function.
Collapse
|
23
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
24
|
Mayer MP, Gierasch LM. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 2018; 294:2085-2097. [PMID: 30455352 DOI: 10.1074/jbc.rev118.002810] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hsp70 chaperones are central hubs of the protein quality control network and collaborate with co-chaperones having a J-domain (an ∼70-residue-long helical hairpin with a flexible loop and a conserved His-Pro-Asp motif required for ATP hydrolysis by Hsp70s) and also with nucleotide exchange factors to facilitate many protein-folding processes that (re)establish protein homeostasis. The Hsp70s are highly dynamic nanomachines that modulate the conformation of their substrate polypeptides by transiently binding to short, mostly hydrophobic stretches. This interaction is regulated by an intricate allosteric mechanism. The J-domain co-chaperones target Hsp70 to their polypeptide substrates, and the nucleotide exchange factors regulate the lifetime of the Hsp70-substrate complexes. Significant advances in recent years are beginning to unravel the molecular mechanism of this chaperone machine and how they treat their substrate proteins.
Collapse
Affiliation(s)
- Matthias P Mayer
- From the Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany and
| | - Lila M Gierasch
- the Departments of Biochemistry and Molecular Biology and.,Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
25
|
Tomoyasu T, Tsuruno K, Tanatsugu R, Miyazaki A, Kondo H, Tabata A, Whiley RA, Sonomoto K, Nagamune H. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK. Microbiol Immunol 2018; 62:681-693. [PMID: 30239035 DOI: 10.1111/1348-0421.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 11/27/2022]
Abstract
Streptococcus intermedius DnaK complements the temperature-sensitive phenotype of an Escherichia coli dnaK null mutant only when co-chaperones DnaJ and GrpE are co-expressed. Therefore, whether S. intermedius DnaK and E. coli DnaK can recognize heterologous co-chaperones in vitro was examined. Addition of heterologous GrpE to DnaK and DnaJ partially stimulated adenosine triphosphatase (ATPase) activity, and almost completely stimulated luciferase refolding activity. Addition of heterologous DnaJ to GrpE and DnaK also stimulated ATPase activity; however, significant luciferase refolding activity was not observed. Moreover, E. coli DnaJ had a negative effect on the luciferase refolding activity of the S. intermedius DnaK chaperone system. In E. coli chaperone mutants, with the exception of E. coli DnaJ, stronger expression of the heterologous co-chaperones partially or almost completely complemented the temperature-sensitive-phenotype. These results indicate that all heterologous co-chaperones can at least partially recognize DnaK of a distantly related species. A region of the ATPase domain that is present in the DnaK of gram-negative bacteria is absent from the DnaK of gram-positive bacteria. This region is believed to be important for recognition of co-chaperones from gram-negative bacteria. However, insertion of this segment into S. intermedius DnaK failed to increase its ability to recognize E. coli co-chaperones, implying that this region is unnecessary or insufficient for the recognition of E. coli co-chaperones. Thus, our data suggest that a basic structural similarity is conserved among the components of the S. intermedius and E. coli DnaK chaperone systems, allowing weak associations between heterologous components.
Collapse
Affiliation(s)
- Toshifumi Tomoyasu
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| | - Keigo Tsuruno
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ryosuke Tanatsugu
- Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8506, Japan
| | - Aya Miyazaki
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hiroyuki Kondo
- Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8506, Japan
| | - Atsushi Tabata
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| | - Robert A Whiley
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Kenji Sonomoto
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hideaki Nagamune
- Field of Biomolecular Functions and Technology, Department of Bioscience and Bioindustry, Graduate School of Bioscience and Bioindustry, Tokushima University Graduate School, Minami-josanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
26
|
Konovalova S, Liu X, Manjunath P, Baral S, Neupane N, Hilander T, Yang Y, Balboa D, Terzioglu M, Euro L, Varjosalo M, Tyynismaa H. Redox regulation of GRPEL2 nucleotide exchange factor for mitochondrial HSP70 chaperone. Redox Biol 2018; 19:37-45. [PMID: 30098457 PMCID: PMC6089081 DOI: 10.1016/j.redox.2018.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are central organelles to cellular metabolism. Their function relies largely on nuclear-encoded proteins that must be imported from the cytosol, and thus the protein import pathways are important for the maintenance of mitochondrial proteostasis. Mitochondrial HSP70 (mtHsp70) is a key component in facilitating the translocation of proteins through the inner membrane into the mitochondrial matrix. Its protein folding cycle is regulated by the nucleotide-exchange factor GrpE, which triggers the release of folded proteins by ATP rebinding. Vertebrates have two mitochondrial GrpE paralogs, GRPEL1 and 2, but without clearly defined roles. Using BioID proximity labeling to identify potential binding partners of the GRPELs in the mitochondrial matrix, we obtained results supporting a model where both GRPELs regulate mtHsp70 as homodimers. We show that GRPEL2 is not essential in human cultured cells, and its absence does not prevent mitochondrial protein import. Instead we find that GRPEL2 is redox regulated in oxidative stress. In the presence of hydrogen peroxide, GRPEL2 forms dimers through intermolecular disulfide bonds in which Cys87 is the thiol switch. We propose that the dimerization of GRPEL2 may activate the folding machinery responsible for protein import into mitochondrial matrix or enhance the chaperone activity of mtHSP70, thus protecting mitochondrial proteostasis in oxidative stress.
Collapse
Affiliation(s)
- Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pooja Manjunath
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Sundar Baral
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Nirajan Neupane
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Taru Hilander
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Yang Yang
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Durie CL, Duran EC, Lucius AL. Escherichia coli DnaK Allosterically Modulates ClpB between High- and Low-Peptide Affinity States. Biochemistry 2018; 57:3665-3675. [PMID: 29812913 DOI: 10.1021/acs.biochem.8b00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ClpB and DnaKJE provide protection to Escherichia coli cells during extreme environmental stress. Together, this co-chaperone system can resolve protein aggregates, restoring misfolded proteins to their native form and function in solubilizing damaged proteins for removal by the cell's proteolytic systems. DnaK is the component of the KJE system that directly interacts with ClpB. There are many hypotheses for how DnaK affects ClpB-catalyzed disaggregation, each with some experimental support. Here, we build on our recent work characterizing the molecular mechanism of ClpB-catalyzed polypeptide translocation by developing a stopped-flow FRET assay that allows us to detect ClpB's movement on model polypeptide substrates in the absence or presence of DnaK. We find that DnaK induces ClpB to dissociate from the polypeptide substrate. We propose that DnaK acts as a peptide release factor, binding ClpB and causing the ClpB conformation to change to a low-peptide affinity state. Such a role for DnaK would allow ClpB to rebind to another portion of an aggregate and continue nonprocessive translocation to disrupt the aggregate.
Collapse
Affiliation(s)
- Clarissa L Durie
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| | - Elizabeth C Duran
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| | - Aaron L Lucius
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| |
Collapse
|
28
|
Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate. Sci Rep 2018; 8:5796. [PMID: 29643454 PMCID: PMC5895705 DOI: 10.1038/s41598-018-24140-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.
Collapse
|
29
|
Allu PK, Boggula Y, Karri S, Marada A, Krishnamoorthy T, Sepuri NBV. A conserved R type Methionine Sulfoxide Reductase reverses oxidized GrpEL1/Mge1 to regulate Hsp70 chaperone cycle. Sci Rep 2018; 8:2716. [PMID: 29426933 PMCID: PMC5807549 DOI: 10.1038/s41598-018-21083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
Cells across evolution employ reversible oxidative modification of methionine and cysteine amino acids within proteins to regulate responses to redox stress. Previously we have shown that mitochondrial localized methionine sulfoxide reductase (Mxr2) reversibly regulates oxidized yeast Mge1 (yMge1), a co-chaperone of Hsp70/Ssc1 to maintain protein homeostasis during oxidative stress. However, the specificity and the conservation of the reversible methionine oxidation mechanism in higher eukaryotes is debatable as human GrpEL1 (hGrpEL1) unlike its homolog yMge1 harbors two methionine residues and multiple cysteines besides the mammalian mitochondria hosting R and S types of Mxrs/Msrs. In this study, using yeast as a surrogate system, we show that hGRPEL1 and R type MSRs but not the S type MSRs complement the deletion of yeast MGE1 or MXR2 respectively. Our investigations show that R type Msrs interact selectively with oxidized hGrpEL1/yMge1 in an oxidative stress dependent manner, reduce the conserved hGrpEL1-Met146-SO and rescue the Hsp70 ATPase activity. In addition, a single point mutation in hGrpEL1-M146L rescues the slow growth phenotype of yeast MXR2 deletion under oxidative duress. Our study illustrates the evolutionarily conserved formation of specific Met-R-SO in hGrpEL1/yMge1 and the essential and canonical role of R type Msrs/Mxrs in mitochondrial redox mechanism.
Collapse
Affiliation(s)
- Praveen Kumar Allu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Yerranna Boggula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Srinivasu Karri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Adinarayana Marada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Thanuja Krishnamoorthy
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
30
|
Kaabi B, Ahmed S, Soli R, Maktouf C. Analysis and Profiling of Leishmania major Expressed Sequence Tags. Ing Rech Biomed 2017. [DOI: 10.1016/j.irbm.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Marada A, Karri S, Singh S, Allu PK, Boggula Y, Krishnamoorthy T, Guruprasad L, V Sepuri NB. A Single Point Mutation in Mitochondrial Hsp70 Cochaperone Mge1 Gains Thermal Stability and Resistance. Biochemistry 2016; 55:7065-7072. [DOI: 10.1021/acs.biochem.6b00232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Adinarayana Marada
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Srinivasu Karri
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Swati Singh
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Praveen Kumar Allu
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Yerranna Boggula
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Thanuja Krishnamoorthy
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Lalitha Guruprasad
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, T.S., India
| | - Naresh Babu V Sepuri
- Department
of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, T.S., India
| |
Collapse
|
32
|
Naveen V, Hsiao CD. NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence. PLoS One 2016; 11:e0157165. [PMID: 27275780 PMCID: PMC4898720 DOI: 10.1371/journal.pone.0157165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022] Open
Abstract
Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest that elevated expression of NrdR could be a suitable means to retard bacterial growth and virulence, as its elevated expression reduces bacterial fitness and impairs host cell adhesion.
Collapse
Affiliation(s)
- Vankadari Naveen
- Molecular Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chwan-Deng Hsiao
- Molecular Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Bracher A, Verghese J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. Subcell Biochem 2015; 78:1-33. [PMID: 25487014 DOI: 10.1007/978-3-319-11731-7_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Dept. of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany,
| | | |
Collapse
|
34
|
Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to Hsp90. Cell Rep 2015; 11:759-69. [PMID: 25921532 PMCID: PMC4431665 DOI: 10.1016/j.celrep.2015.03.063] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90. Antiparallel dimerization of Hsp70 is stabilized by PTMs Hsp40 catalyzes Hsp70 dimerization and client transfer to Hsp70 Hsp70 antiparallel dimerization is maintained in the client-loading complex Addition of p23 induces transfer of GR onto Hsp90 and loss of Hop and Hsp70
Collapse
|
35
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
36
|
Melero R, Moro F, Pérez-Calvo MÁ, Perales-Calvo J, Quintana-Gallardo L, Llorca O, Muga A, Valpuesta JM. Modulation of the chaperone DnaK allosterism by the nucleotide exchange factor GrpE. J Biol Chem 2015; 290:10083-92. [PMID: 25739641 DOI: 10.1074/jbc.m114.623371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Hsp70 chaperones comprise two domains, the nucleotide-binding domain (Hsp70NBD), responsible for structural and functional changes in the chaperone, and the substrate-binding domain (Hsp70SBD), involved in substrate interaction. Substrate binding and release in Hsp70 is controlled by the nucleotide state of DnaKNBD, with ATP inducing the open, substrate-receptive DnaKSBD conformation, whereas ADP forces its closure. DnaK cycles between the two conformations through interaction with two cofactors, the Hsp40 co-chaperones (DnaJ in Escherichia coli) induce the ADP state, and the nucleotide exchange factors (GrpE in E. coli) induce the ATP state. X-ray crystallography showed that the GrpE dimer is a nucleotide exchange factor that works by interaction of one of its monomers with DnaKNBD. DnaKSBD location in this complex is debated; there is evidence that it interacts with the GrpE N-terminal disordered region, far from DnaKNBD. Although we confirmed this interaction using biochemical and biophysical techniques, our EM-based three-dimensional reconstruction of the DnaK-GrpE complex located DnaKSBD near DnaKNBD. This apparent discrepancy between the functional and structural results is explained by our finding that the tail region of the GrpE dimer in the DnaK-GrpE complex bends and its tip contacts DnaKSBD, whereas the DnaKNBD-DnaKSBD linker contacts the GrpE helical region. We suggest that these interactions define a more complex role for GrpE in the control of DnaK function.
Collapse
Affiliation(s)
- Roberto Melero
- From the Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid
| | - Fernando Moro
- the Unidad de Biofísica (CSIC/UPV-EHU) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080 Bilbao, and
| | | | - Judit Perales-Calvo
- the Unidad de Biofísica (CSIC/UPV-EHU) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080 Bilbao, and
| | | | - Oscar Llorca
- From the Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid,
| | - Arturo Muga
- the Unidad de Biofísica (CSIC/UPV-EHU) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080 Bilbao, and
| | | |
Collapse
|
37
|
Lin MG, Chi MC, Chen BE, Wang TF, Lo HF, Lin LL. Residues Phe103 and Phe149 are critical for the co-chaperone activity of Bacillus licheniformis GrpE. Int J Biol Macromol 2015; 72:724-31. [DOI: 10.1016/j.ijbiomac.2014.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/23/2023]
|
38
|
General IJ, Liu Y, Blackburn ME, Mao W, Gierasch LM, Bahar I. ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones. PLoS Comput Biol 2014; 10:e1003624. [PMID: 24831085 PMCID: PMC4022485 DOI: 10.1371/journal.pcbi.1003624] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the β-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions.
Collapse
Affiliation(s)
- Ignacio J. General
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ying Liu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mandy E. Blackburn
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Wenzhi Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology, Tsinghua University, Beijing, China
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Amick J, Schlanger SE, Wachnowsky C, Moseng MA, Emerson CC, Dare M, Luo WI, Ithychanda SS, Nix JC, Cowan JA, Page RC, Misra S. Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone. Protein Sci 2014; 23:833-42. [PMID: 24687350 DOI: 10.1002/pro.2466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 01/18/2023]
Abstract
Mortalin, a member of the Hsp70-family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe-S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT-077. Like other Hsp70-family members, Mortalin consists of a nucleotide-binding domain (NBD) and a substrate-binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide-binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease-associated mutation is located on the Mortalin-NBD surface and may contribute to Mortalin aggregation. We present structure-based models for how the Mortalin-NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT-077. Our structure may contribute to the understanding of disease-associated Mortalin mutations and to improved Mortalin-targeting antitumor compounds.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Molecular Cardiology, The Cleveland Clinic, Cleveland, Ohio, 44195
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 2013; 9:1937-54. [PMID: 24121476 DOI: 10.4161/auto.26448] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HSPA8/HSC70 protein is a fascinating chaperone protein. It represents a constitutively expressed, cognate protein of the HSP70 family, which is central in many cellular processes. In particular, its regulatory role in autophagy is decisive. We focused this review on HSC70 structure-function considerations and based on this, we put a particular emphasis on HSC70 targeting by small molecules and peptides in order to develop intervention strategies that deviate some of HSC70 properties for therapeutic purposes. Generating active biomolecules regulating autophagy via its effect on HSC70 can effectively be designed only if we understand the fine relationships between HSC70 structure and functions.
Collapse
Affiliation(s)
- François Stricher
- CNRS; Institut de Biologie Moléculaire et Cellulaire; Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis; Strasbourg, France
| | | | | | | |
Collapse
|
41
|
Ortega-Roldan JL, Ossa F, Schnell JR. Characterization of the human sigma-1 receptor chaperone domain structure and binding immunoglobulin protein (BiP) interactions. J Biol Chem 2013; 288:21448-21457. [PMID: 23760505 PMCID: PMC3774411 DOI: 10.1074/jbc.m113.450379] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/31/2013] [Indexed: 01/09/2023] Open
Abstract
The sigma-1 receptor (S1R) is a ligand-regulated membrane protein chaperone involved in the ER stress response. S1R activity is implicated in diseases of the central nervous system including amnesia, schizophrenia, depression, Alzheimer disease, and addiction. S1R has been shown previously to regulate the Hsp70 binding immunoglobulin protein (BiP) and the inositol triphosphate receptor calcium channel through a C-terminal domain. We have developed methods for bacterial expression and reconstitution of the chaperone domain of human S1R into detergent micelles that enable its study by solution NMR spectroscopy. The chaperone domain is found to contain a helix at the N terminus followed by a largely dynamic region and a structured, helical C-terminal region that encompasses a membrane associated domain containing four helices. The helical region at residues ∼198-206 is strongly amphipathic and proposed to anchor the chaperone domain to micelles and membranes. Three of the helices in the C-terminal region closely correspond to previously identified cholesterol and drug recognition sites. In addition, it is shown that the chaperone domain interacts with full-length BiP or the isolated nucleotide binding domain of BiP, but not the substrate binding domain, suggesting that the nucleotide binding domain is sufficient for S1R interactions.
Collapse
Affiliation(s)
| | - Felipe Ossa
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jason R Schnell
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
42
|
Quinlan RA, Ellis RJ. Chaperones: needed for both the good times and the bad times. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130091. [PMID: 23530265 DOI: 10.1098/rstb.2013.0091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this issue, we explore the assembly roles of protein chaperones, mainly through the portal of their associated human diseases (e.g. cardiomyopathy, cataract, neurodegeneration, cancer and neuropathy). There is a diversity to chaperone function that goes beyond the current emphasis in the scientific literature on their undoubted roles in protein folding and refolding. The focus on chaperone-mediated protein folding needs to be broadened by the original Laskey discovery that a chaperone assists the assembly of an oligomeric structure, the nucleosome, and the subsequent suggestion by Ellis that other chaperones may function in assembly processes, as well as in folding. There have been a number of recent discoveries that extend this relatively neglected aspect of chaperone biology to include proteostasis, maintenance of the cellular redox potential, genome stability, transcriptional regulation and cytoskeletal dynamics. So central are these processes that we propose that chaperones stand at the crossroads of life and death because they mediate essential functions, not only during the bad times, but also in the good times. We suggest that chaperones facilitate the success of a species, and hence the evolution of individuals within populations, because of their contributions to so many key cellular processes, of which protein folding is only one.
Collapse
Affiliation(s)
- Roy A Quinlan
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|