1
|
Zhu T, Ning P, Liu Y, Liu M, Yang J, Wang Z, Li M. Knowledge of microalgal Rubiscos helps to improve photosynthetic efficiency of crops. PLANTA 2025; 261:78. [PMID: 40042639 DOI: 10.1007/s00425-025-04645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION A comprehensive understanding of microalgal Rubiscos offers opportunities to enhance photosynthetic efficiency of crops. As food production fails to meet the needs of the expanding population, there is increasing concern about Ribulose-1, 5-diphosphate (RuBP) carboxylase/oxygenase (Rubisco), the enzyme that catalyzes CO2 fixation in photosynthesis. There have been many attempts to optimize Rubisco in crops, but the complex multicellular structure of higher plants makes optimization more difficult. Microalgae have the characteristics of rapid growth, simple structure and easy molecular modification, and the function and properties of their Rubiscos are basically the same as those of higher plants. Research on microalgal Rubiscos helps to broaden the understanding of Rubiscos of higher plants. Also, transferring all or part of better microalgal Rubiscos into crop cells or giving crop Rubiscos the advantages of microalgal Rubiscos can help improve the photosynthesis of crops. In this review, the distribution, origin, evolution, molecular structure, folding, assembly, activation and kinetic properties of microalgal Rubiscos are summarized. Moreover, the development of some effective methods to improve the properties and application of Rubiscos in microalgae are also described.
Collapse
Affiliation(s)
- Tongtong Zhu
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Yiguo Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 250100, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| | - Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
2
|
Yarullina L, Kalatskaja J, Tsvetkov V, Burkhanova G, Yalouskaya N, Rybinskaya K, Zaikina E, Cherepanova E, Hileuskaya K, Nikalaichuk V. The Influence of Chitosan Derivatives in Combination with Bacillus subtilis Bacteria on the Development of Systemic Resistance in Potato Plants with Viral Infection and Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:2210. [PMID: 39204646 PMCID: PMC11360750 DOI: 10.3390/plants13162210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including modeling the beneficial microbiome of agroecosystems combining microorganisms and immunostimulants. Chitosan and its derivatives have great potential for use in agricultural engineering due to their ability to induce plant immune responses. The effect of chitosan conjugate with caffeic acid (ChCA) in combination with Bacillus subtilis 47 on the transcriptional activity of PR protein genes and changes in the proteome of potato plants during potato virus Y (PVY) infection and drought was studied. The mechanisms of increasing the resistance of potato plants to PVY and lack of moisture are associated with the activation of transcription of genes encoding PR proteins: the main protective protein (PR-1), chitinase (PR-3), thaumatin-like protein (PR-5), protease inhibitor (PR-6), peroxidase (PR-9), and ribonuclease (PR-10), as well as qualitative and quantitative changes in the plant proteome. The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of combined treatment with B. subtilis and chitosan conjugate indicate that, in potato plants, the formation of resistance to viral infection in drought conditions proceeds synergistically. By two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 10 proteins were identified, the content and composition of which differed depending on the experiment variant. In infected plants treated with ChCA, the synthesis of proteinaceous RNase P 1 and oxygen-evolving enhancer protein 2 was enhanced in conditions of normal humidity, and 20 kDa chaperonin and TMV resistance protein N-like was enhanced in conditions of lack of moisture. The virus coat proteins were detected, which intensively accumulated in the leaves of plants infected with potato Y-virus. ChCA treatment reduced the content of these proteins in the leaves, and in plants treated with ChCA in combination with Bacillus subtilis, viral proteins were not detected at all, both in conditions of normal humidity and lack of moisture, which suggests the promising use of chitosan derivatives in combination with B. subtilis bacteria in the regulation of plant resistance.
Collapse
Affiliation(s)
- Liubov Yarullina
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Joanna Kalatskaja
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Vyacheslav Tsvetkov
- Department of Biochemistry and Biotechnology, Ufa University of Science and Technology, ul. Zaki Validi, 32, 450076 Ufa, Russia;
| | - Guzel Burkhanova
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Ninel Yalouskaya
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Katerina Rybinskaya
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Evgenia Zaikina
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Ekaterina Cherepanova
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (K.H.); (V.N.)
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (K.H.); (V.N.)
| |
Collapse
|
3
|
Li H, Chen L, Liu R, Cao S, Lu Z. Comparative Proteomic Analysis of Floral Buds before and after Opening in Walnut ( Juglans regia L.). Int J Mol Sci 2024; 25:7878. [PMID: 39063121 PMCID: PMC11276623 DOI: 10.3390/ijms25147878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield and quality. Therefore, studying the characteristics and processes of flower bud differentiation helps in gaining a deeper understanding of the regularity of the mechanism of heterodichogamy in walnuts. In this study, a total of 3540 proteins were detected in walnut and 885 unique differentially expressed proteins (DEPs) were identified using the isobaric tags for the relative and absolute quantitation (iTRAQ)-labeling method. Among all DEPs, 12 common proteins were detected in all four of the obtained contrasts. GO and KEGG analyses of 12 common DEPs showed that their functions are distributed in the cytoplasm metabolic pathways, photosynthesis, glyoxylate and dicarboxylate metabolism, and the biosynthesis of secondary metabolites, which are involved in energy production and conversion, synthesis, and the breakdown of proteomes. In addition, a function analysis was performed, whereby the DEPs were classified as involved in photosynthesis, morphogenesis, metabolism, or the stress response. A total of eight proteins were identified as associated with the morphogenesis of stamen development, such as stamen-specific protein FIL1-like (XP_018830780.1), putative leucine-rich repeat receptor-like serine/threonine-protein kinase At2g24130 (XP_018822513.1), cytochrome P450 704B1-like isoform X2 (XP_018845266.1), ervatamin-B-like (XP_018824181.1), probable glucan endo-1,3-beta-glucosidase A6 (XP_018844051.1), pathogenesis-related protein 5-like (XP_018835774.1), GDSL esterase/lipase At5g22810-like (XP_018833146.1), and fatty acyl-CoA reductase 2 (XP_018848853.1). Our results predict several crucial proteins and deepen the understanding of the biochemical mechanism that regulates the formation of male and female flower buds in walnuts.
Collapse
Affiliation(s)
- Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Nanfan Research Institute, Sanya 572000, China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Nanfan Research Institute, Sanya 572000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou 450000, China
| |
Collapse
|
4
|
Ries F, Weil HL, Herkt C, Mühlhaus T, Sommer F, Schroda M, Willmund F. Competition co-immunoprecipitation reveals the interactors of the chloroplast CPN60 chaperonin machinery. PLANT, CELL & ENVIRONMENT 2023; 46:3371-3391. [PMID: 37606545 DOI: 10.1111/pce.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Plant Physiology/Synmikro, University of Marburg, Marburg, Germany
| |
Collapse
|
5
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Jin K, Chen G, Yang Y, Zhang Z, Lu T. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C 3 photosynthesis: Prospects on modern crop improvement. PLANT, CELL & ENVIRONMENT 2023; 46:363-378. [PMID: 36444099 DOI: 10.1111/pce.14500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.
Collapse
Affiliation(s)
- Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yirong Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
7
|
Buck S, Rhodes T, Gionfriddo M, Skinner T, Yuan D, Birch R, Kapralov MV, Whitney SM. Escherichia coli expressing chloroplast chaperones as a proxy to test heterologous Rubisco production in leaves. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:664-676. [PMID: 36322613 DOI: 10.1093/jxb/erac435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Rubisco is a fundamental enzyme in photosynthesis and therefore for life. Efforts to improve plant Rubisco performance have been hindered by the enzymes' complex chloroplast biogenesis requirements. New Synbio approaches, however, now allow the production of some plant Rubisco isoforms in Escherichia coli. While this enhances opportunities for catalytic improvement, there remain limitations in the utility of the expression system. Here we generate, optimize, and test a robust Golden Gate cloning E. coli expression system incorporating the protein folding machinery of tobacco chloroplasts. By comparing the expression of different plant Rubiscos in both E. coli and plastome-transformed tobacco, we show that the E. coli expression system can accurately predict high level Rubisco production in chloroplasts but poorly forecasts the biogenesis potential of isoforms with impaired production in planta. We reveal that heterologous Rubisco production in E. coli and tobacco plastids poorly correlates with Rubisco large subunit phylogeny. Our findings highlight the need to fully understand the factors governing Rubisco biogenesis if we are to deliver an efficient, low-cost screening tool that can accurately emulate chloroplast expression.
Collapse
Affiliation(s)
- Sally Buck
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tim Rhodes
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Matteo Gionfriddo
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tanya Skinner
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Ding Yuan
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Rosemary Birch
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Spencer M Whitney
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| |
Collapse
|
8
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
9
|
Wang N, Wang Y, Zhao Q, Zhang X, Peng C, Zhang W, Liu Y, Vallon O, Schroda M, Cong Y, Liu C. The cryo-EM structure of the chloroplast ClpP complex. NATURE PLANTS 2021; 7:1505-1515. [PMID: 34782772 DOI: 10.1038/s41477-021-01020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Protein homoeostasis in plastids is strategically regulated by the protein quality control system involving multiple chaperones and proteases, among them the Clp protease. Here, we determined the structure of the chloroplast ClpP complex from Chlamydomonas reinhardtii by cryo-electron microscopy. ClpP contains two heptameric catalytic rings without any symmetry. The top ring contains one ClpR6, three ClpP4 and three ClpP5 subunits while the bottom ring is composed of three ClpP1C subunits and one each of the ClpR1-4 subunits. ClpR3, ClpR4 and ClpT4 subunits connect the two rings and stabilize the complex. The chloroplast Cpn11/20/23 co-chaperonin, a co-factor of Cpn60, forms a cap on the top of ClpP by protruding mobile loops into hydrophobic clefts at the surface of the top ring. The co-chaperonin repressed ClpP proteolytic activity in vitro. By regulating Cpn60 chaperone and ClpP protease activity, the co-chaperonin may play a role in coordinating protein folding and degradation in the chloroplast.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai, China
| | - Wenjuan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Hammerschmid D, van Dyck JF, Sobott F, Calabrese AN. Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. Methods Mol Biol 2021; 2168:233-261. [PMID: 33582995 DOI: 10.1007/978-1-0716-0724-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.,Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium.,Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
11
|
Ameztoy K, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, Baroja-Fernández E, Gámez-Arcas S, De Diego N, Doležal K, Novák O, Pěnčík A, Alpízar A, Rodríguez-Concepción M, Pozueta-Romero J. Proteostatic Regulation of MEP and Shikimate Pathways by Redox-Activated Photosynthesis Signaling in Plants Exposed to Small Fungal Volatiles. FRONTIERS IN PLANT SCIENCE 2021; 12:637976. [PMID: 33747018 PMCID: PMC7973468 DOI: 10.3389/fpls.2021.637976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 05/07/2023]
Abstract
Microorganisms produce volatile compounds (VCs) with molecular masses of less than 300 Da that promote plant growth and photosynthesis. Recently, we have shown that small VCs of less than 45 Da other than CO2 are major determinants of plant responses to fungal volatile emissions. However, the regulatory mechanisms involved in the plants' responses to small microbial VCs remain unclear. In Arabidopsis thaliana plants exposed to small fungal VCs, growth promotion is accompanied by reduction of the thiol redox of Calvin-Benson cycle (CBC) enzymes and changes in the levels of shikimate and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway-related compounds. We hypothesized that plants' responses to small microbial VCs involve post-translational modulation of enzymes of the MEP and shikimate pathways via mechanisms involving redox-activated photosynthesis signaling. To test this hypothesis, we compared the responses of wild-type (WT) plants and a cfbp1 mutant defective in a redox-regulated isoform of the CBC enzyme fructose-1,6-bisphosphatase to small VCs emitted by the fungal phytopathogen Alternaria alternata. Fungal VC-promoted growth and photosynthesis, as well as metabolic and proteomic changes, were substantially weaker in cfbp1 plants than in WT plants. In WT plants, but not in cfbp1 plants, small fungal VCs reduced the levels of both transcripts and proteins of the stromal Clp protease system and enhanced those of plastidial chaperonins and co-chaperonins. Consistently, small fungal VCs promoted the accumulation of putative Clp protease clients including MEP and shikimate pathway enzymes. clpr1-2 and clpc1 mutants with disrupted plastidial protein homeostasis responded weakly to small fungal VCs, strongly indicating that plant responses to microbial volatile emissions require a finely regulated plastidial protein quality control system. Our findings provide strong evidence that plant responses to fungal VCs involve chloroplast-to-nucleus retrograde signaling of redox-activated photosynthesis leading to proteostatic regulation of the MEP and shikimate pathways.
Collapse
Affiliation(s)
- Kinia Ameztoy
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
| | - Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science of Palackı University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palackı University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Ales Pěnčík
- Laboratory of Growth Regulators, Faculty of Science of Palackı University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Adán Alpízar
- Unidad de Proteómica Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC) Campus de Teatinos, Málaga, Spain
- *Correspondence: Javier Pozueta-Romero,
| |
Collapse
|
12
|
Chaperone Machineries of Rubisco – The Most Abundant Enzyme. Trends Biochem Sci 2020; 45:748-763. [DOI: 10.1016/j.tibs.2020.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/19/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
13
|
Wang T, Luo S, Ma Y, Li L, Xie Y, Zhang W. Chlorophyll a Fluorescence Transient and 2-Dimensional Electrophoresis Analyses Reveal Response Characteristics of Photosynthesis to Heat Stress in Malus. 'Prairifire'. PLANTS 2020; 9:plants9081040. [PMID: 32824237 PMCID: PMC7464964 DOI: 10.3390/plants9081040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Flowering crabapples are a series of precious ornamental woody plants. However, their growth and development are inhibited in the subtropical regions due to the weak photosynthesis under high-temperature environment in the summer. Chlorophyll a fluorescence transient and 2-dimensional electrophoresis (2-DE) analyses were conducted to investigate the response characteristics of photosynthesis under simulated 38 °C heat stress in leaves of Malus. ‘Prairifire’, a spring-red leaf cultivar of flowering crabapple with strong thermal adaptability. In the present study, the net photosynthetic rate (Pn) was significantly decreased during the heat shock process, which showed a similar trend to the stomatal conductance (Gs), indicating a sensitive stomatal behavior to heat stress. Moreover, an efficient reaction center in photosystem II (PSII), and a functionally intact oxygen-evolving complex (OEC) conferred strong photosynthetic adaptability under heat stress. The higher level of transketolase (TK) under 48-h heat shock treatment was considered a protective mechanism of photosynthetic apparatus. However, heat stress inhibited the functions of light harvesting complex II (LHCII), electron transport in PSII, and the levels of key enzymes in the Calvin cycle, which were considered as the reasons causing an increase in the proportion of non-stomatal restrictions.
Collapse
Affiliation(s)
- Tao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.W.); (S.L.); (Y.M.); (L.L.); (W.Z.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Siqian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.W.); (S.L.); (Y.M.); (L.L.); (W.Z.)
| | - Yingli Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.W.); (S.L.); (Y.M.); (L.L.); (W.Z.)
| | - Lingyu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.W.); (S.L.); (Y.M.); (L.L.); (W.Z.)
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.W.); (S.L.); (Y.M.); (L.L.); (W.Z.)
- Correspondence:
| | - Wangxiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.W.); (S.L.); (Y.M.); (L.L.); (W.Z.)
| |
Collapse
|
14
|
de Luna-Valdez LA, Villaseñor-Salmerón CI, Cordoba E, Vera-Estrella R, León-Mejía P, Guevara-García AA. Functional analysis of the Chloroplast GrpE (CGE) proteins from Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:293-306. [PMID: 30927692 DOI: 10.1016/j.plaphy.2019.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
The function of proteins depends on specific partners that regulate protein folding, degradation and protein-protein interactions, such partners are the chaperones and cochaperones. In chloroplasts, proteins belonging to several families of chaperones have been identified: chaperonins (Cpn60s), Hsp90s (Hsp90-5/Hsp90C), Hsp100s (Hsp93/ClpC) and Hsp70s (cpHsc70s). Several lines of evidence have demonstrated that cpHsc70 chaperones are involved in molecular processes like protein import, protein folding and oligomer formation that impact important physiological aspects in plants such as thermotolerance and thylakoid biogenesis. Despite the vast amount of data existing around the function of cpHcp70s chaperones, very little attention has been paid to the roles of DnaJ and GrpE cochaperones in the chloroplast. In this study, we performed a phylogenetic analysis of the chloroplastic GrpE (CGE) proteins from 71 species. Based on their phylogenetic relationships and on a motif enrichment analysis, we propose a classification system for land plants' CGEs, which include two independent groups with specific primary structure traits. Furthermore, using in vivo assays we determined that the two CGEs from A. thaliana (AtCGEs) complement the mutant phenotype displayed by a knockout E. coli strain defective in the bacterial grpE gene. Moreover, we determined in planta that the two AtCGEs are bona fide chloroplastic proteins, which form the essential homodimers needed to establish direct physical interactions with the cpHsc70-1 chaperone. Finally, we found evidence suggesting that AtCGE1 is involved in specific physiological phenomena in A. thaliana, such as the chloroplastic response to heat stress, and the correct oligomerization of the photosynthesis-related LHCII complex.
Collapse
Affiliation(s)
- L A de Luna-Valdez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - C I Villaseñor-Salmerón
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - E Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - R Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - P León-Mejía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - A A Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
15
|
Zhao Q, Zhang X, Sommer F, Ta N, Wang N, Schroda M, Cong Y, Liu C. Hetero-oligomeric CPN60 resembles highly symmetric group-I chaperonin structure revealed by Cryo-EM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:798-812. [PMID: 30735603 DOI: 10.1111/tpj.14273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60β1 and CPN60β2 and the co-chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo-oligomers and all possible other chloroplast co-chaperonin hetero-oligomers are functional, but only that consisting of CPN11/20/23-CPN60αβ1β2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60β1:CPN60β2. The cryo-EM structures of endogenous CPN60αβ1β2/ADP and CPN60αβ1β2/co-chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero-oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero-oligomerization, the chloroplast co-chaperonin CPN11/20/23 forms seven GroES-like domains, which symmetrically interact with CPN60αβ1β2. Our structure also reveals an uneven distribution of roof-forming domains in the dome-shaped CPN11/20/23 co-chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αβ1β2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Frederik Sommer
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Na Ta
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Erwin-Schroedinger Str. 70, 67663, Kaiserslautern, Germany
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
16
|
Ansari MY, Mande SC. A Glimpse Into the Structure and Function of Atypical Type I Chaperonins. Front Mol Biosci 2018; 5:31. [PMID: 29696145 PMCID: PMC5904260 DOI: 10.3389/fmolb.2018.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Chaperonins are a subclass of molecular chaperones that assist cellular proteins to fold and assemble into their native shape. Much work has been done on Type I chaperonins, which has elucidated their elegant mechanism. Some debate remains about the details in these mechanisms, but nonetheless the roles of these in helping protein folding have been understood in great depth. In this review we discuss the known functions of atypical Type I chaperonins, highlighting evolutionary aspects that might lead chaperonins to perform alternate functions.
Collapse
|
17
|
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.
Collapse
Affiliation(s)
- Robert H Wilson
- Department of Cellular Biochemistry , Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry , Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| |
Collapse
|
18
|
Aigner H, Wilson RH, Bracher A, Calisse L, Bhat JY, Hartl FU, Hayer-Hartl M. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 2018; 358:1272-1278. [PMID: 29217567 DOI: 10.1126/science.aap9221] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
Abstract
Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis.
Collapse
Affiliation(s)
- H Aigner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - R H Wilson
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - A Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - L Calisse
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Y Bhat
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F U Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - M Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
19
|
Vitlin Gruber A, Feiz L. Rubisco Assembly in the Chloroplast. Front Mol Biosci 2018; 5:24. [PMID: 29594130 PMCID: PMC5859369 DOI: 10.3389/fmolb.2018.00024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 01/13/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step in the Calvin-Benson cycle, which transforms atmospheric carbon into a biologically useful carbon source. The slow catalytic rate of Rubisco and low substrate specificity necessitate the production of high levels of this enzyme. In order to engineer a more efficient plant Rubisco, we need to better understand its folding and assembly process. Form I Rubisco, found in green algae and vascular plants, is a hexadecamer composed of 8 large subunits (RbcL), encoded by the chloroplast genome and 8 small, nuclear-encoded subunits (RbcS). Unlike its cyanobacterial homolog, which can be reconstituted in vitro or in E. coli, assisted by bacterial chaperonins (GroEL-GroES) and the RbcX chaperone, biogenesis of functional chloroplast Rubisco requires Cpn60-Cpn20, the chloroplast homologs of GroEL-GroES, and additional auxiliary factors, including Rubisco accumulation factor 1 (Raf1), Rubisco accumulation factor 2 (Raf2) and Bundle sheath defective 2 (Bsd2). The discovery and characterization of these factors paved the way for Arabidopsis Rubisco assembly in E. coli. In the present review, we discuss the uniqueness of hetero-oligomeric chaperonin complex for RbcL folding, as well as the sequential or concurrent actions of the post-chaperonin chaperones in holoenzyme assembly. The exact stages at which each assembly factor functions are yet to be determined. Expression of Arabidopsis Rubisco in E. coli provided some insight regarding the potential roles for Raf1 and RbcX in facilitating RbcL oligomerization, for Bsd2 in stabilizing the oligomeric core prior to holoenzyme assembly, and for Raf2 in interacting with both RbcL and RbcS. In the long term, functional characterization of each known factor along with the potential discovery and characterization of additional factors will set the stage for designing more efficient plants, with a greater biomass, for use in biofuels and sustenance.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Leila Feiz
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Lin MT, Hanson MR. Red algal Rubisco fails to accumulate in transplastomic tobacco expressing Griffithsia monilis RbcL and RbcS genes. PLANT DIRECT 2018; 2:e00045. [PMID: 31245711 PMCID: PMC6508576 DOI: 10.1002/pld3.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 05/03/2023]
Abstract
In C3 plants, the carbon fixation step catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) represents a major rate-limiting step due to the competing oxygenation reaction, which leads to the energy-intensive photorespiration and lowers the overall photosynthetic efficiency. Hence, there is great biotechnological interest in replacing the Rubisco in C3 crops with a more efficient enzyme. The Rubisco enzymes from red algae are among the most attractive choices due to their remarkable preference for carboxylation over oxygenation reaction. However, the biogenesis of Rubisco is extremely complex. The Rubisco enzymes in plants, algae, and cyanobacteria are made up of eight large and eight small subunits. The folding of the large subunits and the assembly of the large subunits with the small subunits to form a functional holoenzyme require specific chaperonin complexes and assembly factors. As a result, previous success in expressing foreign Rubisco in plants has been limited to Rubisco large subunits from closely related plant species and simpler bacterial enzymes. In our previous work, we successfully replaced the Rubisco in tobacco with a cyanobacterial enzyme, which was able to support the phototrophic growth of the transgenic plants. In this work, we used the same approach to express the Rubisco subunits from the red alga Griffithsia monilis in tobacco chloroplasts in the absence of the tobacco Rubisco large subunit. Although the red algal Rubisco genes are being transcribed in tobacco chloroplasts, the transgenic plants lack functional Rubisco and can only grow in a medium containing sucrose. Our results suggest that co-expression of compatible chaperones will be necessary for successful assembly of red algal Rubisco in plants.
Collapse
Affiliation(s)
- Myat T. Lin
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Maureen R. Hanson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| |
Collapse
|
21
|
Zhao Q, Liu C. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis. Front Mol Biosci 2018; 4:98. [PMID: 29404339 PMCID: PMC5780408 DOI: 10.3389/fmolb.2017.00098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/28/2017] [Indexed: 11/13/2022] Open
Abstract
Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead to successful reconstitution of eukaryotic Rubisco in vitro.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Wilson RH, Martin-Avila E, Conlan C, Whitney SM. An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO 2-fixation kinetics. J Biol Chem 2018; 293:18-27. [PMID: 28986448 PMCID: PMC5766918 DOI: 10.1074/jbc.m117.810861] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Indexed: 01/03/2023] Open
Abstract
An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security, and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO2 fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective because of catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion Escherichia coli metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high-fidelity, high-throughput Rubisco-directed evolution (RDE2) screen that negates false-positive selection. Successive evolution rounds using the plant-like Te-Rubisco from the cyanobacterium Thermosynechococcus elongatus BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency, and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth, the Te-Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for Synechocccus PCC6301 Rubisco, the specialized folding and assembly requirements of Te-Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO2-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert H Wilson
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Elena Martin-Avila
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Carly Conlan
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia.
| |
Collapse
|
23
|
Nakamoto H, Kojima K. Non-housekeeping, non-essential GroEL (chaperonin) has acquired novel structure and function beneficial under stress in cyanobacteria. PHYSIOLOGIA PLANTARUM 2017; 161:296-310. [PMID: 28597961 DOI: 10.1111/ppl.12595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
GroELs which are prokaryotic members of the chaperonin (Cpn)/Hsp60 family are molecular chaperones of which Escherichia coli GroEL is a model for subsequent research. The majority of bacterial species including E. coli and Bacillus subtilis have only one essential groEL gene that forms an operon with the co-chaperone groES gene. In contrast to these model bacteria, two or three groEL genes exist in cyanobacterial genomes. One of them, groEL2, does not form an operon with the groES gene, whereas the other(s) does. In the case of cyanobacteria containing two GroEL homologs, one of the GroELs, GroEL1, substitutes for the native GroEL in an E. coli cell, but GroEL2 does not. Unlike the E. coli GroEL, GroEL2 is not essential, but it plays an important role which is not substitutable by GroEL1 under stress. Regulation of expression and biochemical properties of GroEL2 are different/diversified from GroEL1 and E. coli GroEL in many aspects. We postulate that the groEL2 gene has acquired a novel, beneficial function especially under stresses and become preserved by natural selection, with the groEL1 gene retaining the original, house-keeping function. In this review, we will focus on difference between the two GroELs in cyanobacteria, and divergence of GroEL2 from the E. coli GroEL. We will also compare cyanobacterial GroELs with the chloroplast Cpns (60α and 60β) which are thought to be evolved from the cyanobacterial GroEL1. Chloroplast Cpns appear to follow the different path from cyanobacterial GroELs in the evolution after gene duplication of the corresponding ancestral groEL gene.
Collapse
Affiliation(s)
- Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kouji Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
24
|
Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M. Biogenesis and Metabolic Maintenance of Rubisco. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:29-60. [PMID: 28125284 DOI: 10.1146/annurev-arplant-043015-111633] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mediates the fixation of atmospheric CO2 in photosynthesis by catalyzing the carboxylation of the 5-carbon sugar ribulose-1,5-bisphosphate (RuBP). Rubisco is a remarkably inefficient enzyme, fixing only 2-10 CO2 molecules per second. Efforts to increase crop yields by bioengineering Rubisco remain unsuccessful, owing in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. The large subunit of Rubisco requires the chaperonin system for folding, and recent studies have shown that assembly of hexadecameric Rubisco is mediated by specific assembly chaperones. Moreover, Rubisco function can be inhibited by a range of sugar-phosphate ligands, including RuBP. Metabolic repair depends on remodeling of Rubisco by the ATP-dependent Rubisco activase and hydrolysis of inhibitory sugar phosphates by specific phosphatases. Here, we review our present understanding of the structure and function of these auxiliary factors and their utilization in efforts to engineer more catalytically efficient Rubisco enzymes.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia;
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ; , ,
| |
Collapse
|
25
|
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. THE NEW PHYTOLOGIST 2017; 213:494-510. [PMID: 27935049 DOI: 10.1111/nph.14351] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/10/2016] [Indexed: 05/19/2023]
Abstract
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Center of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
26
|
Native Mass Spectrometry for the Characterization of Structure and Interactions of Membrane Proteins. Methods Mol Biol 2017; 1635:205-232. [PMID: 28755371 DOI: 10.1007/978-1-4939-7151-0_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past years, native mass spectrometry and ion mobility have grown into techniques that are widely applicable to the study of aspects of protein structure. More recently, it has become apparent that this approach provides a very promising avenue for the investigation of integral membrane proteins in lipid or detergent environments.In this chapter, we discuss applications of native mass spectrometry and ion mobility in membrane protein research-what is important to take into consideration when working with membrane proteins, and what the requirements are for sample preparation for native mass spectrometry. Furthermore, we will discuss the types of information provided by the measurements, including the oligomeric state, subunit composition and stoichiometry, interactions with detergents or lipids, conformational transitions, and the binding and structural effect of ligands and drugs.
Collapse
|
27
|
Sharwood RE, Ghannoum O, Whitney SM. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:135-42. [PMID: 27131319 DOI: 10.1016/j.pbi.2016.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 05/09/2023]
Abstract
By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia.
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Spencer M Whitney
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| |
Collapse
|
28
|
Structural insight into the cooperation of chloroplast chaperonin subunits. BMC Biol 2016; 14:29. [PMID: 27072913 PMCID: PMC4828840 DOI: 10.1186/s12915-016-0251-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background Chloroplast chaperonin, consisting of multiple subunits, mediates folding of the highly abundant protein Rubisco with the assistance of co-chaperonins. ATP hydrolysis drives the chaperonin allosteric cycle to assist substrate folding and promotes disassembly of chloroplast chaperonin. The ways in which the subunits cooperate during this cycle remain unclear. Results Here, we report the first crystal structure of Chlamydomonas chloroplast chaperonin homo-oligomer (CPN60β1) at 3.8 Å, which shares structural topology with typical type I chaperonins but with looser compaction, and possesses a larger central cavity, less contact sites and an enlarged ATP binding pocket compared to GroEL. The overall structure of Cpn60 resembles the GroEL allosteric intermediate state. Moreover, two amino acid (aa) residues (G153, G154) conserved among Cpn60s are involved in ATPase activity regulated by co-chaperonins. Domain swapping analysis revealed that the monomeric state of CPN60α is controlled by its equatorial domain. Furthermore, the C-terminal segment (aa 484–547) of CPN60β influenced oligomer disassembly and allosteric rearrangement driven by ATP hydrolysis. The entire equatorial domain and at least one part of the intermediate domain from CPN60α are indispensable for functional cooperation with CPN60β1, and this functional cooperation is strictly dependent on a conserved aa residue (E461) in the CPN60α subunit. Conclusions The first crystal structure of Chlamydomonas chloroplast chaperonin homo-oligomer (CPN60β1) is reported. The equatorial domain maintained the monomeric state of CPN60α and the C-terminus of CPN60β affected oligomer disassembly driven by ATP. The cooperative roles of CPN60 subunits were also established. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0251-8) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Bai C, Guo P, Zhao Q, Lv Z, Zhang S, Gao F, Gao L, Wang Y, Tian Z, Wang J, Yang F, Liu C. Protomer Roles in Chloroplast Chaperonin Assembly and Function. MOLECULAR PLANT 2015; 8:1478-92. [PMID: 26057234 DOI: 10.1016/j.molp.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/10/2015] [Accepted: 06/03/2015] [Indexed: 05/13/2023]
Abstract
The individual roles of three chloroplast CPN60 protomers (CPN60α, CPN60β1, and CPN60β2) and whether and how they are assembled into functional chaperonin complexes are investigated in Chlamydomonas reinhardtii. Protein complexes containing all three potential subunits were identified in Chlamydomonas, and their co-expression in Escherichia coli yielded a homogeneous population of oligomers containing all three subunits (CPN60αβ1β2), with a molecular weight consistent with a tetradecameric structure. While homo-oligomers of CPN60β could form, they were dramatically reduced when CPN60α was present and homo-oligomers of CPN60β2 were readily changed into hetero-oligomers in the presence of ATP and other protomers. ATP hydrolysis caused CPN60 oligomers to disassemble and drove the purified protomers to reconstitute oligomers in vitro, suggesting that the dynamic nature of CPN60 oligomers is dependent on ATP. Only hetero-oligomeric CPN60αβ1β2, containing CPN60α, CPN60β1, and CPN60β2 subunits in a 5:6:3 ratio, cooperated functionally with GroES. The combination of CPN60α and CPN60β subunits, but not the individual subunits alone, complemented GroEL function in E. coli with subunit recognition specificity. Down-regulation of the CPN60α subunit in Chlamydomonas resulted in a slow growth defect and an inability to grow autotrophically, indicating the essential role of CPN60α in vivo.
Collapse
Affiliation(s)
- Cuicui Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zongyang Lv
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijia Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyan Gao
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
30
|
Ling Zheng L, Wang FY, Cong XX, Shen Y, Rao XS, Huang DS, Fan W, Yi P, Wang XB, Zheng L, Zhou YT, Luo Y. Interaction of Heat Shock Protein Cpn10 with the Cyclin E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in Regulating Histone Transcription. J Biol Chem 2015; 290:29290-300. [PMID: 26429916 PMCID: PMC4705935 DOI: 10.1074/jbc.m115.659201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Precise modulation of histone gene transcription is critical for cell cycle progression. As a direct substrate of Cyclin E/CDK2, nuclear protein ataxia-telangiectasia (NPAT) is a crucial factor in regulating histone transcription and cell cycle progression. Here we identified that Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei. Gain- and loss-of-function experiments unraveled an essential role of Cpn10 in histone transcription. A conserved DLFD motif within Cpn10 was critical for targeting NPAT and modulating histone transcription. More importantly, knockdown of Cpn10 disrupted the focus formation of both NPAT and FADD-like interleukin-1β-converting enzyme-associated huge protein without affecting Coilin-positive Cajal bodies. Finally, Cpn10 is important for S phase progression and cell proliferation. Taken together, our finding revealed a novel role of Cpn10 in the spatial regulation of NPAT signaling and disclosed a previously unappreciated link between the heat shock protein and histone transcription regulation.
Collapse
Affiliation(s)
- Li Ling Zheng
- From the Department of Biochemistry and Molecular Biology
| | - Fei Ya Wang
- From the Department of Biochemistry and Molecular Biology
| | - Xiao Xia Cong
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, and
| | - Yue Shen
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xi Sheng Rao
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, and
| | - Dao Sheng Huang
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, and
| | - Wei Fan
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, and
| | - Peng Yi
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, and
| | - Xin Bao Wang
- the Department of Abdominal Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China, and
| | - Lei Zheng
- the Department of Surgery and Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Yi Ting Zhou
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, and
| | - Yan Luo
- From the Department of Biochemistry and Molecular Biology,
| |
Collapse
|
31
|
Guo P, Jiang S, Bai C, Zhang W, Zhao Q, Liu C. Asymmetric functional interaction between chaperonin and its plastidic cofactors. FEBS J 2015; 282:3959-70. [DOI: 10.1111/febs.13390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/07/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Peng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Cuicui Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Wenjuan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
| | - Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
32
|
Hauser T, Popilka L, Hartl FU, Hayer-Hartl M. Role of auxiliary proteins in Rubisco biogenesis and function. NATURE PLANTS 2015; 1:15065. [PMID: 27250005 DOI: 10.1038/nplants.2015.65] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/20/2015] [Indexed: 05/05/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric CO2 into organic compounds during photosynthesis. Despite its pivotal role in plant metabolism, Rubisco is an inefficient enzyme and has therefore been a key target in bioengineering efforts to improve crop yields. Much has been learnt about the complex cellular machinery involved in Rubisco assembly and metabolic repair over recent years. The simple form of Rubisco found in certain bacteria and dinoflagellates comprises two large subunits, and generally requires the chaperonin system for folding. However, the evolution of hexadecameric Rubisco, which comprises eight large and eight small subunits, from its dimeric precursor has rendered Rubisco in most plants, algae, cyanobacteria and proteobacteria dependent on an array of additional factors. These auxiliary factors include several chaperones for assembly as well as ATPases of the AAA+ family for functional maintenance. An integrated view of the pathways underlying Rubisco biogenesis and repair will pave the way for efforts to improve the enzyme with the goal of increasing crop yields.
Collapse
Affiliation(s)
- Thomas Hauser
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Leonhard Popilka
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
33
|
Whitney SM, Birch R, Kelso C, Beck JL, Kapralov MV. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. Proc Natl Acad Sci U S A 2015; 112:3564-9. [PMID: 25733857 PMCID: PMC4371954 DOI: 10.1073/pnas.1420536112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants.
Collapse
Affiliation(s)
- Spencer M Whitney
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and
| | - Rosemary Birch
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and
| | - Celine Kelso
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer L Beck
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Maxim V Kapralov
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and
| |
Collapse
|
34
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
35
|
Durão P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat Chem Biol 2015; 11:148-55. [PMID: 25558973 DOI: 10.1038/nchembio.1715] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the fixation of CO2 in photosynthesis. Despite its pivotal role, Rubisco is an inefficient enzyme and thus is a key target for directed evolution. Rubisco biogenesis depends on auxiliary factors, including the GroEL/ES-type chaperonin for folding and the chaperone RbcX for assembly. Here we performed directed evolution of cyanobacterial form I Rubisco using a Rubisco-dependent Escherichia coli strain. Overexpression of GroEL/ES enhanced Rubisco solubility and tended to expand the range of permissible mutations. In contrast, the specific assembly chaperone RbcX had a negative effect on evolvability by preventing a subset of mutants from forming holoenzyme. Mutation F140I in the large Rubisco subunit, isolated in the absence of RbcX, increased carboxylation efficiency approximately threefold without reducing CO2 specificity. The F140I mutant resulted in a ∼55% improved photosynthesis rate in Synechocystis PCC6803. The requirement of specific biogenesis factors downstream of chaperonin may have retarded the natural evolution of Rubisco.
Collapse
Affiliation(s)
- Paulo Durão
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Harald Aigner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Péter Nagy
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver Mueller-Cajar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
36
|
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependant protein folding in a variety of cellular compartments. GroEL and its co-chaperonin GroES are the only essential chaperones in Escherichia coli and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo structural rearrangements as part of the folding mechanism. GroES forms a lid over the chamber, and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances co-chaperonins display contrasting functions to those of chaperonins. Human Hsp60 continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10, in addition to its role as a co-chaperonin, on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biomedical Biotechnology Research Unit (BioBRU), Biotechnology Innovation Centre, Rhodes University, PO Box 94, 6140, Grahamstown, South Africa,
| |
Collapse
|
37
|
Vitlin Gruber A, Zizelski G, Azem A, Weiss C. The Cpn10(1) co-chaperonin of A. thaliana functions only as a hetero-oligomer with Cpn20. PLoS One 2014; 9:e113835. [PMID: 25419702 PMCID: PMC4242682 DOI: 10.1371/journal.pone.0113835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022] Open
Abstract
The A. thaliana genome encodes five co-chaperonin homologs, three of which are destined to the chloroplast. Two of the proteins, Cpn10(2) and Cpn20, form functional homo-oligomers in vitro. In the current work, we present data on the structure and function of the third A. thaliana co-chaperonin, which exhibits unique properties. We found that purified recombinant Cpn10(1) forms inactive dimers in solution, in contrast to the active heptamers that are formed by canonical Cpn10s. Additionally, our data demonstrate that Cpn10(1) is capable of assembling into active hetero-oligomers together with Cpn20. This finding was reinforced by the formation of active co-chaperonin species upon mixing an inactive Cpn20 mutant with the inactive Cpn10(1). The present study constitutes the first report of a higher plant Cpn10 subunit that is able to function only upon formation of hetero-oligomers with other co-chaperonins.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Gal Zizelski
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Celeste Weiss
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Joshi J, Mueller-Cajar O, Tsai YCC, Hartl FU, Hayer-Hartl M. Role of small subunit in mediating assembly of red-type form I Rubisco. J Biol Chem 2014; 290:1066-74. [PMID: 25371207 DOI: 10.1074/jbc.m114.613091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco.
Collapse
Affiliation(s)
- Jidnyasa Joshi
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Oliver Mueller-Cajar
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yi-Chin C Tsai
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Manajit Hayer-Hartl
- From the Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
39
|
Zhang Y, Liu X, Li K, Bai J. Effect of r-Mt-Cpn10 on human osteoblast cells. Int J Clin Exp Med 2014; 7:2779-2786. [PMID: 25356139 PMCID: PMC4211789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/28/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To observe the effect of recombinant mycobacterium tuberculosis heat shock protein 10 (r-Mt-Cpn10) on human osteoblast proliferation, cell cycle, alkaline phosphatase, calcium nodules and the expression of Receptor Activator of Nuclear Factor KB Ligand (RANKL) and Osteoprotegerin (OPG). METHODS Osteoblasts were cultured in the medium with different concentration of r-Mt-Cpn10. No drug was added to the medium in the control group. The effect of r-Mt-Cpn10 on osteoblast proliferation was detected by MTT. The 3rd generation of osteoblasts was taken and detected the effect on the activity of osteoblasts secreted alkaline phosphatase on 1, 3, 5, 7 and 9 d of cell culture. The effects of different concentrations of r-Mt-Cpn10 on the expression of RANKL and OPG were detected. RESULTS The r-Mt-Cpn10 blocked osteoblasts in the G2/M phase and G1 to S phase. Compared with the control group, the r-Mt-Cpn10 with different concentrations inhibited the proliferation and alkaline phosphatase activity of osteoblast (P<0.05), the number of calcium nodules formation was significantly reduced. The r-Mt-Cpn10 increased the expression of RANKL in a dose-dependent manner and reduced the expression of OPG (P<0.01). CONCLUSION The inhibition of r-Mt-Cpn10 on the osteoblast proliferation and alkaline phosphatase activity was achieved by osteoblasts arrest in G2/M phase and G1 to S phase, it can also regulate the expression of RANKL and OPG which affecting local bone metabolic balance.
Collapse
Affiliation(s)
- Yuanyu Zhang
- Department of Orthopedics, Affiliated Tumor Hospital of Xinjiang Medical UniversityUrumqi 830000, P. R. China
| | - Xia Liu
- Department of Pathology, First Hospital of Xinjiang Medical UniversityUrumqi City 830000, P. R. China
| | - Kun Li
- Department of Orthopedics, People’s Hospital of Xinjiang Uygur Autonomous RegionUrumqi 830000, P. R. China
| | - Jingping Bai
- Department of Orthopedics, Affiliated Tumor Hospital of Xinjiang Medical UniversityUrumqi 830000, P. R. China
| |
Collapse
|
40
|
A multiple-level study of metal tolerance in Salix fragilis and Salix aurita clones. J Proteomics 2014; 101:113-29. [DOI: 10.1016/j.jprot.2014.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/20/2022]
|
41
|
Vitlin Gruber A, Nisemblat S, Azem A, Weiss C. The complexity of chloroplast chaperonins. TRENDS IN PLANT SCIENCE 2013; 18:688-94. [PMID: 24035661 DOI: 10.1016/j.tplants.2013.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 05/07/2023]
Abstract
Type I chaperonins are large oligomeric protein ensembles that are involved in the folding and assembly of other proteins. Chloroplast chaperonins and co-chaperonins exist in multiple copies of two distinct isoforms that can combine to form a range of labile oligomeric structures. This complex system increases the potential number of chaperonin substrates and possibilities for regulation. The incorporation of unique subunits into the oligomer can modify substrate specificity. Some subunits are upregulated in response to heat shock and some show organ-specific expression, whereas others possess additional functions that are unrelated to their role in protein folding. Accumulating evidence suggests that specific subunits have distinct roles in biogenesis of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco).
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
42
|
Vitlin Gruber A, Nisemblat S, Zizelski G, Parnas A, Dzikowski R, Azem A, Weiss C. P. falciparum cpn20 is a bona fide co-chaperonin that can replace GroES in E. coli. PLoS One 2013; 8:e53909. [PMID: 23326533 PMCID: PMC3542282 DOI: 10.1371/journal.pone.0053909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 02/05/2023] Open
Abstract
Human malaria is among the most ubiquitous and destructive tropical, parasitic diseases in the world today. The causative agent, Plasmodium falciparum, contains an unusual, essential organelle known as the apicoplast. Inhibition of this degenerate chloroplast results in second generation death of the parasite and is the mechanism by which antibiotics function in treating malaria. In order to better understand the biochemistry of this organelle, we have cloned a putative, 20 kDa, co-chaperonin protein, Pf-cpn20, which localizes to the apicoplast. Although this protein is homologous to the cpn20 that is found in plant chloroplasts, its ability to function as a co-chaperonin was questioned in the past. In the present study, we carried out a structural analysis of Pf-cpn20 using circular dichroism and analytical ultracentrifugation and then used two different approaches to investigate the ability of this protein to function as a co-chaperonin. In the first approach, we purified recombinant Pf-cpn20 and tested its ability to act as a co-chaperonin for GroEL in vitro, while in the second, we examined the ability of Pf-cpn20 to complement an E. coli depletion of the essential bacterial co-chaperonin GroES. Our results demonstrate that Pf-cpn20 is fully functional as a co-chaperonin in vitro. Moreover, the parasitic co-chaperonin is able to replace GroES in E. coli at both normal and heat-shock temperatures. Thus, Pf-cpn20 functions as a co-chaperonin in chaperonin-mediated protein folding. The ability of the malarial protein to function in E. coli suggests that this simple system can be used as a tool for further analyses of Pf-cpn20 and perhaps other chaperone proteins from P. falciparum.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- George E. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|