1
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Niu T, Wang P, Zhou X, Liu T, Liu Q, Li R, Yang H, Dong H, Liu Y. An overlap-weighted analysis on the association of constipation symptoms with disease progression and survival in amyotrophic lateral sclerosis: a nested case-control study. Ther Adv Neurol Disord 2025; 18:17562864241309811. [PMID: 39803328 PMCID: PMC11719447 DOI: 10.1177/17562864241309811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a rapidly progressing and rare neurodegenerative disease. Therefore, evaluating the risk factors affecting the survival of patients with ALS is crucial. Constipation, a common but overlooked symptom of ALS, can be effectively managed. It is currently unknown whether constipation contributes to the progression and survival of ALS. Objectives This study aimed to investigate the association between constipation and ALS development and survival using a novel overlap-weighted (OW) method to enhance the robustness and reliability of results. Design This prospective matching nested case-control (NCC) study was conducted within an ongoing ALS cohort at the Second Hospital of Hebei Medical University. Baseline data were collected from patients meeting the inclusion and exclusion criteria, with constipation as the exposure factor. A 9-month follow-up was conducted, with death as the endpoint event. Methods We primarily used the OW method in NCC studies to examine the association between constipation and ALS development and survival. Weighted Cox proportional hazards model was used to assess risk factors associated with overall survival. Survival differences between the two groups were analyzed using Kaplan-Meier's plots and log-rank tests. Finally, the bioinformatic analysis explored common pathways between ALS and constipation. Results Among the 190 patients included, the prevalence of constipation was 50%. Patients with ALS constipation exhibited faster disease progression (p < 0.001), with a positive correlation between constipation severity and progression rate (r = 0.356, p < 0.001). The constipation group had poorer survival before and after OW (log-rank test, p < 0.0001). In the Cox proportional hazards model of 114 patients, constipation was a risk factor for ALS both before (hazard ratio (HR) = 5.840, 95% confidence interval (CI) = 1.504-22.675, p = 0.011) and after (HR = 5.271, 95% CI = 1.241-22.379, p = 0.024) OW. Conclusion Constipation in individuals with ALS is associated with faster disease progression and reduced survival rates, potentially through the peroxisome proliferator-activated receptor pathway.
Collapse
Affiliation(s)
- Tongyang Niu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Peize Wang
- Tongzhou Huoxian Community Health Service Center, Beijing, China
- Division of Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Xiaomeng Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Tingting Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, P.R. China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P.R. China
| | - Haitao Yang
- Division of Health Statistics, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Forensic Medicine and Hebei Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, Hebei 050000, P.R. China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, P.R. China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, 215 Heping West Road, Shijiazhuang, Hebei 050000, P.R. China
- Neurological Laboratory of Hebei Province, 215 Heping West Road, Shijiazhuang, Hebei 050000, P.R. China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, P.R. China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, 215 Heping West Road, Shijiazhuang, Hebei 050000, P.R. China
- Neurological Laboratory of Hebei Province, 215 Heping West Road, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
3
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
4
|
Sunildutt N, Ahmed F, Chethikkattuveli Salih AR, Lim JH, Choi KH. Integrating Transcriptomic and Structural Insights: Revealing Drug Repurposing Opportunities for Sporadic ALS. ACS OMEGA 2024; 9:3793-3806. [PMID: 38284068 PMCID: PMC10809234 DOI: 10.1021/acsomega.3c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative disorder characterized by the loss of upper and lower motor neurons, resulting in debilitating muscle weakness and atrophy. Currently, there are no effective treatments available for ALS, posing significant challenges in managing the disease that affects approximately two individuals per 100,000 people annually. To address the urgent need for effective ALS treatments, we conducted a drug repurposing study using a combination of bioinformatics tools and molecular docking techniques. We analyzed sporadic ALS-related genes from the GEO database and identified key signaling pathways involved in sporadic ALS pathogenesis through pathway analysis using DAVID. Subsequently, we utilized the Clue Connectivity Map to identify potential drug candidates and performed molecular docking using AutoDock Vina to evaluate the binding affinity of short-listed drugs to key sporadic ALS-related genes. Our study identified Cefaclor, Diphenidol, Flubendazole, Fluticasone, Lestaurtinib, Nadolol, Phenamil, Temozolomide, and Tolterodine as potential drug candidates for repurposing in sporadic ALS treatment. Notably, Lestaurtinib demonstrated high binding affinity toward multiple proteins, suggesting its potential as a broad-spectrum therapeutic agent for sporadic ALS. Additionally, docking analysis revealed NOS3 as the gene that interacts with all the short-listed drugs, suggesting its possible involvement in the mechanisms underlying the therapeutic potential of these drugs in sporadic ALS. Overall, our study provides a systematic framework for identifying potential drug candidates for sporadic ALS therapy and highlights the potential of drug repurposing as a promising strategy for discovering new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Abdul Rahim Chethikkattuveli Salih
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
- Terasaki
Institute for Biomedical InnovationLos Angeles21100, United States
| | - Jong Hwan Lim
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| |
Collapse
|
5
|
Hong Y, Jiang L, Tang F, Zhang M, Cui L, Zhong H, Xu F, Li M, Chen C, Chen L. PPAR-γ promotes the polarization of rat retinal microglia to M2 phenotype by regulating the expression of CD200-CD200R1 under hypoxia. Mol Biol Rep 2023; 50:10277-10285. [PMID: 37971567 DOI: 10.1007/s11033-023-08815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Recent reports suggest that peroxisome proliferator-activated receptor-γ (PPAR-γ) could promote microglial M2 polarization to inhibit inflammation. However, the specific molecular mechanisms that trigger PPAR-γ's anti-inflammatory ability in microglia are yet to be expounded. Thus, in this study, we aimed to explore the molecular mechanisms behind the anti-inflammatory effects of PPAR-γ in hypoxia-stimulated rat retinal microglial cells. METHODS AND RESULTS We used shRNA expressing lentivirus to knock down PPAR-γ and CD200 genes, and we assessed hypoxia-induced polarization markers release - M1 (iNOS, IL-1β, IL-6, and TNF-α) and M2 (Arg-1, YM1, IL-4, and IL-10) by RT-PCR. We also monitored PPAR-γ-related signals (PPAR-γ, PPAR-γ in cytoplasm or nucleus, CD200, and CD200Rs) by Western blot and RT-PCR. Our results showed that hypoxia enhanced PPAR-γ and CD200 expressions in microglial cells. Moreover, PPAR-γ agonist 15d-PGJ2 elevated CD200 and CD200R1 expressions, whereas sh-PPAR-γ had the opposite effect. Following hypoxia, expressions of M1 markers increased significantly, while those of M2 markers decreased, and the above effects were attenuated by 15d-PGJ2. Conversely, knocking down PPAR-γ or CD200 inhibited the polarization of microglial cells to M2 phenotype. CONCLUSION Our findings demonstrated that PPAR-γ performed an anti-inflammatory function in hypoxia-stimulated microglial cells by promoting their polarization to M2 phenotype via the CD200-CD200R1 pathway.
Collapse
Affiliation(s)
- Yiyi Hong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Jiang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fen Tang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ling Cui
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Haibin Zhong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fan Xu
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Li
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lifei Chen
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
6
|
Bhatt R, Vaishnav D, Airao V, Sharma T, Rachamalla M, Mani S, Gupta AK, Upadhye V, Jha SK, Jha NK, Parmar S. Neuroprotective potential of saroglitazar in 6-OHDA induced Parkinson's disease in rats. Chem Biol Drug Des 2023; 102:955-971. [PMID: 37518817 DOI: 10.1111/cbdd.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects 2%-3% of the population worldwide. Clinical presentation of PD includes motor and non-motor symptoms. The interplay between pathogenic factors such as increased oxidative stress, neuroinflammation, mitochondrial dysfunction and apoptosis are responsible for neurodegeneration in PD. Intrastriatal administration of 6-hydroxy dopamine (6-OHDA) in rat brain provoked oxidative and nitrosative stress by decreasing endogenous antioxidants such as superoxide dismutase, catalase, glutathione, glutathione peroxidase and glutathione reductase. Consequently, interleukin-6, tumour necrosis-α, interferon-γ and cyclooxygenase-2 mediated neuroinflammation leads to mitochondrial dysfunction, involving inhibition of complex-II and IV activities, followed by apoptosis and degeneration of striatal dopaminergic neurons. Degeneration of dopaminergic neurons resulted in reduced dopamine turnover, consequently induced behavioural abnormalities in rats. Activation of peroxisome proliferator-activated receptors (PPARs) have protective role in PD by modulating response of antioxidant enzymes, neuroinflammation and apoptosis in various animal models of PD. Saroglitazar (SG) being dual PPAR-α/γ agonist activates both PPAR-α and PPAR-γ receptors and provide neuroprotection by reducing oxidative stress, neuroinflammation, mitochondrial dysfunction and apoptosis of dopaminergic cells in 6-OHDA induced PD in rats. Thereby, SG restored striatal histopathological damage and dopamine concentration in rat striatum, and behavioural alterations in rats. Thus, SG proved neuroprotective effects in rat model of PD. Potential benefits of SG in rat model of PD advocates to consider it for further preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Rohit Bhatt
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Devendra Vaishnav
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Vishal Airao
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Tejas Sharma
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Ashish Kumar Gupta
- Department of Biophysics, All India Institute of Medical Science (AIIMS), New Delhi, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D) and Department of Microbiology, Parul University, Vadodara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sachin Parmar
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| |
Collapse
|
7
|
Rasool A, Mahmoud T, O’Tierney-Ginn P. Lipid Aldehydes 4-Hydroxynonenal and 4-Hydroxyhexenal Exposure Differentially Impact Lipogenic Pathways in Human Placenta. BIOLOGY 2023; 12:527. [PMID: 37106728 PMCID: PMC10135722 DOI: 10.3390/biology12040527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Long chain polyunsaturated fatty acids (LCPUFAs), such as the omega-6 (n-6) arachidonic acid (AA) and n-3 docosahexanoic acid (DHA), have a vital role in normal fetal development and placental function. Optimal supply of these LCPUFAs to the fetus is critical for improving birth outcomes and preventing programming of metabolic diseases in later life. Although not explicitly required/recommended, many pregnant women take n-3 LCPUFA supplements. Oxidative stress can cause these LCPUFAs to undergo lipid peroxidation, creating toxic compounds called lipid aldehydes. These by-products can lead to an inflammatory state and negatively impact tissue function, though little is known about their effects on the placenta. Placental exposure to two major lipid aldehydes, 4-hydroxynonenal (4-HNE) and 4-hydroxyhexenal (4-HHE), caused by peroxidation of the AA and DHA, respectively, was examined in the context of lipid metabolism. We assessed the impact of exposure to 25 μM, 50 μM and 100 μM of 4-HNE or 4-HHE on 40 lipid metabolism genes in full-term human placenta. 4-HNE increased gene expression associated with lipogenesis and lipid uptake (ACC, FASN, ACAT1, FATP4), and 4-HHE decreased gene expression associated with lipogenesis and lipid uptake (SREBP1, SREBP2, LDLR, SCD1, MFSD2a). These results demonstrate that these lipid aldehydes differentially affect expression of placental FA metabolism genes in the human placenta and may have implications for the impact of LCPUFA supplementation in environments of oxidative stress.
Collapse
|
8
|
Wang F, Guo L, Wu Z, Zhang T, Dong D, Wu B. The Clock gene regulates kainic acid-induced seizures through inhibiting ferroptosis in mice. J Pharm Pharmacol 2022; 74:1640-1650. [PMID: 35704277 DOI: 10.1093/jpp/rgac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) is a common and intractable form of epilepsy. There is a strong need to better understand molecular events underlying TLE and to find novel therapeutic agents. Here we aimed to investigate the role of Clock and ferroptosis in regulating TLE. METHODS TLE model was established by treating mice with kainic acid (KA). Regulatory effects of the Clock gene on KA-induced seizures and ferroptosis were evaluated using Clock knockout (Clock-/-) mice. mRNA and protein levels were determined by quantitative real-time PCR and western blotting, respectively. Ferroptosis was assessed by measuring the levels of iron, GSH and ROS. Transcriptional regulation was studied using a combination of luciferase reporter, mobility shift and chromatin immunoprecipitation (ChIP) assays. KEY FINDINGS We found that Clock ablation exacerbated KA-induced seizures in mice, accompanied by enhanced ferroptosis in the hippocampus. Clock ablation reduced the hippocampal expression of GPX4 and PPAR-γ, two ferroptosis-inhibitory factors, in mice and in N2a cells. Moreover, Clock regulates diurnal expression of GPX4 and PPAR-γ in mouse hippocampus and rhythmicity in KA-induced seizures. Consistent with this finding, Clock overexpression up-regulated GPX4 and PPAR-γ and protected against ferroptosis in N2a cells. In addition, luciferase reporter, mobility shift and ChIP assays showed that CLOCK trans-activated Gpx4 and Ppar-γ through direct binding to the E-box elements in the gene promoters. CONCLUSION CLOCK protects against KA-induced seizures through increased expression of GPX4 and PPAR-γ and inhibition of ferroptosis.
Collapse
Affiliation(s)
- Fei Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengping Wu
- School of Medicine, Yichun University, Yichun, China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Durai P, Beeraka NM, Ramachandrappa HVP, Krishnan P, Gudur P, Raghavendra NM, Ravanappa PKB. Advances in PPARs Molecular Dynamics and Glitazones as a Repurposing Therapeutic Strategy through Mitochondrial Redox Dynamics against Neurodegeneration. Curr Neuropharmacol 2022; 20:893-915. [PMID: 34751120 PMCID: PMC9881103 DOI: 10.2174/1570159x19666211109141330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) activity has significant implications for the development of novel therapeutic modalities against neurodegenerative diseases. Although PPAR-α, PPAR-β/δ, and PPAR-γ nuclear receptor expressions are significantly reported in the brain, their implications in brain physiology and other neurodegenerative diseases still require extensive studies. PPAR signaling can modulate various cell signaling mechanisms involved in the cells contributing to on- and off-target actions selectively to promote therapeutic effects as well as the adverse effects of PPAR ligands. Both natural and synthetic ligands for the PPARα, PPARγ, and PPARβ/δ have been reported. PPARα (WY 14.643) and PPARγ agonists can confer neuroprotection by modulating mitochondrial dynamics through the redox system. The pharmacological effect of these agonists may deliver effective clinical responses by protecting vulnerable neurons from Aβ toxicity in Alzheimer's disease (AD) patients. Therefore, the current review delineated the ligands' interaction with 3D-PPARs to modulate neuroprotection, and also deciphered the efficacy of numerous drugs, viz. Aβ aggregation inhibitors, vaccines, and γ-secretase inhibitors against AD; this review elucidated the role of PPAR and their receptor isoforms in neural systems, and neurodegeneration in human beings. Further, we have substantially discussed the efficacy of PPREs as potent transcription factors in the brain, and the role of PPAR agonists in neurotransmission, PPAR gamma coactivator-1α (PGC-1α) and mitochondrial dynamics in neuroprotection during AD conditions. This review concludes with the statement that the development of novel PPARs agonists may benefit patients with neurodegeneration, mainly AD patients, which may help mitigate the pathophysiology of dementia, subsequently improving overall the patient's quality of life.
Collapse
Affiliation(s)
- Priya Durai
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Narasimha M. Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India;,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Hemanth Vikram Poola Ramachandrappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Pranesh Gudur
- Swamy Vivekananda Yoga Anusandhana Samsthana Deemed University, Bengaluru 560 105, India
| | | | - Prashantha Kumar Bommenahally Ravanappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research, Mysuru, Karnataka, India;,Address correspondence to this author at the Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570 015, India and JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India; E-mail:
| |
Collapse
|
10
|
Kryl'skii ED, Chupandina EE, Popova TN, Shikhaliev KS, Medvedeva SM, Verevkin AN, Popov SS, Mittova VO. 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline exerts a neuroprotective effect and normalises redox homeostasis in a rat model of cerebral ischemia/reperfusion. Metab Brain Dis 2022; 37:1271-1282. [PMID: 35201554 DOI: 10.1007/s11011-022-00928-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Ischemia is one of the main etiological factors of stroke and is associated with the development of energy deficiency, oxidative stress, and inflammation. An abrupt restoration of blood flow, called reperfusion, can worsen the effects of ischemia. In our study, we assessed the neuroprotective potential of 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) in cerebral ischemia/reperfusion (CIR) in rats. Wistar rats, divided into 4 groups were used in the study: sham-operated animals; animals with CIR caused by occlusion of the common carotid arteries and subsequent removal of the occlusions; rats treated with BHDQ at a dose of 50 mg/kg in the presence of pathology; sham-operated animals treated with BHDQ. The analysis of the state of energy metabolism in the brain, the level of the S100B protein and the histological assessment of the brain tissue were carried out. The antioxidant potential of BHDQ was assessed by measuring biochemiluminescence parameters, analysing the level of 8-isoprostane, products of lipid and protein oxidation, concentration of α-tocopherol and citrate, and aconitate hydratase activity during CIR in rats. A study of the effect of BHDQ on the regulation of the enzymatic antioxidant system and the inflammatory processes was performed. We demonstrated that BHDQ has a neuroprotective effect in CIR, reducing histopathological changes in the brain, normalizing pyruvate and lactate concentrations, and the transcripts level of Hif-1α gene. The positive effect of BHDQ was probably due to its antioxidant and anti-inflammatory activity, manifested in a decrease in the parameters of the oxidative stress, decreased mRNA of proinflammatory cytokines and NF-κB factor genes. In addition, BHDQ reduced the load on antioxidant protection enzymes, contributing to a change in their activities, decreased the level of antioxidant gene transcripts and expression of Nrf2 and Foxo1 factors toward control. Thus, BHDQ exhibited a neuroprotective effect due to a decrease in the level of oxidative stress and inflammation and the normalization of redox homeostasis on CIR in rats.
Collapse
Affiliation(s)
- E D Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia.
| | - E E Chupandina
- Department of Pathological Anatomy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - T N Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - Kh S Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - S M Medvedeva
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - A N Verevkin
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - S S Popov
- Department of Organization of Pharmaceutical Business, Clinical Pharmacy and Pharmacognosy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - V O Mittova
- Department of Clinical laboratory Diagnostics, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| |
Collapse
|
11
|
Bottero V, Santiago JA, Quinn JP, Potashkin JA. Key Disease Mechanisms Linked to Amyotrophic Lateral Sclerosis in Spinal Cord Motor Neurons. Front Mol Neurosci 2022; 15:825031. [PMID: 35370543 PMCID: PMC8965442 DOI: 10.3389/fnmol.2022.825031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no modifying treatments available. The molecular mechanisms underpinning disease pathogenesis are not fully understood. Recent studies have employed co-expression networks to identify key genes, known as “switch genes”, responsible for dramatic transcriptional changes in the blood of ALS patients. In this study, we directly investigate the root cause of ALS by examining the changes in gene expression in motor neurons that degenerate in patients. Co-expression networks identified in ALS patients’ spinal cord motor neurons revealed 610 switch genes in seven independent microarrays. Switch genes were enriched in several pathways, including viral carcinogenesis, PI3K-Akt, focal adhesion, proteoglycans in cancer, colorectal cancer, and thyroid hormone signaling. Transcription factors ELK1 and GATA2 were identified as key master regulators of the switch genes. Protein-chemical network analysis identified valproic acid, cyclosporine, estradiol, acetaminophen, quercetin, and carbamazepine as potential therapeutics for ALS. Furthermore, the chemical analysis identified metals and organic compounds including, arsenic, copper, nickel, and benzo(a)pyrene as possible mediators of neurodegeneration. The identification of switch genes provides insights into previously unknown biological pathways associated with ALS.
Collapse
Affiliation(s)
- Virginie Bottero
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
| | | | | | - Judith A. Potashkin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
- *Correspondence: Judy A. Potashkin
| |
Collapse
|
12
|
|
13
|
Sol J, Jové M, Povedano M, Sproviero W, Domínguez R, Piñol-Ripoll G, Romero-Guevara R, Hye A, Al-Chalabi A, Torres P, Andres-Benito P, Area-Gómez E, Pamplona R, Ferrer I, Ayala V, Portero-Otín M. Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Commun 2021; 3:fcab143. [PMID: 34396104 PMCID: PMC8361390 DOI: 10.1093/braincomms/fcab143] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Since amyotrophic lateral sclerosis cases exhibit significant heterogeneity, we aim to investigate the association of lipid composition of plasma and CSF with amyotrophic lateral sclerosis diagnosis, its progression and clinical characteristics. Lipidome analyses would help to stratify patients on a molecular basis. For this reason, we have analysed the lipid composition of paired plasma and CSF samples from amyotrophic lateral sclerosis cases and age-matched non-amyotrophic lateral sclerosis individuals (controls) by comprehensive liquid chromatography coupled to mass spectrometry. The concentrations of neurofilament light chain-an index of neuronal damage-were also quantified in CSF samples and plasma. Amyotrophic lateral sclerosis versus control comparison, in a moderate stringency mode, showed that plasma from cases contains more differential lipids (n = 122 for raw P < 0.05; n = 27 for P < 0.01) than CSF (n = 17 for raw P < 0.05; n = 4 for P < 0.01), with almost no overlapping differential species, mainly characterized by an increased content of triacylglyceride species in plasma and decreased in CSF. Of note, false discovery rate correction indicated that one of the CSF lipids (monoacylglycerol 18:0) had high statistic robustness (false discovery rate-P < 0.01). Plasma lipidomes also varied significantly with the main involvement at onset (bulbar, spinal or respiratory). Notably, faster progression cases showed particular lipidome fingerprints, featured by decreased triacylclycerides and specific phospholipids in plasma, with 11 lipids with false discovery rate-P < 0.1 (n = 56 lipids in plasma for raw P < 0.01). Lipid species associated with progression rate clustered in a relatively low number of metabolic pathways, mainly triacylglyceride metabolism and glycerophospholipid and sphingolipid biosynthesis. A specific triacylglyceride (68:12), correlated with neurofilament content (r = 0.8, P < 0.008). Thus, the present findings suggest that systemic hypermetabolism-potentially sustained by increased triacylglyceride content-and CNS alterations of specific lipid pathways could be associated as modifiers of disease progression. Furthermore, these results confirm biochemical lipid heterogeneity in amyotrophic lateral sclerosis with different presentations and progression, suggesting the use of specific lipid species as potential disease classifiers.
Collapse
Affiliation(s)
- Joaquim Sol
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
- Institut Català de la Salut, Atenció Primària, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Mariona Jové
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Monica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Raul Domínguez
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Piñol-Ripoll
- Cognitive Disorders Unit, Clinical Neuroscience Research, IRBLleida-Hospital Universitari Santa Maria Lleida, Lleida, Spain
| | - Ricardo Romero-Guevara
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Abdul Hye
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Pascual Torres
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Pol Andres-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Estela Area-Gómez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Reinald Pamplona
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Victòria Ayala
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Manuel Portero-Otín
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| |
Collapse
|
14
|
Sandi D, Fricska-Nagy Z, Bencsik K, Vécsei L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression, Biomarkers and Neuroprotective Therapy-Kynurenines Are Important Players. Molecules 2021; 26:molecules26113423. [PMID: 34198750 PMCID: PMC8201043 DOI: 10.3390/molecules26113423] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegeneration is one of the driving forces behind the pathogenesis of multiple sclerosis (MS). Progression without activity, pathopsychological disturbances (cognitive impairment, depression, fatigue) and even optic neuropathy seems to be mainly routed in this mechanism. In this article, we aim to give a comprehensive review of the clinical aspects and symptomology, radiological and molecular markers and potential therapeutic targets of neurodegeneration in connection with MS. As the kynurenine pathway (KP) was evidenced to play an important role in the pathogenesis of other neurodegenerative conditions (even implied to have a causative role in some of these diseases) and more and more recent evidence suggest the same central role in the neurodegenerative processes of MS as well, we pay special attention to the KP. Metabolites of the pathway are researched as biomarkers of the disease and new, promising data arising from clinical evaluations show the possible therapeutic capability of KP metabolites as neuroprotective drugs in MS. Our conclusion is that the kynurenine pathway is a highly important route of research both for diagnostic and for therapeutic values and is expected to yield concrete results for everyday medicine in the future.
Collapse
Affiliation(s)
- Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-384; Fax: +36-62-545-597
| |
Collapse
|
15
|
Dysregulation of metabolic pathways by carnitine palmitoyl-transferase 1 plays a key role in central nervous system disorders: experimental evidence based on animal models. Sci Rep 2020; 10:15583. [PMID: 32973137 PMCID: PMC7519132 DOI: 10.1038/s41598-020-72638-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The etiology of CNS diseases including multiple sclerosis, Parkinson’s disease and amyotrophic lateral sclerosis remains elusive despite decades of research resulting in treatments with only symptomatic effects. In this study, we provide evidence that a metabolic shift from glucose to lipid is a key mechanism in neurodegeneration. We show that, by downregulating the metabolism of lipids through the key molecule carnitine palmitoyl transferase 1 (CPT1), it is possible to reverse or slowdown disease progression in experimental models of autoimmune encephalomyelitis-, SOD1G93A and rotenone models, mimicking these CNS diseases in humans. The effect was seen both when applying a CPT1 blocker or by using a Cpt1a P479L mutant mouse strain. Furthermore, we show that diet, epigenetics, and microbiota are key elements in this metabolic shift. Finally, we present a systemic model for understanding the complex etiology of neurodegeneration and how different regulatory systems are interconnected through a central metabolic pathway that becomes deregulated under specific conditions.
Collapse
|
16
|
Could the Combination of Two Non-Psychotropic Cannabinoids Counteract Neuroinflammation? Effectiveness of Cannabidiol Associated with Cannabigerol. ACTA ACUST UNITED AC 2019; 55:medicina55110747. [PMID: 31752240 PMCID: PMC6915685 DOI: 10.3390/medicina55110747] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Neuroinflammation is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In this study, we investigate the anti-inflammatory, anti-oxidant, and anti-apoptotic properties of two non-psychoactive phytocannabinoids, cannabigerol (CBG) and cannabidiol (CBD). Materials and Methods: The motoneuron-like cell line NSC-34 differentiated by serum deprivation and with the additional treatment of all-trans retinoic acid (RA) is a valid model to investigate molecular events linked to neurodegeneration in ALS. Results: Pre-treatment with CBG (at 2.5 and 5 µM doses) alone and in combination with CBD (at 2.5 and 5 µM doses) was able to reduce neuroinflammation induced by a culture medium of LPS-stimulated macrophages. In particular, the pre-treatment with CBD at a 5 µM dose decreased TNF-α levels and increased IL10 and IL-37 expression. CBG–CBD association at a 5 µM dose also reduced NF-kB nuclear factor activation with low degradation of the inhibitor of kappaB alpha (IkBα). CBG and CBD co-administered at a 5 µM dose decreased iNOS expression and increased Nrf2 levels. Furthermore, the pre-treatment with the association of two non-psychoactive cannabinoids downregulated Bax protein expression and upregulated Bcl-2 expression. Our data show the anti-inflammatory, anti-oxidant, and anti-apoptotic effects PPARγ-mediated. Conclusions: Our results provide preliminary support on the potential therapeutic application of a CBG–CBD combination for further preclinical studies.
Collapse
|
17
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
18
|
Hoang TT, Johnson DA, Raines RT, Johnson JA. Angiogenin activates the astrocytic Nrf2/antioxidant-response element pathway and thereby protects murine neurons from oxidative stress. J Biol Chem 2019; 294:15095-15103. [PMID: 31431502 DOI: 10.1074/jbc.ra119.008491] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
The angiogenin (ANG) gene is mutated frequently in individuals with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Delivering human ANG to mice that display ALS-like symptoms extends their lifespan and improves motor function. ANG is a secretory vertebrate RNase that enters neuronal cells and cleaves a subset of tRNAs, leading to the inhibition of translation initiation and the assembly of stress granules. Here, using murine neuronal and astrocytic cell lines, we find that ANG triggers the activation of the Nrf2 (nuclear factor erythroid 2-related factor 2) pathway, which provides a critical cellular defense against oxidative stress. This activation, which occurred in astrocytes but not in neurons, promoted the survival of proximal neurons that had oxidative injury. These findings extend the role of ANG as a neuroprotective agent and underscore its potential utility in ALS management.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 .,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
19
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
20
|
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2018; 218:165-184. [PMID: 30578866 DOI: 10.1016/j.lfs.2018.12.029] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial function is vital for normal cellular processes. Mitochondrial damage and oxidative stress have been greatly implicated in the progression of aging, along with the pathogenesis of age-related neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Although antioxidant therapy has been proposed for the prevention and treatment of age-related NDs, unraveling the molecular mechanisms of mitochondrial dysfunction can lead to significant progress in the development of effective treatments against such diseases. Aging is associated with the generation and accumulation of reactive oxygen species (ROS) that are the major contributors to oxidative stress. Oxidative stress is caused because of the imbalance between the production of ROS and their oxidation, which can affect the mitochondrial respiratory chain function, thereby altering the membrane permeability and calcium homeostasis, along with increasing the heteroplasmic mtDNA and weakening the mitochondrial defense systems. Mitochondrial dysfunction mainly affects mitochondrial biogenesis and dynamics that are prominent in several age-related NDs. Mitochondrial dysfunction has a crucial role in the pathophysiology of age-related NDs. Several mitochondria targeted strategies, such as enhancing the antioxidant bioavailability via novel delivery systems, identifying unique mitochondrial proteins as specific drug targets, investigating the signaling pathways of mitochondrial biogenesis and dynamics, and identifying effective natural products are potentially effective to counteract mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Hasnaa A Elfawy
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India
| | - Biswadeep Das
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
21
|
Protein-protein interactions reveal key canonical pathways, upstream regulators, interactome domains, and novel targets in ALS. Sci Rep 2018; 8:14732. [PMID: 30283000 PMCID: PMC6170493 DOI: 10.1038/s41598-018-32902-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Developing effective treatment strategies for neurodegenerative diseases require an understanding of the underlying cellular pathways that lead to neuronal vulnerability and progressive degeneration. To date, numerous mutations in 147 distinct genes are identified to be "associated" with, "modifier" or "causative" of amyotrophic lateral sclerosis (ALS). Protein products of these genes and their interactions helped determine the protein landscape of ALS, and revealed upstream modulators, key canonical pathways, interactome domains and novel therapeutic targets. Our analysis originates from known human mutations and circles back to human, revealing increased PPARG and PPARGC1A expression in the Betz cells of sALS patients and patients with TDP43 pathology, and emphasizes the importance of lipid homeostasis. Downregulation of YWHAZ, a 14-3-3 protein, and cytoplasmic accumulation of ZFYVE27 especially in diseased Betz cells of ALS patients reinforce the idea that perturbed protein communications, interactome defects, and altered converging pathways will reveal novel therapeutic targets in ALS.
Collapse
|
22
|
Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol 2018; 59:237-261. [PMID: 30208281 DOI: 10.1146/annurev-pharmtox-010818-021807] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Juan F Codocedo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Gary E Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
23
|
Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence. J Control Release 2018; 283:32-44. [PMID: 29792888 DOI: 10.1016/j.jconrel.2018.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
So far, liver fibrosis still has no clinically-approved treatment. The loss of stored vitamin-A (VA) in hepatic stellate cells (HSCs), the main regulators to hepatic fibrosis, can be applied as a mechanism for their targeting. Valsartan is a good candidate for this approach; it is a marketed oral-therapy with inverse- and partial-agonistic activity to the over-expressed angiotensin-II type1 receptor (AT1R) and depleted nuclear peroxisome proliferator-activated receptor-gamma (PPAR-γ), respectively, in activated HSCs. However, efficacy on AT1R and PPAR-γ necessitates high drug permeability which is lacking in valsartan. In the current study, liposomes were used as nanocarriers for valsartan to improve its permeability and hence efficacy. They were coupled to VA and characterized for HSCs-targeting. Tracing of orally-administered fluorescently-labeled VA-coupled liposomes in normal rats and their fluorescence intensity quantification in different organs convincingly demonstrated their intestinal entrapment. On the other hands, their administration to rats with induced fibrosis revealed preferential hepatic, and less intestinal, accumulation which lasted up to six days. This indicated their uptake by intestinal stellate cells that acted as a depot for their release over time. Confocal microscopical examination of immunofluorescently-stained HSCs in liver sections, with considerable formula accumulation, confirmed HSCs-targeting and nuclear uptake. Consequently, VA-coupled valsartan-loaded liposomes (VLC)-therapy resulted in profound re-expression of hepatic Mas-receptor and PPAR-γ, potent reduction of fibrogenic mediators' level and nearly normal liver function tests. Therefore, VLC epitomizes a promising antifibrotic therapy with exceptional extended action and additional PPAR-γ agonistic activity.
Collapse
|
24
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 PMCID: PMC11482031 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
25
|
Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG. Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha as a Novel Target for Bipolar Disorder and Other Neuropsychiatric Disorders. Biol Psychiatry 2018; 83:761-769. [PMID: 29502862 DOI: 10.1016/j.biopsych.2017.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) is a protein that regulates metabolism and inflammation by activating nuclear receptors, especially the family of peroxisome proliferator-activated receptors (PPARs). PGC-1 alpha and PPARs also regulate mitochondrial biogenesis, cellular energy production, thermogenesis, and lipid metabolism. Brain energy metabolism may also be regulated in part by the interaction between PGC-1 alpha and PPARs. Because neurodegenerative diseases (Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis) and bipolar disorder have been associated with dysregulated mitochondrial and brain energy metabolism, PGC-1 alpha may represent a potential drug target for these conditions. The purpose of this article is to review the physiology of PGC-1 alpha, PPARs, and the role of PPAR agonists to target PGC-1 alpha to treat neurodegenerative diseases and bipolar disorder. We also review clinical trials of repurposed antidiabetic thiazolidines and anti-triglyceride fibrates (PPAR agonists) for neurodegenerative diseases and bipolar disorder. PGC-1 alpha and PPARs are innovative potential targets for bipolar disorder and warrant future clinical trials.
Collapse
Affiliation(s)
- Andrew A Nierenberg
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Sharmin A Ghaznavi
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Isadora Sande Mathias
- Acadêmica da Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Kristen K Ellard
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | | | - Louisa G Sylvia
- Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
27
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
28
|
Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016; 100:153-163. [PMID: 27352979 PMCID: PMC5145801 DOI: 10.1016/j.freeradbiomed.2016.06.023] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
There is increasing evidence for the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of many of the major neurodegenerative and neuroinflammatory diseases, suggesting that mitochondrial and antioxidant pathways may represent potential novel therapeutic targets. Recent years have seen a rapidly growing interest in the use of therapeutic strategies that can limit the defects in, or even to restore, mitochondrial function while reducing free radical generation. The peroxisome proliferation-activated receptor gamma (PPARγ), a ligand-activated transcription factor, has a wide spectrum of biological functions, regulating mitochondrial function, mitochondrial turnover, energy metabolism, antioxidant defence and redox balance, immune responses and fatty acid oxidation. In this review, we explore the evidence for potential beneficial effects of PPARγ agonists in a number of neurological disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis and Huntington's disease, ischaemia, autoimmune encephalomyelitis and neuropathic pain. We discuss the mechanisms underlying those beneficial effects in particular in relation to mitochondrial function, antioxidant defence, cell death and inflammation, and suggest that the PPARγ agonists show significant promise as therapeutic agents in otherwise intractable neurological disease.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
29
|
Chen X, Wang Q, Zhan L, Shu A. Effects and mechanisms of docosahexaenoic acid on the generation of angiopoietin-2 by rat brain microvascular endothelial cells under an oxygen- and glucose-deprivation environment. SPRINGERPLUS 2016; 5:1518. [PMID: 27652091 PMCID: PMC5017979 DOI: 10.1186/s40064-016-3067-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/12/2016] [Indexed: 01/06/2023]
Abstract
Objective The aim of this study was to investigate the effects of docosahexaenoic acid (DHA) on the generation of angiopoietin-2 (Ang-2) by rat brain microvascular endothelial cells under an oxygen- and glucose-deprivation environment (OGD), and its relationship, if any, with cyclooxygenase 2 (COX-2) expression. Methods Annexin V and propidium iodide apoptosis assay was used to detect apoptosis. Enzyme linked immunosorbent assay was used to detect Ang-2, vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), and prostaglandin I2 (PGI2) content. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect Ang-2 and VEGF mRNA expression. Western blot was used to detect expression of COX-2 protein. Results DHA reduced the apoptosis rate (P = 0.026) and decreased the secretion of Ang-2, VEGF, PGE2, and PGI2 (P = 0.006, P = 0.000, P = 0.002, P = 0.004 respectively). The relative expression of Ang2 and Vegf mRNA, as well as COX-2 expression, also decreased (P = 0.000, P = 0.005, P = 0.007 respectively). These effects were antagonized by GW9662 (peroxisome proliferator-activated receptor-γ antagonist). COX-2 protein expression levels were positively correlated with Ang2 and Vegf mRNA expression levels (γ = 0.69, P = 0.038 and γ = 0.76, P = 0.032, respectively). Ang-2 and VEGF mRNA levels were positively correlated with Ang-2 (γ = 0.84, P = 0.012) and VEGF (γ = 0.71, P = 0.036) secretion levels respectively. Conclusion DHA reduced apoptosis induced by an OGD environment, thus decreasing Ang-2 and VEGF synthesis. This phenomenon was associated with a decrease in COX-2 protein expression, PGE2 and PGI2 secretion, and generation regulation via intracellular transcriptional pathways.
Collapse
Affiliation(s)
- Xiaobo Chen
- Department of Anesthesiology, Three Gorges University People's Hospital, The First People's Hospital of Yichang, No. 2 Jiefang Road, Yichang, 443000 Hubei China
| | - Qiang Wang
- Department of Anesthesiology, Three Gorges University People's Hospital, The First People's Hospital of Yichang, No. 2 Jiefang Road, Yichang, 443000 Hubei China
| | - Leyun Zhan
- Department of Anesthesiology, Three Gorges University People's Hospital, The First People's Hospital of Yichang, No. 2 Jiefang Road, Yichang, 443000 Hubei China
| | - Aihua Shu
- Department of Anesthesiology, Three Gorges University People's Hospital, The First People's Hospital of Yichang, No. 2 Jiefang Road, Yichang, 443000 Hubei China
| |
Collapse
|
30
|
Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2016; 483:1166-1177. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India.
| |
Collapse
|
31
|
Lecarpentier Y, Vallée A. Opposite Interplay between PPAR Gamma and Canonical Wnt/Beta-Catenin Pathway in Amyotrophic Lateral Sclerosis. Front Neurol 2016; 7:100. [PMID: 27445967 PMCID: PMC4923074 DOI: 10.3389/fneur.2016.00100] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022] Open
Abstract
The opposite interplay between peroxisome proliferator-activated receptor gamma (PPAR gamma) and Wnt/beta-catenin signaling has led to the categorization of neurodegenerative diseases (NDs) as either NDs in which PPAR gamma is downregulated while the canonical Wnt/beta-catenin pathway is upregulated [amyotrophic lateral sclerosis (ALS), Parkinson's disease, Huntington's disease, multiple sclerosis, Friedreich's ataxia] or NDs in which PPAR gamma is upregulated while the canonical Wnt/beta-catenin signaling is downregulated (bipolar disorder, schizophrenia, Alzheimer's disease). ALS, a common adult-onset debilitating ND, is characterized by a chronic and progressive degeneration of upper and lower motor neurons resulting in muscular atrophy, paralysis, and ultimately death. The intent of this review is to provide an analysis of the integration of these two opposed systems, i.e., canonical Wnt/beta-catenin and PPAR gamma, in ALS. Understanding this integration may aid in the development of novel ALS therapies. Although the canonical Wnt/beta-catenin pathway is upregulated in ALS, riluzole, an enhancer of the canonical Wnt signaling, is classically prescribed in this disease in humans. However, studies carried out on ALS transgenic mice have shown beneficial effects after treatment by PPAR gamma agonists partly due to their anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Alexandre Vallée
- CHU Amiens Picardie, Université Picardie Jules Verne, Amiens, France; Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
| |
Collapse
|
32
|
Brambilla L, Guidotti G, Martorana F, Iyer AM, Aronica E, Valori CF, Rossi D. Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degeneration and disease progression in amyotrophic lateral sclerosis. Hum Mol Genet 2016; 25:3080-3095. [PMID: 27288458 DOI: 10.1093/hmg/ddw161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/14/2022] Open
Abstract
Considerable evidence indicates that neurodegeneration in amyotrophic lateral sclerosis (ALS) can be conditioned by a deleterious interplay between motor neurons and astrocytes. Astrocytes are the major glial component in the central nervous system (CNS) and fulfill several activities that are essential to preserve CNS homeostasis. In physiological and pathological conditions, astrocytes secrete a wide range of factors by which they exert multimodal influences on their cellular neighbours. Among others, astrocytes can secrete glial cell line-derived neurotrophic factor (GDNF), one of the most potent protective agents for motor neurons. This suggests that the modulation of the endogenous mechanisms that control the production of astrocytic GDNF may have therapeutic implications in motor neuron diseases, particularly ALS. In this study, we identified TNF receptor 1 (TNFR1) signalling as a major promoter of GDNF synthesis/release from human and mouse spinal cord astrocytes in vitro and in vivo To determine whether endogenously produced TNFα can also trigger the synthesis of GDNF in the nervous system, we then focused on SOD1G93A ALS transgenic mice, whose affected tissues spontaneously exhibit high levels of TNFα and its receptor 1 at the onset and symptomatic stage of the disease. In SOD1G93A spinal cords, we verified a strict correlation in the expression of the TNFα, TNFR1 and GDNF triad at different stages of disease progression. Yet, ablation of TNFR1 completely abolished GDNF rises in both SOD1G93A astrocytes and spinal cords, a condition that accelerated motor neuron degeneration and disease progression. Our data suggest that the astrocytic TNFR1-GDNF axis represents a novel target for therapeutic intervention in ALS.
Collapse
Affiliation(s)
- Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | - Giulia Guidotti
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy
| | - Anand M Iyer
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Chiara F Valori
- Department of Neuropathology, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, 27100 Pavia, Italy,
| |
Collapse
|
33
|
Manoharan I, Suryawanshi A, Hong Y, Ranganathan P, Shanmugam A, Ahmad S, Swafford D, Manicassamy B, Ramesh G, Koni PA, Thangaraju M, Manicassamy S. Homeostatic PPARα Signaling Limits Inflammatory Responses to Commensal Microbiota in the Intestine. THE JOURNAL OF IMMUNOLOGY 2016; 196:4739-49. [PMID: 27183583 DOI: 10.4049/jimmunol.1501489] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/25/2016] [Indexed: 12/28/2022]
Abstract
Dietary lipids and their metabolites activate members of the peroxisome proliferative-activated receptor (PPAR) family of transcription factors and are critical for colonic health. The PPARα isoform plays a vital role in regulating inflammation in various disease settings, but its role in intestinal inflammation, commensal homeostasis, and mucosal immunity in the gut are unclear. In this study, we demonstrate that the PPARα pathway in innate immune cells orchestrates gut mucosal immunity and commensal homeostasis by regulating the expression of IL-22 and the antimicrobial peptides RegIIIβ, RegIIIγ, and calprotectin. Additionally, the PPARα pathway is critical for imparting regulatory phenotype in intestinal macrophages. PPARα deficiency in mice led to commensal dysbiosis in the gut, resulting in a microbiota-dependent increase in the expression of inflammatory cytokines and enhanced susceptibility to intestinal inflammation. Pharmacological activation of this pathway decreased the expression of inflammatory cytokines and ameliorated colonic inflammation. Taken together, these findings identify a new important innate immune function for the PPARα signaling pathway in regulating intestinal inflammation, mucosal immunity, and commensal homeostasis. Thus, the manipulation of the PPARα pathway could provide novel opportunities for enhancing mucosal immunity and treating intestinal inflammation.
Collapse
Affiliation(s)
| | | | - Yuan Hong
- Cancer Center, Augusta University, Augusta, GA 30912
| | | | | | - Shamim Ahmad
- Cancer Center, Augusta University, Augusta, GA 30912
| | | | | | - Ganesan Ramesh
- Vascular Biology Center, Augusta University, Augusta, GA 30912
| | - Pandelakis A Koni
- Cancer Center, Augusta University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912; and
| | - Muthusamy Thangaraju
- Cancer Center, Augusta University, Augusta, GA 30912; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Santhakumar Manicassamy
- Cancer Center, Augusta University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912; and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|
34
|
Calabuig-Navarro V, Puchowicz M, Glazebrook P, Haghiac M, Minium J, Catalano P, Hauguel deMouzon S, O’Tierney-Ginn P. Effect of ω-3 supplementation on placental lipid metabolism in overweight and obese women. Am J Clin Nutr 2016; 103:1064-72. [PMID: 26961929 PMCID: PMC4807706 DOI: 10.3945/ajcn.115.124651] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The placentas of obese women accumulate lipids that may alter fetal lipid exposure. The long-chain omega-3 fatty acids (n–3 FAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) alter FA metabolism in hepatocytes, although their effect on the placenta is poorly understood. OBJECTIVE We aimed to investigate whether n–3 supplementation during pregnancy affects lipid metabolism in the placentas of overweight and obese women at term. DESIGN A secondary analysis of a double-blind randomized controlled trial was conducted in healthy overweight and obese pregnant women who were randomly assigned to DHA plus EPA (2 g/d) or placebo twice a day from early pregnancy to term. Placental FA uptake, esterification, and oxidation pathways were studied by measuring the expression of key genes in the placental tissue of women supplemented with placebo and n–3 and in vitro in isolated trophoblast cells in response to DHA and EPA treatment. RESULTS Total lipid content was significantly lower in the placentas of overweight and obese women supplemented with n–3 FAs than in those supplemented with placebo (14.14 ± 1.03 compared with 19.63 ± 1.45 mg lipid/g tissue; P < 0.05). The messenger RNA expression of placental FA synthase (FAS) and diacylglycerol O-acyltransferase 1 (DGAT1) was negatively correlated with maternal plasma enrichment in DHA and EPA (P < 0.05). The expression of placental peroxisome proliferator–activated receptor γ (r = −0.39, P = 0.04) and its target genes DGAT1 (r = −0.37, P = 0.02) and PLIN2 (r = −0.38, P = 0.04) significantly decreased, with an increasing maternal n–3:n–6 ratio (representing the n–3 status) near the end of pregnancy. The expression of genes that regulate FA oxidation or uptake was not changed. Birth weight and length were significantly higher in the offspring of n–3-supplemented women than in those in the placebo group (P < 0.05), but no differences in the ponderal index were observed. Supplementation of n–3 significantly decreased FA esterification in isolated trophoblasts without affecting FA oxidation. CONCLUSION Supplementing overweight and obese women with n–3 FAs during pregnancy inhibited the ability of the placenta to esterify and store lipids. This trial was registered at clinicaltrials.gov as NCT00957476.
Collapse
Affiliation(s)
| | | | | | - Maricela Haghiac
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | - Judi Minium
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | - Patrick Catalano
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | | | - Perrie O’Tierney-Ginn
- Department of Reproductive Biology, MetroHealth Medical Center, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Iranpour N, Zandifar A, Farokhnia M, Goguol A, Yekehtaz H, Khodaie-Ardakani MR, Salehi B, Esalatmanesh S, Zeionoddini A, Mohammadinejad P, Zeinoddini A, Akhondzadeh S. The effects of pioglitazone adjuvant therapy on negative symptoms of patients with chronic schizophrenia: a double-blind and placebo-controlled trial. Hum Psychopharmacol 2016; 31:103-12. [PMID: 26856695 DOI: 10.1002/hup.2517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The evident central role of inflammation, oxidative stress, and metabolic derangement in pathophysiology of negative symptoms of schizophrenia has opened new insights into probable pharmacological options for these symptoms. Pioglitazone is an antidiabetic agent with anti-inflammatory and antioxidant properties. In this study, we evaluated the efficacy of pioglitazone as an adjunct to risperidone for reduction of negative symptoms in schizophrenia. METHODS In this randomized, double-blind, placebo-controlled trial, 40 patients with chronic schizophrenia and a minimum score of 20 on the negative subscale of Positive and Negative Syndrome Scale (PANSS) were randomly allocated to receive risperidone plus either pioglitazone (30 mg/day) or placebo for 8 weeks. Patients' symptoms and adverse events were rated at baseline and weeks 2, 4, 6, and 8. The difference between the two groups in decline of PANSS negative subscale scores was considered as the primary outcome of this study. RESULTS At the study endpoint, patients in the pioglitazone group showed significantly more improvement in PANSS negative subscale scores (p < 0.001) as well as PANSS total scores (p = 0.01) compared with the placebo group. CONCLUSION These findings suggest the probable efficacy of pioglitazone as an augmentation therapy in reducing the negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Negar Iranpour
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Zandifar
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhnia
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Goguol
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibeh Yekehtaz
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahman Salehi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Sophia Esalatmanesh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Zeionoddini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadinejad
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Cacabelos D, Ayala V, Granado-Serrano AB, Jové M, Torres P, Boada J, Cabré R, Ramírez-Núñez O, Gonzalo H, Soler-Cantero A, Serrano JCE, Bellmunt MJ, Romero MP, Motilva MJ, Nonaka T, Hasegawa M, Ferrer I, Pamplona R, Portero-Otín M. Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis. Neurobiol Dis 2016; 88:148-60. [PMID: 26805387 DOI: 10.1016/j.nbd.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/09/2015] [Accepted: 01/09/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown. METHODS DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot. Further, lipid composition was measured in organotypic spinal cord cultures by gas chromatography and liquid chromatography coupled to mass spectrometry. In these samples, mitochondrial respiratory functions were measured by high resolution respirometry. Finally, Neuro2-A and stem cell-derived human neurons were used for evaluating mechanistic relationships between TDP-43 aggregation, oxidative stress and cellular changes in DHA-related proteins. RESULTS ALS is associated to changes in the spinal cord distribution of DHA synthesis enzymatic machinery comparing ten ALS cases and eight controls. We found increased levels of desaturases (ca 95% increase, p<0.001), but decreased amounts of DHA-related β-oxidation enzymes in ALS samples (40% decrease, p<0.05). Further, drebrin, a DHA-dependent synaptic protein, is depleted in spinal cord samples from ALS patients (around 40% loss, p<0.05). In contrast, chronic excitotoxicity in spinal cord increases DHA acid amount, with both enhanced concentrations of neuroprotective docosahexaenoic acid-derived resolvin D, and higher lipid peroxidation-derived molecules such as 8-iso-prostaglandin-F2-α (8-iso-PGF2α) levels. Since α-tocopherol improved mitochondrial respiratory function and motor neuron survival in these conditions, it is suggested that oxidative stress could boost motor neuron loss. Cell culture and metabolic flux experiments, showing enhanced expression of desaturases (FADS2) and β-oxidation enzymes after H2O2 challenge suggest that DHA production can be an initial response to oxidative stress, driven by TDP-43 aggregation and drebrin loss. Interestingly, these changes were dependent on cell type used, since human neurons exhibited losses of FADS2 and drebrin after oxidative stress. These features (drebrin loss and FADS2 alterations) were also produced by transfection by aggregation prone C-terminal fragments of TDP-43. CONCLUSIONS sALS is associated with tissue-specific DHA-dependent synthetic machinery alteration. Furthermore, excitotoxicity sinergizes with oxidative stress to increase DHA levels, which could act as a response over stress, involving the expression of DHA synthetic enzymes. Later on, this allostatic overload could exacerbate cell stress by contributing to TDP-43 aggregation. This, at its turn, could blunt this protective response, overall leading to DHA depletion and neuronal dysfunction.
Collapse
Affiliation(s)
- Daniel Cacabelos
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Victòria Ayala
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Ana Belén Granado-Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Mariona Jové
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Pascual Torres
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Jordi Boada
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Rosanna Cabré
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Omar Ramírez-Núñez
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Hugo Gonzalo
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Aranzazu Soler-Cantero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - José Carlos Enrique Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Maria Josep Bellmunt
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - María Paz Romero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - María José Motilva
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Masato Hasegawa
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Isidre Ferrer
- Institut de Neuropatologia, Hospital Universitari de Bellvitge - IDIBELL, Universitat de Barcelona, Spain; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Spanish Ministry of Health, Spain. L'Hospitalet de Llobregat, c/La Feixa Llarga, S/N 08908 Hospitalet de Llobregat, Barcelona, Spain.
| | - Reinald Pamplona
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Manuel Portero-Otín
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| |
Collapse
|
37
|
Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes - An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:971-83. [PMID: 26409486 DOI: 10.1016/j.bbamcr.2015.09.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signalling and viral defense which are essential to the health and viability of the organism. In order to achieve this functional versatility peroxisomes dynamically respond to molecular cues triggered by changes in the cellular environment. Such changes elicit a corresponding response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal structure. In mammals the generation of new peroxisomes is a complex process which has clear analogies to mitochondria, with both sharing the same division machinery and undergoing a similar division process. How the regulation of this division process is integrated into the cell's response to different stimuli, the signalling pathways and factors involved, remains somewhat unclear. Here, we discuss the mechanism of peroxisomal fission, the contributions of the various division factors and examine the potential impact of post-translational modifications, such as phosphorylation, on the proliferation process. We also summarize the signalling process and highlight the most recent data linking signalling pathways with peroxisome proliferation.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK; Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Luis F Godinho
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Afsoon S Azadi
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
38
|
Lecarpentier Y, Claes V, Duthoit G, Hébert JL. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 2014; 5:429. [PMID: 25414671 PMCID: PMC4220097 DOI: 10.3389/fphys.2014.00429] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022] Open
Abstract
Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta, and gamma) play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs) and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998). PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction, hypertension, diabetes, neurodegenerative diseases, cancer which are often closely inter-related.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Centre Hospitalier Régional de Meaux Meaux, France
| | - Victor Claes
- Department of Pharmaceutical Sciences, University of Antwerp Wilrijk, Belgium
| | - Guillaume Duthoit
- Institut de Cardiologie, Hôpital de la Pitié-Salpêtière Paris, France
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital de la Pitié-Salpêtière Paris, France
| |
Collapse
|
39
|
Role of PPAR γ in the Differentiation and Function of Neurons. PPAR Res 2014; 2014:768594. [PMID: 25246934 PMCID: PMC4160645 DOI: 10.1155/2014/768594] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
Neuronal processes (neurites and axons) have an important role in brain cells communication and, generally, they are damaged in neurodegenerative diseases. Recent evidence has showed that the activation of PPARγ pathway promoted neuronal differentiation and axon polarity. In addition, activation of PPARγ using thiazolidinediones (TZDs) prevented neurodegeneration by reducing neuronal death, improving mitochondrial function, and decreasing neuroinflammation in neuropathic pain. In this review, we will discuss important evidence that supports a possible role of PPARγ in neuronal development, improvement of neuronal health, and pain signaling. Therefore, activation of PPARγ is a potential target with therapeutic applications against neurodegenerative disorders, brain injury, and pain regulation.
Collapse
|
40
|
Oxaliplatin neurotoxicity involves peroxisome alterations. PPARγ agonism as preventive pharmacological approach. PLoS One 2014; 9:e102758. [PMID: 25036594 PMCID: PMC4103888 DOI: 10.1371/journal.pone.0102758] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023] Open
Abstract
The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg−1 per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of peroxisomes in oxaliplatin-dependent nervous damage and suggest PPARγ stimulation as a candidate to counteract oxaliplatin neurotoxicity.
Collapse
|
41
|
Liu ZJ, Liu HQ, Xiao C, Fan HZ, Huang Q, Liu YH, Wang Y. Curcumin protects neurons against oxygen-glucose deprivation/reoxygenation-induced injury through activation of peroxisome proliferator-activated receptor-γ function. J Neurosci Res 2014; 92:1549-59. [PMID: 24975470 DOI: 10.1002/jnr.23438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023]
Abstract
The turmeric derivative curcumin protects against cerebral ischemic injury. We previously demonstrated that curcumin activates peroxisome proliferator-activated receptor-γ (PPARγ), a ligand-activated transcription factor involved in both neuroprotective and anti-inflammatory signaling pathways. This study tested whether the neuroprotective effects of curcumin against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury of rat cortical neurons are mediated (at least in part) by PPARγ. Curcumin (10 μM) potently enhanced PPARγ expression and transcriptional activity following OGD/R. In addition, curcumin markedly increased neuronal viability, as evidenced by decreased lactate dehydrogenase release and reduced nitric oxide production, caspase-3 activity, and apoptosis. These protective effects were suppressed by coadministration of the PPARγ antagonist 2-chloro-5-nitrobenzanilide (GW9662) and by prior transfection of a small-interfering RNA (siRNA) targeting PPARγ, treatments that had no toxic effects on healthy neurons. Curcumin reduced OGD/R-induced accumulation of reactive oxygen species and inhibited the mitochondrial apoptosis pathway, as indicated by reduced release of cytochrome c and apoptosis-inducing factor and maintenance of both the mitochondrial membrane potential and the Bax/Bcl-2 ratio. Again, GW9662 or PPARγ siRNA transfection mitigated the protective effects of curcumin on mitochondrial function. Curcumin suppressed IκB kinase phosphorylation and IκB degradation, thereby inhibiting nuclear factor-κ B (NF-κB) nuclear translocation, effects also blocked by GW9662 or PPARγ siRNA. Immunoprecipitation experiments revealed that PPARγ interacted with NF-κB p65 and inhibited NF-κB activation. The present study provides strong evidence that at least some of the neuroprotective effects of curcumin against OGD/R are mediated by PPARγ activation.
Collapse
Affiliation(s)
- Zun-Jing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Mohan R, Tosolini AP, Morris R. Targeting the motor end plates in the mouse hindlimb gives access to a greater number of spinal cord motor neurons: an approach to maximize retrograde transport. Neuroscience 2014; 274:318-30. [PMID: 24892760 DOI: 10.1016/j.neuroscience.2014.05.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/05/2014] [Accepted: 05/21/2014] [Indexed: 11/15/2022]
Abstract
Lower motor neuron dysfunction is one of the most debilitating neurological conditions and, as such, significantly impacts on the quality of life of affected individuals. Within the last decade, the engineering of mouse models of lower motor neuron diseases has facilitated the development of new therapeutic scenarios aimed at delaying or reversing the progression of these conditions. In this context, motor end plates (MEPs) are highly specialized regions on the skeletal musculature that offer minimally invasive access to the pre-synaptic nerve terminals, henceforth to the spinal cord motor neurons. Transgenic technologies can take advantage of the relationship between the MEP regions on the skeletal muscles and the corresponding motor neurons to shuttle therapeutic genes into specific compartments within the ventral horn of the spinal cord. The first aim of this neuroanatomical investigation was to map the details of the organization of the MEP zones for the main muscles of the mouse hindlimb. The hindlimb was selected for the present work, as it is currently a common target to challenge the efficacy of therapies aimed at alleviating neuromuscular dysfunction. This MEP map was then used to guide series of intramuscular injections of Fluoro-Gold (FG) along the muscles' MEP zones, therefore revealing the distribution of the motor neurons that supply them. Targeting the entire MEP regions with FG increased the somatic availability of the retrograde tracer and, consequently, gave rise to FG-positive motor neurons that are organized into rostro-caudal columns spanning more spinal cord segments than previously reported. The results of this investigation will have positive implications for future studies involving the somatic delivery and retrograde transport of therapeutic transgenes into affected motor neurons. These data will also provide a framework for transgenic technologies aiming at maintaining the integrity of the neuromuscular junction for the treatment of lower motor neuron dysfunctions.
Collapse
Affiliation(s)
- R Mohan
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - A P Tosolini
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - R Morris
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
43
|
Cinci L, Di Cesare Mannelli L, Zanardelli M, Micheli L, Guasti D, Ghelardini C. Peroxisome determination in optical microscopy: a useful tool derived by a simplification of an old ultrastructural technique. Acta Histochem 2014; 116:863-70. [PMID: 24685018 DOI: 10.1016/j.acthis.2014.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 11/15/2022]
Abstract
Peroxisomes are able to respond to changes in the cellular environment by adapting their number, morphology and metabolic functions. Recently interest in peroxisomes and their possible roles in physiological and pathological processes have significantly increased. In order to identify peroxisomes, several cytochemical techniques have been developed that require fairly complex procedures or are too expensive to be used for screening. In this paper we show that it is possible to label peroxisomes in several cell lines and in tissues by a simple and cheap technique based on 3,3'-diaminobenzidine (DAB) reactivity. The number of peroxisomes detected with this technique in each cell line was similar to that shown by catalase immunoreaction. The technique appears specific because it was able to detect increased number of peroxisomes after treatment with the specific PPARγ antagonist G3335. Gomori's technique for acid phosphatase activity was used to demonstrate that the DAB positive organelles were not lysosomes. The DAB technique has also been applied to transmission electron microscopy, where it labels round structures that are identified as peroxisomes on the basis of morphology, size and localization. The DAB technique has proved to be specific, simple, fast and cheap, which make it ideal to screen possible peroxisome changes in physiological and pathological conditions.
Collapse
Affiliation(s)
- Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy.
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| |
Collapse
|
44
|
Paun A, Bergeron ME, Haston CK. NKT deficient mice are not spared lung disease after exposure to thoracic radiotherapy. Radiat Res 2014; 181:369-75. [PMID: 24701965 DOI: 10.1667/rr13581.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The specific pathways through which radiation produces the lung injuries of pneumonitis (alveolitis) and fibrosis are unknown but may involve an altered immune response. In this study, we investigated the hypothesis that the radiation-induced lung phenotype of Ja18(-/-) mice [which lack invariant natural killer T (iNKT) cells] is altered relative to that of C57BL/6J genetic background strain. After 18 Gy whole-thorax irradiation male C57BL/6J mice succumbed to respiratory distress at 28-30 weeks postirradiation and although confirmed by flow cytometric analysis to be deficient in iNKT cells, the postirradiation survival of Ja18(-/-) mice was not significantly different from that of C57BL/6J mice (P = 0.87). Histologically, the lungs of both C57BL/6J and Ja18(-/-) mice developed fibrosing alveolitis over a similar time course with the same severity (P = 0.15). Analysis of the bronchoalveolar lavage revealed that the C57BL/6J mice and female Ja18(-/-) mice succumbed to respiratory distress with neutrophil numbers exceeding those of the Ja18(-/-) male mice and untreated control mice. In conclusion, the radiation-induced lung disease of Ja18(-/-) mice did not significantly differ from that of C57BL/6J mice.
Collapse
Affiliation(s)
- Alexandra Paun
- a Department of Human Genetics, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | |
Collapse
|
45
|
Di Cesare Mannelli L, Zanardelli M, Micheli L, Ghelardini C. PPAR- γ impairment alters peroxisome functionality in primary astrocyte cell cultures. BIOMED RESEARCH INTERNATIONAL 2014; 2014:546453. [PMID: 24729976 PMCID: PMC3960521 DOI: 10.1155/2014/546453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
Abstract
Peroxisomes provide glial cells with protective functions against the harmful effects of H2O2 on neurons and peroxisome impairment results in nervous lesions. Agonists of the γ -subtype of the Peroxisome-Proliferator-Activated-Receptors (PPAR) have been proposed as neuroprotective agents in neurodegenerative disorders. Nevertheless, the role of PPAR- γ alterations in pathophysiological mechanisms and the relevance of peroxisome functions in the PPAR- γ effects are not yet clear. In a primary cell culture of rat astrocytes, the irreversible PPAR- γ antagonist GW9662 concentration-dependently decreased the activity of catalase, the most important antioxidant defense enzyme in peroxisomes. Catalase functionality recovered in a few days and the PPAR- γ agonist rosiglitazone promoted reversal of enzymatic damage. The reversible antagonist G3335 reduced both the activity and expression of catalase in a rosiglitazone-prevented manner. G3335 reduced also the glutathione reductase expression, indicating that enzyme involved in glutathione regeneration was compromised. Neither the PPAR- α target gene Acyl-Coenzyme-A-oxidase-1 nor the mitochondrial detoxifying enzyme NADH:ubiquinone-oxidoreductase (NDFUS3) was altered by PPAR- γ inhibition. In conclusion, PPAR- γ inhibition induced impairment of catalase in astrocytes. A general decrease of the antioxidant defenses of the cell suggests that a PPAR- γ hypofunction could participate in neurodegenerative mechanisms through peroxisomal damage. This series of experiments could be a useful model for studying compounds able to restore peroxisome functionality.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Matteo Zanardelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Micheli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
46
|
Garcia-Reyero N, Escalon BL, Prats E, Stanley JK, Thienpont B, Melby NL, Barón E, Eljarrat E, Barceló D, Mestres J, Babin PJ, Perkins EJ, Raldúa D. Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health. ENVIRONMENT INTERNATIONAL 2014; 63:216-23. [PMID: 24317228 DOI: 10.1016/j.envint.2013.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/06/2013] [Accepted: 11/14/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers are compounds widely used as flame-retardants, which are of increasing environmental concern due to their persistence, and potential adverse effects. This study had two objectives. First, we assessed if BDE-209 in sediment was bioavailable and bioaccumulated into zebrafish embryos. Secondly, we assessed the potential impact on human and environmental health of bioavailable BDE-209 using human in vitro cell assays and zebrafish embryos. Zebrafish were exposed from 4h to 8days post-fertilization to sediments spiked with 12.5mg/kg of BDE-209. Zebrafish larvae accumulated ten fold more BDE-209 than controls in unspiked sediment after 8days. BDE-209 impacted expression of neurological pathways and altered behavior of larvae, although BDE-209 had no visible affect on thyroid function or motoneuron and neuromast development. Zebrafish data and in silico predictions suggested that BDE-209 would also interact with key human transcription factors and receptors. We therefore tested these predictions using mammalian in vitro assays. BDE-209 activated human aryl hydrocarbon receptor, peroxisome proliferator activating receptors, CF/b-cat, activator protein 1, Oct-MLP, and the estrogen receptor-related alpha (ERRα) receptor in cell-based assays. BDE-209 also inhibited human acetylcholinesterase activity. The observation that BDE-209 can be bioaccumulated from contaminated sediment highlights the need to consider this as a potential environmental exposure route. Once accumulated, our data also show that BDE-209 has the potential to cause impacts on both human and environmental health.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA.
| | - B Lynn Escalon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Eva Prats
- Centro de Investigación y Desarrollo, CID-CSIC, Barcelona, Catalonia, Spain
| | - Jacob K Stanley
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Benedicte Thienpont
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Nicolas L Melby
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Enrique Barón
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Ethel Eljarrat
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Chemotargets, IMIM-Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patrick J Babin
- Maladies Rares: Génétique et Métabolism, Université Bordeaux, Talence, France
| | - Edward J Perkins
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Demetrio Raldúa
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| |
Collapse
|
47
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
48
|
Szalardy L, Zadori D, Tanczos E, Simu M, Bencsik K, Vecsei L, Klivenyi P. Elevated levels of PPAR-gamma in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett 2013; 554:131-4. [PMID: 24021801 DOI: 10.1016/j.neulet.2013.08.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/21/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated transcriptional factor involved in the regulation of glucose and lipid metabolism, has gained interest as a potential therapeutic target in multiple sclerosis (MS) due to its potent immunoregulatory properties and the therapeutic efficacy of its ligands in experimental autoimmune encephalitis (EAE). Elevated expression of PPARγ has been observed in the spinal cord of EAE mice and in an in vitro model of antigen-induced demyelination; however, no reports have yet been available on the PPARγ status in the central nervous system of human individuals with MS. Aiming to identify a possible alteration, the present study assessed the levels of PPARγ protein in the cerebrospinal fluid (CSF) of MS patients via ELISA technique. We report a pronounced elevation in the CSF levels of PPARγ in MS patients (n=35) compared to non-inflammatory controls (n=22). This elevation was independent of blood-CSF barrier integrity, but correlated with CSF white blood cell count and IgG index, associating the observed elevation with neuroinflammation. Controlling for potential confounders, the CSF levels of PPARγ further displayed a moderate but significant association with clinical severity. Corroborating with prior experimental findings, these results may contribute to our understanding about the role of PPARγ in MS, and may implicate this protein as a potential CSF biomarker of the disease.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
49
|
Redox activation of Nrf2 & NF-κB: a double end sword? Cell Signal 2013; 25:2548-57. [PMID: 23993959 DOI: 10.1016/j.cellsig.2013.08.007] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Moderate concentrations of reactive oxygen species (ROS) are produced by diverse sources under physiological conditions. At such low levels, these molecules may act as upstream mediators of relevant signaling pathways; however an increase in their concentration with respect to the antioxidant system activity, changes their redox signaling function into a deleterious role. Thus, cell health depends, at least in part, on redox balance. This review includes global aspects of oxygen chemistry, ROS generation, antioxidant system, and redox signaling. It is also focused on the description of two relevant redox-sensitive transcription factors: nuclear factor erythroid 2-related factor 2 (Nrf2), which may be a potential target to confer cell protection, and nuclear factor κB (NF-κB), which is involved in deleterious effects in the cell. Finally, recent findings on the interplay between both factors for the development of different pathologies are discussed.
Collapse
|
50
|
Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 2013; 14:1455-76. [PMID: 23344052 PMCID: PMC3565330 DOI: 10.3390/ijms14011455] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology.
Collapse
|