1
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
2
|
Wang Y, Xue H, Zhu X, Lin D, Chen Z, Dong X, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang C, Pang X, Crea F, Lin YY, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2404938. [PMID: 40091506 DOI: 10.1002/advs.202404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Prostate cancer (PCa) stands as a leading cause of cancer-related mortality among men, with treatment-induced neuroendocrine prostate cancer (NEPC) posing a challenge as an ARPI-resistant subtype. The role of transcription factors (TFs) in PCa progression and NEPC transdifferentiation remains inadequately understood, underscoring a critical gap in current research. In this study, an internal Z score-based approach is developed to identify lineage-specific TF profiles in prostatic adenocarcinoma and NEPC for a nuanced understanding of TF expression dynamics. Distinct TF profiles for adenocarcinoma and NEPC are unveiled, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs, validated across multiple cohorts. Gene Ontology is employed to validate their biological and functional roles in PCa progression. Implications are revealed in cell development, differentiation, and lineage determination. Knockdown experiments suggest that lineage-TFs are functionally important in maintaining lineage-specific cell proliferation. Additionally, a longitudinal study on NE transdifferentiation highlights dynamic TF expression shifts, proposing a three-phases hypothesis for PCa progression mechanisms. This study introduces a groundbreaking approach for deciphering the TF landscape in PCa, providing a molecular basis for adenocarcinoma to NEPC progression, and paving the way for innovative treatment strategies with potential impact on patient outcomes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xiaohui Zhu
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Zheng Chen
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Junru Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Mingchen Shi
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yuchao Ni
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jonathan Cao
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Connie Kang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xinyao Pang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Yen-Yi Lin
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Christopher J Ong
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| |
Collapse
|
3
|
Tonelli C, Yordanov GN, Hao Y, Deschênes A, Hinds J, Belleau P, Klingbeil O, Brosnan E, Doshi A, Park Y, Hruban RH, Vakoc CR, Dobin A, Preall J, Tuveson DA. A mucus production programme promotes classical pancreatic ductal adenocarcinoma. Gut 2024; 73:941-954. [PMID: 38262672 PMCID: PMC11088527 DOI: 10.1136/gutjnl-2023-329839] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The optimal therapeutic response in cancer patients is highly dependent upon the differentiation state of their tumours. Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer that harbours distinct phenotypic subtypes with preferential sensitivities to standard therapies. This study aimed to investigate intratumour heterogeneity and plasticity of cancer cell states in PDA in order to reveal cell state-specific regulators. DESIGN We analysed single-cell expression profiling of mouse PDAs, revealing intratumour heterogeneity and cell plasticity and identified pathways activated in the different cell states. We performed comparative analysis of murine and human expression states and confirmed their phenotypic diversity in specimens by immunolabeling. We assessed the function of phenotypic regulators using mouse models of PDA, organoids, cell lines and orthotopically grafted tumour models. RESULTS Our expression analysis and immunolabeling analysis show that a mucus production programme regulated by the transcription factor SPDEF is highly active in precancerous lesions and the classical subtype of PDA - the most common differentiation state. SPDEF maintains the classical differentiation and supports PDA transformation in vivo. The SPDEF tumour-promoting function is mediated by its target genes AGR2 and ERN2/IRE1β that regulate mucus production, and inactivation of the SPDEF programme impairs tumour growth and facilitates subtype interconversion from classical towards basal-like differentiation. CONCLUSIONS Our findings expand our understanding of the transcriptional programmes active in precancerous lesions and PDAs of classical differentiation, determine the regulators of mucus production as specific vulnerabilities in these cell states and reveal phenotype switching as a response mechanism to inactivation of differentiation states determinants.
Collapse
Affiliation(s)
- Claudia Tonelli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Juliene Hinds
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Alexander Dobin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Jonathan Preall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
4
|
Xu D, Forbes AN, Cohen S, Palladino A, Karadimitriou T, Khurana E. Recapitulation of patient-specific 3D chromatin conformation using machine learning. CELL REPORTS METHODS 2023; 3:100578. [PMID: 37673071 PMCID: PMC10545938 DOI: 10.1016/j.crmeth.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/05/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Regulatory networks containing enhancer-gene edges define cellular states. Multiple efforts have revealed these networks for reference tissues and cell lines by integrating multi-omics data. However, the methods developed cannot be applied for large patient cohorts due to the infeasibility of chromatin immunoprecipitation sequencing (ChIP-seq) for limited biopsy material. We trained machine-learning models using chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) data that can predict connections using only assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq data as input, which can be generated from biopsies. Our method overcomes limitations of correlation-based approaches that cannot distinguish between distinct target genes of given enhancers or between active vs. poised states in different samples, a hallmark of network rewiring in cancer. Application of our model on 371 samples across 22 cancer types revealed 1,780 enhancer-gene connections for 602 cancer genes. Using CRISPR interference (CRISPRi), we validated enhancers predicted to regulate ESR1 in estrogen receptor (ER)+ breast cancer and A1CF in liver hepatocellular carcinoma.
Collapse
Affiliation(s)
- Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ann Palladino
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
6
|
Schafer C, Young D, Singh H, Jayakrishnan R, Banerjee S, Song Y, Dobi A, Petrovics G, Srivastava S, Srivastava S, Sesterhenn IA, Chesnut GT, Tan SH. Development and characterization of an ETV1 rabbit monoclonal antibody for the immunohistochemical detection of ETV1 expression in cancer tissue specimens. J Immunol Methods 2023; 518:113493. [PMID: 37196930 PMCID: PMC10802095 DOI: 10.1016/j.jim.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Aberrant ETV1 overexpression arising from gene rearrangements or mutations occur frequently in prostate cancer, round cell sarcomas, gastrointestinal stromal tumors, gliomas, and other malignancies. The absence of specific monoclonal antibodies (mAb) has limited its detection and our understanding of its oncogenic function. METHODS An ETV1 specific rabbit mAb (29E4) was raised using an immunogenic peptide. Key residues essential for its binding were probed by ELISA and its binding kinetics were measured by surface plasmon resonance imaging (SPRi). Its selective binding to ETV1 was assessed by immunoblots and immunofluorescence assays (IFA), and by both single and double-immuno-histochemistry (IHC) assays on prostate cancer tissue specimens. RESULTS Immunoblot results showed that the mAb is highly specific and lacked cross-reactivity with other ETS factors. A minimal epitope with two phenylalanine residues at its core was found to be required for effective mAb binding. SPRi measurements revealed an equilibrium dissociation constant in the picomolar range, confirming its high affinity. ETV1 (+) tumors were detected in prostate cancer tissue microarray cases evaluated. IHC staining of whole-mounted sections revealed glands with a mosaic staining pattern of cells that are partly ETV1 (+) and interspersed with ETV1 (-) cells. Duplex IHC, using ETV1 and ERG mAbs, detected collision tumors containing glands with distinct ETV1 (+) and ERG (+) cells. CONCLUSIONS The selective detection of ETV1 by the 29E4 mAb in immunoblots, IFA, and IHC assays using human prostate tissue specimens reveals a potential utility for the diagnosis, the prognosis of prostate adenocarcinoma and other cancers, and the stratification of patients for treatment by ETV1 inhibitors.
Collapse
Affiliation(s)
- Cara Schafer
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Harpreet Singh
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Rahul Jayakrishnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Yingjie Song
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20852, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
7
|
Huang Z, Tang Y, Wei Y, Qian J, Kang Y, Wang D, Xu M, Nie L, Chen X, Chen N, Zhou Q. Prognostic Significance of Chromogranin A Expression in the Initial and Second Biopsies in Metastatic Prostate Cancer. J Clin Med 2023; 12:jcm12103362. [PMID: 37240468 DOI: 10.3390/jcm12103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Neuroendocrine differentiation (NED) characterized by the expression of neuroendocrine markers, such as chromogranin A (CgA), is frequently observed in advanced prostate cancer (PCa), the prognostic significance of which is still controversial. Here we specifically addressed the issue of the potential prognostic value of CgA expression in advanced-stage PCa patients with distant metastases and its change over time from metastatic hormone-sensitive (mHSPC) to metastatic castration-resistant prostate cancer (mCRPC). CgA expression was assessed immunohistochemically in initial biopsies of mHSPC, as well as in second biopsies of mCRPC in sixty-eight patients, and its correlation with prognosis (together with conventional clinicopathologic parameters) was analyzed using the Kaplan-Meier method and Cox proportional hazard model. We found that CgA expression was an independent adverse prognostic factor for both mHSPC (CgA positivity ≥ 1%, HR = 2.16, 95% CI: 1.04-4.26, p = 0.031) and mCRPC (CgA ≥ 10%, HR = 20.19, 95% CI: 3.04-329.9, p = 0.008). CgA positivity generally increased from mHSPC to mCRPC and was a negative prognosticator. The assessment of CgA expression may help with the clinical evaluation of advanced-stage patients with distant metastases.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Tang
- Department of Pathology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yuyan Wei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyu Qian
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yifan Kang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Duohao Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Miao Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
9
|
Cai Y, Wang M, Cui Y, Tan Z, Jiang Y. Differential Expression Profile of lncRNA in Glioma Cells and the Effect of lncRNA NKX3-1 on Glioma Cells Through Fem1b/SPDEF Pathway. Front Oncol 2021; 11:706863. [PMID: 34350121 PMCID: PMC8328487 DOI: 10.3389/fonc.2021.706863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the differential expression of lncRNA in glioma cells, as well as the effect of lncRNA NKX3-1 on glioma cells. METHODS Glioma-related data were first downloaded from the TCGA database and analyzed using bioinformatics, after which the lncRNA NKX3-1 was chosen for further experiments. The expression of the lncRNA NKX3-1 in glioma tumor samples was detected using qRT-PCR. The subcellular localization of lncRNA NKX3-1 was determined using fluorescence in situ hybridization (FISH). CCK-8, flow cytometry, cell scratch, and transwell assays were used to detect cell proliferation, apoptosis, and invasion. The downstream pathway of lncRNA NKX3-1 was investigated using luciferase assays and detected using western blot, transwell, and cell scratch assays. RESULTS The differential expression profile of lncRNA in glioma was obtained. NKX3-1 lncRNA was found to be significantly increased in glioma tumor tissues. LncRNA NKX3-1 was found in the nucleus. Proliferation, invasion, and migration of glioma cells were significantly increased (P <0.05) in the lncRNA NKX3-1 overexpression group, while apoptosis ability was significantly decreased (P <0.05). Tumor volume and weight were significantly increased in the lncRNA NKX3-1 overexpression group in nude mice (P <0.05). LncRNA NKX3-1 significantly increased the luciferase activity of Fem1b 3'-UTR-WT reporter genes (P <0.05) as well as the levels of SPDEF protein (P <0.05). The protein level of FEM1B was significantly reduced. Cell invasion and migration were significantly increased (P <0.05) in the lncRNA NKX3-1 overexpression group plus SPDEF group. CONCLUSION We investigated the differential expression profile of lncRNAs in glioma and discovered that the lncRNA NKX3-1 plays an important role in cancer promotion via the Fem1b/SPDEF pathway.
Collapse
Affiliation(s)
| | | | | | | | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Hope JM, Bersi MR, Dombroski JA, Clinch AB, Pereles RS, Merryman WD, King MR. Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death. J Cell Sci 2021; 134:jcs.251470. [PMID: 33526716 PMCID: PMC7929932 DOI: 10.1242/jcs.251470] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are exposed to fluid shear stress (FSS) of greater than 1000 dyn/cm2 (100 Pa) in circulation. Normally, CTCs that are exposed to FSS of this magnitude die. However, some CTCs develop resistance to this FSS, allowing them to colonize distant organs. We explored how prostate CTCs can resist cell death in response to forces of this magnitude. The DU145, PC3 and LNCaP human prostate cancer cell lines were used to represent cells of different metastatic origins. The cell lines were briefly treated with an average FSS of 3950 dyn/cm2 (395 Pa) using a 30 G needle and a syringe pump. DU145 cells had no change in cell viability, PC3 cells had some cell death and LNCaP cells exhibited significant cell death. These cell death responses correlated with increased cell membrane damage, less efficient membrane repair and increased stiffness. Additionally, FSS treatment prevented the LNCaP FSS-sensitive cell line from forming a growing tumor in vivo. This suggests that these properties play a role in FSS resistance and could represent potential targets for disrupting blood-borne metastasis. Summary: Prostate cancer cells have different sensitivities to fluid forces that alter their resistance to elevated blood flow-level fluid shear stress.
Collapse
Affiliation(s)
- Jacob M Hope
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Andrea B Clinch
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Rebecca S Pereles
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| |
Collapse
|
11
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
12
|
Shishodia G, Koul S, Koul HK. Protocadherin 7 is overexpressed in castration resistant prostate cancer and promotes aberrant MEK and AKT signaling. Prostate 2019; 79:1739-1751. [PMID: 31449679 DOI: 10.1002/pros.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/29/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Castrate resistant prostate cancer (CRPC) accounts for almost all prostate cancer (PCa) deaths. Aberrant activation of ERK/MEK and PI3K/AKT signaling pathways plays an important role in subsets of patients with CRPC. The role of protocadherin 7 (PCDH7) in modulating these signaling pathways is investigated for the first time in PCa in the present investigation. METHODS PCDH7 expression was analyzed in CRPC/neuroendocrine prostate cancer (NEPC) dataset. Protein expression was assessed by Western blotting and immunohistochemistry, and messenger RNA (mRNA) by quantitative real-time polymerase chain reaction. Small hairpin ribonucleic acid was used to knockdown PCDH7. Colony formation, cell migration, and invasion studies were done using standard protocols. RESULTS PCDH7 amplification/mRNA upregulation was observed in 41% of patients in CRPC/NEPC dataset. PCDH7 was also overexpressed in CRPC cells. Increased PCDH protein expression was observed during tumor progression in PCa tissues and in TRAMP mice. Epidermal growth factor treatment resulted in aberrant activation of ERK/AKT. Knockdown of PCDH7 decreased ERK, AKT, and RB phosphorylation and reduced colony formation, decreased cell invasion, and cell migration. CONCLUSIONS These data show for the first time that PCDH7 is overexpressed in a large number of patients with CRPC and suggest that PCDH7 may be an attractive target in subsets of patients with CRPC for whom there is no cure to-date.
Collapse
Affiliation(s)
- Gauri Shishodia
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, Louisiana
- Feist Weiller Cancer Center, Shreveport, Louisiana
| | - Sweaty Koul
- Feist Weiller Cancer Center, Shreveport, Louisiana
- Department of Urology, LSU Health Sciences Center, Shreveport, Louisiana
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, Louisiana
- Feist Weiller Cancer Center, Shreveport, Louisiana
- Overton Brooks Veterans Administrative Medical Center, Shreveport, Louisiana
| |
Collapse
|
13
|
Meiners J, Schulz K, Möller K, Höflmayer D, Burdelski C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Reiswich V, Weidemann S, Izbicki JR, Sauter G, Jacobsen F, Möller-Koop C, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Lennartz M, Fraune C, Heinzer H, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. Upregulation of SPDEF is associated with poor prognosis in prostate cancer. Oncol Lett 2019; 18:5107-5118. [PMID: 31612022 PMCID: PMC6781494 DOI: 10.3892/ol.2019.10885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
SAM pointed domain-containing Ets transcription factor (SPDEF), a member of the ETS transcription factor family, has been associated with prostate cancer development; however, its role in tumour development and progression is controversial. In the present study, SPDEF expression was analysed on a tissue microarray with >12,000 prostate cancer samples. SPDEF expression levels were higher in most prostate cancer samples than in normal prostate epithelium, suggesting SPDEF was upregulated in cancer. Nuclear SPDEF expression was identified in 80% of prostate cancer samples, and considered weak in 26.4%, moderate in 40.1% and strong in 13.5% of cases. SPDEF positivity was significantly associated with tumour stage, Gleason grade, lymph node metastasis and PSA recurrence (all P<0.0001). SPDEF overexpression was more common in ERG positive (94%) than in ERG negative cancer (69%; P<0.0001). Elevated SPDEF expression predicted poor prognosis independent from established prognostic parameters, including Gleason grade, pT, pN, serum PSA level and nodal status (P<0.01). In summary, SPDEF overexpression was associated with aggressive behaviour, particularly in ERG negative prostate cancer, and may have potential for clinical application.
Collapse
Affiliation(s)
- Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Schulz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Burdelski
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jacob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christina Möller-Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Tim Mandelkow
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Niclas C Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Maximillian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hartwig Huland
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Graefen
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Department of Urology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
14
|
Sumardika IW, Chen Y, Tomonobu N, Kinoshita R, Ruma IMW, Sato H, Kondo E, Inoue Y, Yamauchi A, Murata H, Yamamoto KI, Tomida S, Shien K, Yamamoto H, Soh J, Futami J, Putranto EW, Hibino T, Nishibori M, Toyooka S, Sakaguchi M. Neuroplastin-β mediates S100A8/A9-induced lung cancer disseminative progression. Mol Carcinog 2019; 58:980-995. [PMID: 30720226 DOI: 10.1002/mc.22987] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
Compiling evidence indicates an unusual role of extracellular S100A8/A9 in cancer metastasis. S100A8/A9 secreted from either cancer cells or normal cells including epithelial and inflammatory cells stimulates cancer cells through S100A8/A9 sensor receptors in an autocrine or paracrine manner, leading to cancer cell metastatic progression. We previously reported a novel S100A8/A9 receptor, neuroplastin-β (NPTNβ), which plays a critical role in atopic dermatitis when it is highly activated in keratinocytes by an excess amount of extracellular S100A8/A9 in the inflammatory skin lesion. Interestingly, our expression profiling of NPTNβ showed significantly high expression levels in lung cancer cell lines in a consistent manner. We hence aimed to determine the significance of NPTNβ as an S100A8/A9 receptor in lung cancer. Our results showed that NPTNβ has strong ability to induce cancer-related cellular events, including anchorage-independent growth, motility and invasiveness, in lung cancer cells in response to extracellular S100A8/A9, eventually leading to the expression of a cancer disseminative phenotype in lung tissue in vivo. Mechanistic investigation revealed that binding of S100A8/A9 to NPTNβ mediates activation of NFIA and NFIB and following SPDEF transcription factors through orchestrated upstream signals from TRAF2 and RAS, which is linked to anchorage-independent growth, motility and invasiveness. Overall, our results indicate the importance of the S100A8/A9-NPTNβ axis in lung cancer disseminative progression and reveal a pivotal role of its newly identified downstream signaling, TRAF2/RAS-NFIA/NFIB-SPDEF, in linking to the aggressive development of lung cancers.
Collapse
Affiliation(s)
- I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - I Made Winarsa Ruma
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Hiroki Sato
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata-shi, Niigata, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu-shi, Gunma, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki-shi, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Shuta Tomida
- Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Hiromasa Yamamoto
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Junichi Soh
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Junichiro Futami
- Department of Medical and Bioengineering Science, Okayama University Graduate School of Natural Science and Technology, Kita-ku, Okayama, Japan
| | - Endy Widya Putranto
- Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshihiko Hibino
- Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Shinichi Toyooka
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| |
Collapse
|
15
|
Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules 2018; 23:molecules23092191. [PMID: 30200227 PMCID: PMC6225137 DOI: 10.3390/molecules23092191] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelium-specific ETS (ESE) transcription factors (ELF3, ELF5, EHF and SPDEF) are defined by their highly conserved ETS DNA binding domain and predominant epithelial-specific expression profile. ESE transcription factors maintain normal cell homeostasis and differentiation of a number of epithelial tissues, and their genetic alteration and deregulated expression has been linked to the progression of several epithelial cancers. Herein we review the normal function of the ESE transcription factors, the mechanisms by which they are dysregulated in cancers, and the current evidence for their role in cancer progression. Finally, we discuss potential therapeutic strategies for targeting or reactivating these factors as a novel means of cancer treatment.
Collapse
Affiliation(s)
- Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
16
|
Prostate-Derived Ets Factor (PDEF) Inhibits Metastasis by Inducing Epithelial/Luminal Phenotype in Prostate Cancer Cells. Mol Cancer Res 2018; 16:1430-1440. [DOI: 10.1158/1541-7786.mcr-18-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
|
17
|
Huang PA, Price DK, Figg WD. Molecular drivers of metastatic castrate-resistant prostate cancer: New roads to resistance. Cancer Biol Ther 2018; 19:869-870. [PMID: 29757697 PMCID: PMC6300349 DOI: 10.1080/15384047.2018.1449618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Numerous growth-inducing signaling pathways have been implicated in the development of metastatic castrate-resistant prostate cancer, but their cross-talk with androgen receptor functions remains poorly understood. A recent study published in Science Signaling by Chen et al.1 has identified a novel androgen-mediated signaling axis driven by loss of SPDEF and gain of TGFBI to facilitate metastasis, which may explain the acquisition of resistance to androgen deprivation therapy. These findings suggest that therapeutic inhibition of androgen signaling may inadvertently promote castrate resistance by inhibiting tumor suppressive functions of the androgen receptor.
Collapse
Affiliation(s)
- Phoebe A Huang
- a Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Douglas K Price
- a Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - William D Figg
- a Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
18
|
Tsai YC, Chen WY, Abou-Kheir W, Zeng T, Yin JJ, Bahmad H, Lee YC, Liu YN. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1717-1727. [PMID: 29477409 DOI: 10.1016/j.bbadis.2018.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The chemokine CC motif ligand 2 (CCL2) is important in recruiting tumor-associated macrophages and is involved in the development of castration-resistance prostate cancer (CRPC) after androgen-deprivation therapy (ADT); however, the underlying mechanism remains unclear. We found that inactivation of the androgen receptor (AR) reduces a transcriptional repressor (SAM pointed domain-containing ETS transcription factor, SPDEF) of CCL2, which mediates epithelial-to-mesenchymal transition (EMT) of prostate tumor cells. Cell lines derived from a prostate-specific Pten/Trp53-null mouse and capable of a spontaneous EMT were utilized for identification of CCL2, and showed that reduced SPDEF expression was associated with an elevated CCL2-activated EMT. AR signaling inhibits CCL2 through a SPDEF-mediated mechanism in that the SPDEF recognizes the CCL2 promoter and transcriptionally represses its activity. Ectopically expressed SPDEF reduced the EMT and rescued expression of CCL2 in SPDEF-expressing cells, which induced the EMT and promotes malignant functions of prostate cancer cells. In tissues from prostate cancer patients with ADT, low SPDEF levels were correlated with high CCL2 expression compared to patients without ADT. We present a novel mechanism that contributes to the EMT and metastatic phenotype observed in a subset of ADT-resistant prostate cancer, where the CCL2 is stimulated through the inactivated of AR-mediated SPDEF.
Collapse
Affiliation(s)
- Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, People's Republic of China
| | - Juan Juan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Shishodia G, Koul S, Dong Q, Koul HK. Tetrandrine (TET) Induces Death Receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5) and Sensitizes Prostate Cancer Cells to TRAIL-Induced Apoptosis. Mol Cancer Ther 2018; 17:1217-1228. [PMID: 29549167 PMCID: PMC10186773 DOI: 10.1158/1535-7163.mct-17-1157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells, but not in normal cells; as such, it is a promising therapeutic agent. However, therapeutic resistance limits its clinical use in many malignancies, including prostate cancer. Strategies to sensitize cancer cells to TRAIL are urgently needed. We demonstrate here that small-molecule tetrandrine (TET) potentially sensitizes previously resistant (LNCaP and C4-2B cells) and mildly sensitive (PC3 cells) prostate cancer cells to TRAIL-induced apoptosis, and they do so by upregulating mRNA expression and protein levels of death receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5). Using shRNA knockdown, we show critical requirement of DR4 and DR5 in sensitization of prostate cancer cells to TRAIL. We show that double knockdown of DR4 and DR5 abrogated the apoptotic effects of TET and TRAIL. We also demonstrate that TET-induced DR4 and DR5 expression is independent of p53 status. Given that loss of p53 is associated with progression of prostate cancer to CRPC and NEPC, our results show that TET, by acting as a TRAIL-sensitizing agent in prostate cancer, could serve as a potential therapeutic agent in CRPC and NEPC, for which there is no cure to date. Mol Cancer Ther; 17(6); 1217-28. ©2018 AACR.
Collapse
|
20
|
Kok DEG, Kiemeney LALM, Verhaegh GW, Schalken JA, van Lin ENJT, Sedelaar JPM, Witjes JA, Hulsbergen-van de Kaa CA, van 't Veer P, Kampman E, Afman LA. A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate. Oncotarget 2018; 8:10565-10579. [PMID: 28076331 PMCID: PMC5354681 DOI: 10.18632/oncotarget.14551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
In parallel with the inconsistency in observational studies and chemoprevention trials, the mechanisms by which selenium affects prostate cancer risk have not been elucidated. We conducted a randomized, placebo-controlled trial to examine the effects of a short-term intervention with selenium on gene expression in non-malignant prostate tissue. Twenty-three men received 300 μg selenium per day in the form of selenized yeast (n=12) or a placebo (n=11) during 5 weeks. Prostate biopsies collected from the transition zone before and after intervention were analysed for 15 participants (n=8 selenium, n=7 placebo). Pathway analyses revealed that the intervention with selenium was associated with down-regulated expression of genes involved in cellular migration, invasion, remodeling and immune responses. Specifically, expression of well-established epithelial markers, such as E-cadherin and epithelial cell adhesion molecule EPCAM, was up-regulated, while the mesenchymal markers vimentin and fibronectin were down-regulated after intervention with selenium. This implies an inhibitory effect of selenium on the epithelial-to-mesenchymal transition (EMT). Moreover, selenium was associated with down-regulated expression of genes involved in wound healing and inflammation; processes which are both related to EMT. In conclusion, our explorative data showed that selenium affected expression of genes implicated in EMT in the transition zone of the prostate.
Collapse
Affiliation(s)
- Dieuwertje E G Kok
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Lambertus A L M Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | | | - J P Michiel Sedelaar
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - J Alfred Witjes
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | | | - Pieter van 't Veer
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
21
|
Tamura RE, Paccez JD, Duncan KC, Morale MG, Simabuco FM, Dillon S, Correa RG, Gu X, Libermann TA, Zerbini LF. GADD45α and γ interaction with CDK11p58 regulates SPDEF protein stability and SPDEF-mediated effects on cancer cell migration. Oncotarget 2017; 7:13865-79. [PMID: 26885618 PMCID: PMC4924684 DOI: 10.18632/oncotarget.7355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 01/02/2023] Open
Abstract
The epithelium-specific Ets transcription factor, SPDEF, plays a critical role in metastasis of prostate and breast cancer cells. While enhanced SPDEF expression blocks migration and invasion, knockdown of SPDEF expression enhances migration, invasion, and metastasis of cancer cells. SPDEF expression and activation is tightly regulated in cancer cells; however, the precise mechanism of SPDEF regulation has not been explored in detail. In this study we provide evidence that the cell cycle kinase CDK11p58, a protein involved in G2/M transition and degradation of several transcription factors, directly interacts with and phosphorylates SPDEF on serine residues, leading to subsequent ubiquitination and degradation of SPDEF through the proteasome pathway. As a consequence of CDK11p58 mediated degradation of SPDEF, this loss of SPDEF protein results in increased prostate cancer cell migration and invasion. In contrast, knockdown of CDK11p58 protein expression by interfering RNA or SPDEF overexpression inhibit migration and invasion of cancer cells. We demonstrate that CDK11p58 mediated degradation of SPDEF is attenuated by Growth Arrest and DNA damage-inducible 45 (GADD45) α and, two proteins inducing G2/M cell cycle arrest. We show that GADD45 α and γ, directly interact with CDK11p58 and thereby inhibit CDK11p58 activity, and consequentially SPDEF phosphorylation and degradation, ultimately reducing prostate cancer cell migration and invasion. Our findings provide new mechanistic insights into the complex regulation of SPDEF activity linked to cancer metastasis and characterize a previously unidentified SPDEF/CDK11p58/GADD45α/γ pathway that controls SPDEF protein stability and SPDEF-mediated effects on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Rodrigo E Tamura
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kristal C Duncan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mirian G Morale
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fernando M Simabuco
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Simon Dillon
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Towia A Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Medical Biochemistry Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Beltran H, Wyatt AW, Chedgy EC, Donoghue A, Annala M, Warner EW, Beja K, Sigouros M, Mo F, Fazli L, Collins CC, Eastham J, Morris M, Taplin ME, Sboner A, Halabi S, Gleave ME. Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy. Clin Cancer Res 2017; 23:6802-6811. [PMID: 28842510 PMCID: PMC5690882 DOI: 10.1158/1078-0432.ccr-17-1034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Purpose: The combination of docetaxel chemotherapy and androgen deprivation therapy (ADT) has become a standard treatment for patients with metastatic prostate cancer. The recently accrued phase III CALGB 90203 trial was designed to investigate the clinical effectiveness of this treatment approach earlier in the disease. Specimens from this trial offer a unique opportunity to interrogate the acute molecular response to docetaxel and ADT and identify potential biomarkers.Experimental Design: We evaluated baseline clinical data, needle biopsies, and radical prostatectomy (RP) specimens from 52 (of 788) patients enrolled on CALGB 90203 at one high volume center. Pathology review, tumor and germline-targeted DNA sequencing (n = 72 genes), and expression profiling using NanoString platform (n = 163 genes) were performed to explore changes in critical prostate cancer pathways linked to aggression and resistance.Results: Three of 52 patients had only microfocal residual cancer at prostatectomy. The most common alterations included TMPRSS2-ERG fusion (n = 32), TP53 mutation or deletion (n = 11), PTEN deletion (n = 6), FOXA1 (n = 6), and SPOP (n = 4) mutation, with no significant enrichment in posttreated specimens. We did not observe AR amplification or mutations. The degree of AR signaling suppression varied among treated tumors and there was upregulation of both AR and AR-V7 expression as well as a subset of neuroendocrine and plasticity genes.Conclusions: These data support the feasibility of targeted and temporal genomic and transcriptome profiling of neoadjuvant-treated prostate cancer with limited formalin-fixed paraffin embedded tissue requirement. Characterization of the heterogeneity of treatment response and molecular outliers that arise posttreatment provides new insight into potential early markers of resistance. Clin Cancer Res; 23(22); 6802-11. ©2017 AACR.
Collapse
Affiliation(s)
- Himisha Beltran
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York.
| | - Alexander W Wyatt
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edmund C Chedgy
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Donoghue
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Matti Annala
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Evan W Warner
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Beja
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Sigouros
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Fan Mo
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Eastham
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Morris
- Department of Medical Oncology, Dana-Farber/Partners Cancer Care, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York New York
| | - Andrea Sboner
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
- Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York
| | - Susan Halabi
- Alliance Statistics and Data Center and Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Martin E Gleave
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Ahram M, Mustafa E, Zaza R, Abu Hammad S, Alhudhud M, Bawadi R, Zihlif M. Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biol Int 2017; 41:1345-1355. [PMID: 28816390 DOI: 10.1002/cbin.10841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/14/2017] [Indexed: 01/11/2023]
Abstract
MicroRNA molecules (miRNAs) play important roles in regulating cell behavior. The expression of certain miRNAs has been shown to be regulated by the androgen receptor (AR), which seems to have a critical role in the tumorigenic process of breast cancer. The differential expression of 84 miRNAs was first examined in three breast cancer cell lines: the luminal MCF-7 and T47D cells and the molecular apocrine MDA-MB-453 cells. Analysis of basal expression of miRNAs revealed that each cell line had distinct miRNA expression where let-7a and -7b were markers of MDA-MB-453 cells, whereas miR-205 was a marker for the luminal cell lines. Treating the cells with the AR agonist, CI-4AS-1, resulted in unique alterations in the expression of specific miRNA among the three cell lines. Particularly, the expression of miR-100 and miR-125 was reduced in MDA-MB-453 cells by five and three folds, respectively. This effect was simultaneous with AR-induced increase in the expression and extracellular release of metalloprotease-13 (MMP13). Transfection of cells with either miR-100 or miR-125b negated the induction of MMP13 release. Additionally, AR activation induced a morphological alteration of MDA-MB-453 cells, which was blocked by miR-125b only. Collectively, these data indicate that AR may control the biological behavior of breast cancer cells and protein expression via miRNAs.
Collapse
Affiliation(s)
- Mamoun Ahram
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Ebtihal Mustafa
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Rand Zaza
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Shatha Abu Hammad
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Mariam Alhudhud
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Randa Bawadi
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Malek Zihlif
- School of Medicine, Department of Pharmacology, The University of Jordan, Amman, Jordan
| |
Collapse
|
24
|
Chen WY, Tsai YC, Yeh HL, Suau F, Jiang KC, Shao AN, Huang J, Liu YN. Loss of SPDEF and gain of TGFBI activity after androgen deprivation therapy promote EMT and bone metastasis of prostate cancer. Sci Signal 2017; 10:10/492/eaam6826. [PMID: 28811384 DOI: 10.1126/scisignal.aam6826] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Androgen deprivation therapy (ADT) targeting the androgen receptor (AR) is a standard therapeutic regimen for treating prostate cancer. However, most tumors progress to metastatic castration-resistant prostate cancer after ADT. We identified the type 1, 2, and 4 collagen-binding protein transforming growth factor-β (TGFβ)-induced protein (TGFBI) as an important factor in the epithelial-to-mesenchymal transition (EMT) and malignant progression of prostate cancer. In prostate cancer cell lines, AR signaling stimulated the activity of the transcription factor SPDEF, which repressed the expression of TGFBI ADT, AR antagonism, or overexpression of TGFBI inhibited the activity of SPDEF and enhanced the proliferation rates of prostate cancer cells. Knockdown of TGFBI suppressed migration and proliferation in cultured cells and reduced prostate tumor growth and brain and bone metastasis in xenograft models, extending the survival of tumor-bearing mice. Analysis of prostate tissue samples collected before and after ADT from the same patients showed that ADT reduced the nuclear abundance of SPDEF and increased the production of TGFBI. Our findings suggest that induction of TGFBI promotes prostate cancer growth and metastasis and can be caused by dysregulation or therapeutic inhibition of AR signaling.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Lien Yeh
- Institute of Information System and Applications, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Florent Suau
- Department of Microbiology, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Turkey
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ai-Ning Shao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
25
|
Campbell TM, Castro MAA, Ponder BAJ, Meyer KB. Identification of Post-Transcriptional Modulators of Breast Cancer Transcription Factor Activity Using MINDy. PLoS One 2016; 11:e0168770. [PMID: 27997592 PMCID: PMC5173250 DOI: 10.1371/journal.pone.0168770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
We have recently identified transcription factors (TFs) that are key drivers of breast cancer risk. To better understand the pathways or sub-networks in which these TFs mediate their function we sought to identify upstream modulators of their activity. We applied the MINDy (Modulator Inference by Network Dynamics) algorithm to four TFs (ESR1, FOXA1, GATA3 and SPDEF) that are key drivers of estrogen receptor-positive (ER+) breast cancer risk, as well as cancer progression. Our computational analysis identified over 500 potential modulators. We assayed 189 of these and identified 55 genes with functional characteristics that were consistent with a role as TF modulators. In the future, the identified modulators may be tested as potential therapeutic targets, able to alter the activity of TFs that are critical in the development of breast cancer.
Collapse
Affiliation(s)
- Thomas M. Campbell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Mauro A. A. Castro
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, Curitiba, PR, Brazil
| | - Bruce A. J. Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Kerstin B. Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
26
|
Hu H, Sun Z, Li Y, Zhang Y, Li H, Zhang Y, Pan Y, Shen L, Wang R, Sun Y, Chen H. The Histologic Classifications of Lung Adenocarcinomas Are Discriminable by Unique Lineage Backgrounds. J Thorac Oncol 2016; 11:2161-2172. [DOI: 10.1016/j.jtho.2016.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
|
27
|
Khan MI, Dębski KJ, Dabrowski M, Czarnecka AM, Szczylik C. Gene set enrichment analysis and ingenuity pathway analysis of metastatic clear cell renal cell carcinoma cell line. Am J Physiol Renal Physiol 2016; 311:F424-36. [PMID: 27279483 DOI: 10.1152/ajprenal.00138.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
In recent years, genome-wide RNA expression analysis has become a routine tool that offers a great opportunity to study and understand the key role of genes that contribute to carcinogenesis. Various microarray platforms and statistical approaches can be used to identify genes that might serve as prognostic biomarkers and be developed as antitumor therapies in the future. Metastatic renal cell carcinoma (mRCC) is a serious, life-threatening disease, and there are few treatment options for patients. In this study, we performed one-color microarray gene expression (4×44K) analysis of the mRCC cell line Caki-1 and the healthy kidney cell line ASE-5063. A total of 1,921 genes were differentially expressed in the Caki-1 cell line (1,023 upregulated and 898 downregulated). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) approaches were used to analyze the differential-expression data. The objective of this research was to identify complex biological changes that occur during metastatic development using Caki-1 as a model mRCC cell line. Our data suggest that there are multiple deregulated pathways associated with metastatic clear cell renal cell carcinoma (mccRCC), including integrin-linked kinase (ILK) signaling, leukocyte extravasation signaling, IGF-I signaling, CXCR4 signaling, and phosphoinositol 3-kinase/AKT/mammalian target of rapamycin signaling. The IPA upstream analysis predicted top transcriptional regulators that are either activated or inhibited, such as estrogen receptors, TP53, KDM5B, SPDEF, and CDKN1A. The GSEA approach was used to further confirm enriched pathway data following IPA.
Collapse
Affiliation(s)
- Mohammed I Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland; and
| | - Konrad J Dębski
- Bioinformatics Laboratory, Center of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Michał Dabrowski
- Bioinformatics Laboratory, Center of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Anna M Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland; and
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland; and
| |
Collapse
|
28
|
Meshcheryakova A, Svoboda M, Tahir A, Köfeler HC, Triebl A, Mungenast F, Heinze G, Gerner C, Zimmermann P, Jaritz M, Mechtcheriakova D. Exploring the role of sphingolipid machinery during the epithelial to mesenchymal transition program using an integrative approach. Oncotarget 2016; 7:22295-323. [PMID: 26967245 PMCID: PMC5008362 DOI: 10.18632/oncotarget.7947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/20/2016] [Indexed: 12/30/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) program is activated in epithelial cancer cells and facilitates their ability to metastasize based on enhanced migratory, proliferative, anti-apoptotic, and pluripotent capacities. Given the fundamental impact of sphingolipid machinery to each individual process, the sphingolipid-related mechanisms might be considered among the most prominent drivers/players of EMT; yet, there is still limited knowledge. Given the complexity of the interconnected sphingolipid system, which includes distinct sphingolipid mediators, their synthesizing enzymes, receptors and transporters, we herein apply an integrative approach for assessment of the sphingolipid-associated mechanisms underlying EMT program. We created the sphingolipid-/EMT-relevant 41-gene/23-gene signatures which were applied to denote transcriptional events in a lung cancer cell-based EMT model. Based on defined 35-gene sphingolipid/EMT-attributed signature of regulated genes, we show close associations between EMT markers, genes comprising the sphingolipid network at multiple levels and encoding sphingosine 1-phosphate (S1P)-/ceramide-metabolizing enzymes, S1P and lysophosphatidic acid (LPA) receptors and S1P transporters, pluripotency genes and inflammation-related molecules, and demonstrate the underlying biological pathways and regulators. Mass spectrometry-based sphingolipid analysis revealed an EMT-attributed shift towards increased S1P and LPA accompanied by reduced ceramide levels. Notably, using transcriptomics data across various cell-based perturbations and neoplastic tissues (24193 arrays), we identified the sphingolipid/EMT signature primarily in lung adenocarcinoma tissues; besides, bladder, colorectal and prostate cancers were among the top-ranked. The findings also highlight novel regulatory associations between influenza virus and the sphingolipid/EMT-associated mechanisms. In sum, data propose the multidimensional contribution of sphingolipid machinery to pathological EMT and may yield new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Ammar Tahir
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
- Mass Spectrometry Center, University of Vienna, Vienna, Austria
| | - Harald C. Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Alexander Triebl
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Georg Heinze
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University Vienna, Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
- Mass Spectrometry Center, University of Vienna, Vienna, Austria
| | | | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, Tomlins SA, Nanus DM, Tagawa ST, Van Allen EM, Elemento O, Sboner A, Garraway LA, Rubin MA, Demichelis F. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016; 22:298-305. [PMID: 26855148 PMCID: PMC4777652 DOI: 10.1038/nm.4045] [Citation(s) in RCA: 1232] [Impact Index Per Article: 136.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, in which tumor cells demonstrate low to absent AR expression and often have neuroendocrine features. The etiology and molecular basis for this 'alternative' treatment-resistant cell state remain incompletely understood. Here, by analyzing whole-exome sequencing data of metastatic biopsies from patients, we observed substantial genomic overlap between castration-resistant tumors that were histologically characterized as prostate adenocarcinomas (CRPC-Adeno) and neuroendocrine prostate cancer (CRPC-NE); analysis of biopsy samples from the same individuals over time points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation analysis revealed marked epigenetic differences between CRPC-NE tumors and CRPC-Adeno, and also designated samples of CRPC-Adeno with clinical features of AR independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, 'AR-indifferent' cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer.
Collapse
Affiliation(s)
- Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine. New York, NY
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine. New York, NY
| | - Davide Prandi
- Centre for Integrative Biology, University of Trento. Trento, Italy
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
- Department of Pathology and Laboratory Medicine. Weill Cornell Medicine. New York, NY
| | - Matteo Benelli
- Centre for Integrative Biology, University of Trento. Trento, Italy
| | - Loredana Puca
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
| | - Joanna Cyrta
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
| | - Clarisse Marotz
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
| | | | | | | | | | - David M. Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine. New York, NY
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine. New York, NY
| | - Scott T. Tagawa
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine. New York, NY
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine. New York, NY
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
- The Broad Institute of MIT and Harvard, Boston, MA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
- Department of Physiology and Biophysics. Weill Cornell Medicine. New York, NY
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine. New York, NY
| | - Levi A. Garraway
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
- The Broad Institute of MIT and Harvard, Boston, MA
| | - Mark A. Rubin
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine. New York, NY
- Department of Pathology and Laboratory Medicine. Weill Cornell Medicine. New York, NY
| | - Francesca Demichelis
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine. New York, NY
- Centre for Integrative Biology, University of Trento. Trento, Italy
- Institute for Computational Biomedicine, Weill Cornell Medicine. New York, NY
| |
Collapse
|
30
|
Romero D, Al-Shareef Z, Gorroño-Etxebarria I, Atkins S, Turrell F, Chhetri J, Bengoa-Vergniory N, Zenzmaier C, Berger P, Waxman J, Kypta R. Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases. Carcinogenesis 2015; 37:18-29. [DOI: 10.1093/carcin/bgv153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
|
31
|
Cecchi F, Lih CJ, Lee YH, Walsh W, Rabe DC, Williams PM, Bottaro DP. Expression array analysis of the hepatocyte growth factor invasive program. Clin Exp Metastasis 2015; 32:659-76. [PMID: 26231668 DOI: 10.1007/s10585-015-9735-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/13/2015] [Indexed: 02/17/2023]
Abstract
Signaling by human hepatocyte growth factor (hHGF) via its cell surface receptor (MET) drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Oncogenic pathway activation also contributes to tumorigenesis and cancer progression, including tumor angiogenesis and metastasis, in several prevalent malignancies. The HGF gene encodes full-length hHGF and two truncated isoforms known as NK1 and NK2. NK1 induces all three HGF activities at modestly reduced potency, whereas NK2 stimulates only motogenesis and enhances HGF-driven tumor metastasis in transgenic mice. Prior studies have shown that mouse HGF (mHGF) also binds with high affinity to human MET. Here we show that, like NK2, mHGF stimulates cell motility, invasion and spontaneous metastasis of PC3M human prostate adenocarcinoma cells in mice through human MET. To identify target genes and signaling pathways associated with motogenic and metastatic HGF signaling, i.e., the HGF invasive program, gene expression profiling was performed using PC3M cells treated with hHGF, NK2 or mHGF. Results obtained using Ingenuity Pathway Analysis software showed significant overlap with networks and pathways involved in cell movement and metastasis. Interrogating The Cancer Genome Atlas project also identified a subset of 23 gene expression changes in PC3M with a strong tendency for co-occurrence in prostate cancer patients that were associated with significantly decreased disease-free survival.
Collapse
Affiliation(s)
- Fabiola Cecchi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - Chih-Jian Lih
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Young H Lee
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - William Walsh
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Daniel C Rabe
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - Paul M Williams
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA. .,Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bldg 10 CRC Rm 2-3952, 10 Center Drive MSC 1107, Bethesda, MD, 20892-1107, USA.
| |
Collapse
|
32
|
Santha S, Viswakarma N, Das S, Rana A, Rana B. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-Troglitazone-induced Apoptosis in Prostate Cancer Cells Involve AMP-activated Protein Kinase. J Biol Chem 2015. [PMID: 26198640 DOI: 10.1074/jbc.m115.663526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men with limited treatment options for the hormone-resistant forms. Development of novel therapeutic options is critically needed to target advanced forms. Here we demonstrate that combinatorial treatment with the thiazolidinedione troglitazone (TZD) and TNF-related apoptosis-inducing ligand (TRAIL) can induce significant apoptosis in various PCa cells independent of androgen receptor status. Because TZD is known to activate AMP-activated protein kinase (AMPK), we determined whether AMPK is a molecular target mediating this apoptotic cascade by utilizing PCa cell lines stably overexpressing AMPKα1 dominant negative (C4-2-DN) or empty vector (C4-2-EV). Our results indicated a significantly higher degree of apoptosis with TRAIL-TZD combination in C4-2-EV cells compared with C4-2-DN cells. Similarly, results from a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a larger reduction of viability of C4-2-EV cells compared with C4-2-DN cells when treated with TRAIL-TZD, thus suggesting that C4-2-DN cells were more apoptosis-resistant. Additionally, siRNA-mediated knockdown of endogenous AMPKα1 expression showed a reduction of TRAIL-TZD-induced apoptosis, further confirming the participation of AMPK in mediating this apoptosis. Apoptosis induction by this combinatorial treatment was also associated with a cleavage of β-catenin that was inhibited in both C4-2-DN cells and those cells in which AMPKα1 was knocked down. In addition, time course studies showed an increase in pACC(S79) (AMPK target) levels coinciding with the time of apoptosis. These studies indicate the involvement of AMPK in TRAIL-TZD-mediated apoptosis and β-catenin cleavage and suggest the possibility of utilizing AMPK as a therapeutic target in apoptosis-resistant prostate cancer.
Collapse
Affiliation(s)
- Sreevidya Santha
- From the Department of Medicine, Division of Gastroenterology & Nutrition and
| | - Navin Viswakarma
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Subhasis Das
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Ajay Rana
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and the Hines VA Medical Center, Hines, Illinois 60141
| | - Basabi Rana
- From the Department of Medicine, Division of Gastroenterology & Nutrition and the Hines VA Medical Center, Hines, Illinois 60141
| |
Collapse
|
33
|
Cavazzola LR, Carvalhal GF, Deves C, Renck D, Almeida R, Santos DIS. Relative mRNA expression of prostate-derived E-twenty-six factor and E-twenty-six variant 4 transcription factors, and of uridine phosphorylase-1 and thymidine phosphorylase enzymes, in benign and malignant prostatic tissue. Oncol Lett 2015; 9:2886-2894. [PMID: 26137165 DOI: 10.3892/ol.2015.3093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is the most frequent urological tumor, and the second most common cancer diagnosed in men. Incidence and mortality are variable and appear to depend on behavioral factors and genetic predisposition. The prostate-derived E-twenty-six factor (PDEF) and E-twenty-six variant 4 (ETV4) transcription factors, and the thymidine phosphorylase (TP) and uridine phosphorylase-1 (UP-1) enzymes, are reported to be components of the pathways leading to tumorigenesis and/or metastasis in a number of tumors. The present study aimed to analyze the mRNA expression levels of these proteins in prostatic cancerous and benign tissue, and their association with clinical and pathological variables. Using quantitative reverse transcription polymerase chain reaction, the mRNA expression levels of PDEF, ETV4, TP and UP-1 were studied in 52 tissue samples (31 of benign prostatic hyperplasia and 21 of prostate adenocarcinomas) obtained from patients treated by transurethral resection of the prostate or by radical prostatectomy. Relative expression was assessed using the ∆-CT method. Data was analyzed using Spearman's tests for correlation. P<0.05 was considered to indicate a statistically significant difference. The results revealed that PDEF, ETV4, UP-1 and TP were expressed in 85.7, 90.5, 95.2 and 100% of the prostate cancer samples, and in 90.3, 96.8, 90.3 and 96.8% of the benign samples, respectively. PDEF and ETV4 exhibited a significantly higher relative expression level in the tumor samples compared with their benign counterparts. The relative expression of TP and UP-1 did not differ significantly between benign and cancerous prostate tissues. The relative expression of TP was moderately and significantly correlated with the expression of ETV4 in the benign tissues. The relative expression of UP-1 was significantly lower in T3 compared with T1 and T2 cancers. These findings indicate that PDEF, ETV4, TP and UP-1 are typically expressed in benign and malignant prostatic tissues. Further studies are necessary to define the role of these proteins as therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Luciane Rostirola Cavazzola
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Gustavo Franco Carvalhal
- Department of Urology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Candida Deves
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Daiana Renck
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Ricardo Almeida
- Department of Urology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - DIóGENES Santiago Santos
- Center for Research on Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| |
Collapse
|
34
|
SPDEF inhibits prostate carcinogenesis by disrupting a positive feedback loop in regulation of the Foxm1 oncogene. PLoS Genet 2014; 10:e1004656. [PMID: 25254494 PMCID: PMC4177813 DOI: 10.1371/journal.pgen.1004656] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022] Open
Abstract
SAM-pointed domain-containing ETS transcription factor (SPDEF) is expressed in normal prostate epithelium. While its expression changes during prostate carcinogenesis (PCa), the role of SPDEF in prostate cancer remains controversial due to the lack of genetic mouse models. In present study, we generated transgenic mice with the loss- or gain-of-function of SPDEF in prostate epithelium to demonstrate that SPDEF functions as tumor suppressor in prostate cancer. Loss of SPDEF increased cancer progression and tumor cell proliferation, whereas over-expression of SPDEF in prostate epithelium inhibited carcinogenesis and reduced tumor cell proliferation in vivo and in vitro. Transgenic over-expression of SPDEF inhibited mRNA and protein levels of Foxm1, a transcription factor critical for tumor cell proliferation, and reduced expression of Foxm1 target genes, including Cdc25b, Cyclin B1, Cyclin A2, Plk-1, AuroraB, CKS1 and Topo2alpha. Deletion of SPDEF in transgenic mice and cultures prostate tumor cells increased expression of Foxm1 and its target genes. Furthermore, an inverse correlation between SPDEF and Foxm1 levels was found in human prostate cancers. The two-gene signature of low SPDEF and high FoxM1 predicted poor survival in prostate cancer patients. Mechanistically, SPDEF bound to, and inhibited transcriptional activity of Foxm1 promoter by interfering with the ability of Foxm1 to activate its own promoter through auto-regulatory site located in the −745/−660 bp Foxm1 promoter region. Re-expression of Foxm1 restored cellular proliferation in the SPDEF-positive cancer cells and rescued progression of SPDEF-positive tumors in mouse prostates. Altogether, SPDEF inhibits prostate carcinogenesis by preventing Foxm1-regulated proliferation of prostate tumor cells. The present study identified novel crosstalk between SPDEF tumor suppressor and Foxm1 oncogene and demonstrated that this crosstalk is required for tumor cell proliferation during progression of prostate cancer in vivo. Development of prostate cancer is a multistep process that involves the loss of tumor suppressor functions and activation of oncogenes. SPDEF transcription factor is expressed in normal prostate epithelium and its expression changes during prostate carcinogenesis (PCa). Since the role of SPDEF in PCa remains controversial, we generated transgenic mice with loss- and gain-of-function of SPDEF to demonstrate that SPDEF functions as a tumor suppressor in PCa. In animal models, the loss of SPDEF promoted PCa and increased the levels of Foxm1, a well-known oncogenic protein. Overexpression of SPDEF in prostate epithelium decreased PCa and reduced Foxm1 levels. Proliferation defects in SPDEF-containing tumor cells were corrected by re-expression of Foxm1, providing direct evidence that SPDEF inhibits tumor cell proliferation through Foxm1. We further showed that SPDEF directly bound to Foxm1 promoter and prevented its auto-regulatory activation. In prostate cancer patients, the low SPDEF and high Foxm1 were found in most aggressive prostate tumors that were associated with poor prognosis. The combined two-gene signature of low SPDEF and high Foxm1 was a strong predictor of survival in prostate cancer patients. The present study identified novel molecular mechanism of prostate cancer progression, providing a crosstalk between SPDEF tumor suppressor and Foxm1 oncogene.
Collapse
|
35
|
Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 2014; 15:162. [PMID: 24884486 PMCID: PMC4053266 DOI: 10.1186/1471-2105-15-162] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/14/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To leverage the potential of multi-omics studies, exploratory data analysis methods that provide systematic integration and comparison of multiple layers of omics information are required. We describe multiple co-inertia analysis (MCIA), an exploratory data analysis method that identifies co-relationships between multiple high dimensional datasets. Based on a covariance optimization criterion, MCIA simultaneously projects several datasets into the same dimensional space, transforming diverse sets of features onto the same scale, to extract the most variant from each dataset and facilitate biological interpretation and pathway analysis. RESULTS We demonstrate integration of multiple layers of information using MCIA, applied to two typical "omics" research scenarios. The integration of transcriptome and proteome profiles of cells in the NCI-60 cancer cell line panel revealed distinct, complementary features, which together increased the coverage and power of pathway analysis. Our analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that was not highly ranked in the analysis of any individual dataset. Secondly, we compared transcriptome profiles of high grade serous ovarian tumors that were obtained, on two different microarray platforms and next generation RNA-sequencing, to identify the most informative platform and extract robust biomarkers of molecular subtypes. We discovered that the variance of RNA-sequencing data processed using RPKM had greater variance than that with MapSplice and RSEM. We provided novel markers highly associated to tumor molecular subtype combined from four data platforms. MCIA is implemented and available in the R/Bioconductor "omicade4" package. CONCLUSION We believe MCIA is an attractive method for data integration and visualization of several datasets of multi-omics features observed on the same set of individuals. The method is not dependent on feature annotation, and thus it can extract important features even when there are not present across all datasets. MCIA provides simple graphical representations for the identification of relationships between large datasets.
Collapse
Affiliation(s)
- Chen Meng
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- Center for Integrated Protein Science Munich, Freising, Germany
| | - Aedín C Culhane
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | | |
Collapse
|
36
|
Haller AC, Tan W, Payne-Ondracek R, Underwood W, Tian L, Morrison C, Li F. High SPDEF may identify patients who will have a prolonged response to androgen deprivation therapy. Prostate 2014; 74:509-19. [PMID: 24375440 PMCID: PMC4410264 DOI: 10.1002/pros.22770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/08/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Due to the indolent nature of prostate cancer, new prognostic measures are needed to identify patients with life threatening disease. SAM pointed domain-containing Ets transcription factor (SPDEF) has been associated with good prognosis and demonstrates an intimate relationship with the androgen receptor (AR), however its role in prostate cancer progression remains unclear. METHODS A tissue microarray constructed from cores of 713 consecutive radical prostatectomy specimens were immunohistochemically stained for SPDEF and correlated with progression free and metastatic free survival. In vitro studies assessed growth rate, migration, and sensitivity to bicalutamide to explore mechanisms behind the tissue microarray observations. RESULTS Patients with high SPDEF demonstrate longer metastases free survival after receiving the standard of care (HR = 9.80, P = 0.006). SPDEF expression corresponded with bicalutamide growth inhibition and apoptosis induction in all cell lines studied. In addition, a feedforward loop of AR-SPEF expression regulation is observed. CONCLUSIONS SPDEF may be clinically useful to identify patients who will have extended benefits from androgen deprivation therapy. In vitro observations suggest SPDEF mediates initial sensitivity to androgen deprivation therapy through both AR regulation and downstream events.
Collapse
Affiliation(s)
- Andrew C. Haller
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Wei Tan
- Biostatistics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | - Lili Tian
- Biostatistics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Carl Morrison
- Pathology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
- Pathology, Roswell Park Cancer Institute, Buffalo, New York 14263
- Correspondence to: Fengzhi Li, PhD, Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, CGP L4-301, Buffalo, NY 14263.
| |
Collapse
|
37
|
Tian TV, Tomavo N, Huot L, Flourens A, Bonnelye E, Flajollet S, Hot D, Leroy X, de Launoit Y, Duterque-Coquillaud M. Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 2013; 33:2204-14. [PMID: 23708657 DOI: 10.1038/onc.2013.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/27/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) is one of the major public health problems in Western countries. Recently, the TMPRSS2:ERG gene fusion, which results in the aberrant expression of the transcription factor ERG, has been shown to be the most common gene rearrangement in PCa. Previous studies have determined the contributions of this fusion in PCa disease initiation and/or progression in vitro and in vivo. In this study on TMPRSS2:ERG regulation in PCa, we used an androgen receptor and TMPRSS2:ERG fusion double-negative PCa cell model: PC3c. In three cell clones with different TMPRSS2:ERG expression levels, ectopic expression of the fusion resulted in significant induction of cell migration and invasion in a dose-dependent manner. In agreement with this phenotype, high-throughput microarray analysis revealed that a set of genes, functionally associated with cell motility and invasiveness, were deregulated in a dose-dependent manner in TMPRSS2:ERG-expressing cells. Importantly, we identified increased MMP9 (Metalloproteinase 9) and PLXNA2 (Plexin A2) expression in TMPRSS2:ERG-positive PCa samples, and their expression levels were significantly correlated with ERG expression in a PCa cohort. In line with these findings, there was evidence that TMPRSS2:ERG directly and positively regulates MMP9 and PLXNA2 expression in PC3c cells. Moreover, PLXNA2 upregulation contributed to TMPRSS2:ERG-mediated enhancements of PC3c cell migration and invasion. Furthermore, and importantly, PLXNA2 expression was upregulated in metastatic PCa tumors compared with localized primary PCa tumors. This study provides novel insights into the role of the TMPRSS2:ERG fusion in PCa metastasis.
Collapse
Affiliation(s)
- T V Tian
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France [4] Faculté de Médecine Henri Warembourg, Université du Droit et de la Santé Lille II, Lille, France
| | - N Tomavo
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - L Huot
- 1] Institut Pasteur de Lille/IFR142, Lille, France [2] Université de Lille Nord de France, Lille, France [3] Centre d'Infection et d'Immunité de Lille (CIIL), INSERM U1019, CNRS UMR8204, Lille, France
| | - A Flourens
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | | | - S Flajollet
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - D Hot
- 1] Institut Pasteur de Lille/IFR142, Lille, France [2] Université de Lille Nord de France, Lille, France [3] Centre d'Infection et d'Immunité de Lille (CIIL), INSERM U1019, CNRS UMR8204, Lille, France
| | - X Leroy
- 1] Université de Lille Nord de France, Lille, France [2] Faculté de Médecine Henri Warembourg, Université du Droit et de la Santé Lille II, Lille, France [3] Centre hospitalier régional et universitaire de Lille, Institut de Pathologie, Lille, France
| | - Y de Launoit
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - M Duterque-Coquillaud
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| |
Collapse
|
38
|
Coppola V, Bonci D. A tight junction between E-Cadherin and the prostate tumor suppressor SPDEF. Asian J Androl 2013; 15:449-50. [PMID: 23708463 DOI: 10.1038/aja.2013.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Valeria Coppola
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy.
| | | |
Collapse
|
39
|
SPDEF: a molecular switch for E-cadherin expression that promotes prostate cancer metastasis. Asian J Androl 2013; 15:584-5. [PMID: 23708459 DOI: 10.1038/aja.2013.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
40
|
Tauro BJ, Mathias RA, Greening DW, Gopal SK, Ji H, Kapp EA, Coleman BM, Hill AF, Kusebauch U, Hallows JL, Shteynberg D, Moritz RL, Zhu HJ, Simpson RJ. Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics 2013; 12:2148-59. [PMID: 23645497 DOI: 10.1074/mcp.m112.027086] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.
Collapse
Affiliation(s)
- Bow J Tauro
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pal M, Koul S, Koul HK. The transcription factor sterile alpha motif (SAM) pointed domain-containing ETS transcription factor (SPDEF) is required for E-cadherin expression in prostate cancer cells. J Biol Chem 2013; 288:12222-31. [PMID: 23449978 DOI: 10.1074/jbc.m112.434225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Loss of E-cadherin is one of the key steps in tumor progression. Our previous studies demonstrate that SAM pointed domain-containing ETS transcription factor (SPDEF) inhibited prostate cancer metastasis in vitro and in vivo. In the present study, we evaluated the relationship between SPDEF and E-cadherin expression in an effort to better understand the mechanism of action of SPDEF in prostate tumor cell invasion and metastasis. The results presented here demonstrate a direct correlation between expression of E-cadherin and SPDEF in prostate cancer cells. Additional data demonstrate that modulation of E-cadherin and SPDEF had similar effects on cell migration/invasion. In addition, siRNA-mediated knockdown of E-cadherin was sufficient to block the effects of SPDEF on cell migration and invasion. We also show that stable forced expression of SPDEF results in increased expression of E-cadherin, whereas down-regulation of SPDEF decreased E-cadherin expression. In addition, we demonstrate that SPDEF expression is not regulated by E-cadherin. Moreover, our chromatin immunoprecipitation and luciferase reporter assay revealed that SPDEF occupies E-cadherin promoter site and acts as a direct transcriptional inducer of E-cadherin in prostate cancer cells. Taken together, to the best of our knowledge, these studies are the first demonstrating requirement of SPDEF for expression of E-cadherin, an essential epithelial cell junction protein. Given that loss of E-cadherin is a central tenant in tumor metastasis, the results of our studies, by providing a new mechanism for regulation of E-cadherin expression, could have far reaching impact.
Collapse
Affiliation(s)
- Mintu Pal
- Program in Urosciences, Division of Urology, Department of Surgery, School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
42
|
Fletcher MNC, Castro MAA, Wang X, de Santiago I, O’Reilly M, Chin SF, Rueda OM, Caldas C, Ponder BAJ, Markowetz F, Meyer KB. Master regulators of FGFR2 signalling and breast cancer risk. Nat Commun 2013; 4:2464. [PMID: 24043118 PMCID: PMC3778544 DOI: 10.1038/ncomms3464] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/16/2013] [Indexed: 01/14/2023] Open
Abstract
The fibroblast growth factor receptor 2 (FGFR2) locus has been consistently identified as a breast cancer risk locus in independent genome-wide association studies. However, the molecular mechanisms underlying FGFR2-mediated risk are still unknown. Using model systems we show that FGFR2-regulated genes are preferentially linked to breast cancer risk loci in expression quantitative trait loci analysis, supporting the concept that risk genes cluster in pathways. Using a network derived from 2,000 transcriptional profiles we identify SPDEF, ERα, FOXA1, GATA3 and PTTG1 as master regulators of fibroblast growth factor receptor 2 signalling, and show that ERα occupancy responds to fibroblast growth factor receptor 2 signalling. Our results indicate that ERα, FOXA1 and GATA3 contribute to the regulation of breast cancer susceptibility genes, which is consistent with the effects of anti-oestrogen treatment in breast cancer prevention, and suggest that fibroblast growth factor receptor 2 signalling has an important role in mediating breast cancer risk.
Collapse
Affiliation(s)
- Michael N. C. Fletcher
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- These authors contributed equally to this work
- Present address: Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | - Mauro A. A. Castro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- These authors contributed equally to this work
- Present address: Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Anexo, 90035-003 Porto Alegre, Brazil
| | - Xin Wang
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ines de Santiago
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martin O’Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Bruce A. J. Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Kerstin B. Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|