1
|
Francisqueti-Ferron FV, Belin MAF, Palacio TLN, Ferron AJT, Garcia JL, Siqueira JS, Nakandakare-Maia ET, Vieira TA, Kano HT, Moreto F, Lima GPP, Corrêa CR, Minatel IO. Fructose Consumption Alters Biogenic Amines Associated with Cardiovascular Disease Risk Factors. Arq Bras Cardiol 2023; 120:e20220770. [PMID: 37341227 PMCID: PMC10263407 DOI: 10.36660/abc.20220770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD) are the major cause of mortality worldwide, whose most prominent risk factor is unhealthy eating habits, such as high fructose intake. Biogenic amines (BAs) perform important functions in the human body. However, the effect of fructose consumption on BA levels is still unclear, as is the association between these and CVD risk factors. OBJECTIVE This study aimed to establish the association between BA levels and CVD risk factors in animals that consumed fructose. METHODS Male Wistar rats received standard chow (n=8) or standard chow + fructose in drinking water (30%) (n=8) over a 24-week period. At the end of this period, the nutritional and metabolic syndrome (MS) parameters and plasmatic BA levels were analyzed. A 5% level of significance was adopted. RESULTS Fructose consumption led to MS, reduced the levels of tryptophan and 5-hydroxitryptophan, and increased histamine. Tryptophan, histamine, and dopamine showed a correlation with metabolic syndrome parameters. CONCLUSION Fructose consumption alters BAs associated with CVD risk factors.
Collapse
Affiliation(s)
- Fabiane Valentini Francisqueti-Ferron
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Matheus Antônio Filiol Belin
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Thiago Luiz Novaga Palacio
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Artur Junio Togneri Ferron
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Jéssica Leite Garcia
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Juliana Silva Siqueira
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Erika Tiemi Nakandakare-Maia
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Taynara Aparecida Vieira
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Hugo Tadashi Kano
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Fernando Moreto
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Giuseppina Pace Pereira Lima
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Camila Renata Corrêa
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| | - Igor Otavio Minatel
- Universidade Estadual Paulista Júlio de Mesquita FilhoFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Câmpus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| |
Collapse
|
2
|
Man AWC, Zhou Y, Xia N, Li H. Dietary supplements and vascular function in hypertensive disorders of pregnancy. Pflugers Arch 2023:10.1007/s00424-023-02810-2. [PMID: 37043045 DOI: 10.1007/s00424-023-02810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Hypertensive disorders of pregnancy are complications that can lead to maternal and infant mortality and morbidity. Hypertensive disorders of pregnancy are generally defined as hypertension and may be accompanied by other end organ damages including proteinuria, maternal organ disturbances including renal insufficiency, neurological complications, thrombocytopenia, impaired liver function, or uteroplacental dysfunction such as fetal growth restriction and stillbirth. Although the causes of these hypertensive disorders of pregnancy are multifactorial and elusive, they seem to share some common vascular-related mechanisms, including diseased spiral arteries, placental ischemia, and endothelial dysfunction. Recently, preeclampsia is being considered as a vascular disorder. Unfortunately, due to the complex etiology of preeclampsia and safety concerns on drug usage during pregnancy, there is still no effective pharmacological treatments available for preeclampsia yet. An emerging area of interest in this research field is the potential beneficial effects of dietary intervention on reducing the risk of preeclampsia. Recent studies have been focused on the association between deficiencies or excesses of some nutrients and complications during pregnancy, fetal growth and development, and later risk of cardiovascular and metabolic diseases in the offspring. In this review, we discuss the involvement of placental vascular dysfunction in preeclampsia. We summarize the current understanding of the association between abnormal placentation and preeclampsia in a vascular perspective. Finally, we evaluate several studied dietary supplementations to prevent and reduce the risk of preeclampsia, targeting placental vascular development and function, leading to improved pregnancy and postnatal outcomes.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
3
|
Pérez Rodríguez F, Valdés-Santiago L, Noé García-Chávez J, Luis Castro-Guillén J, Ruiz-Herrera J. Analysis of gene expression related to polyamine concentration and dimorphism induced in ornithine decarboxylase (odc) and spermidine synthase (spd) Ustilago maydis mutants. Fungal Genet Biol 2023; 166:103792. [PMID: 36996931 DOI: 10.1016/j.fgb.2023.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Polyamines are ubiquitous small organic cations, and their roles as regulators of several cellular processes are widely recognized. They are implicated in the key stages of the fungal life cycle. Ustilago maydis is a phytopathogenic fungus, the causal agent of common smut of maize and a model system to understand dimorphism and virulence. U. maydis grows in yeast form at pH 7 and it can develop its mycelial form in vitro at pH 3. Δodc mutants that are unable to synthesize polyamines, grew as yeast at pH 3 with a low putrescine concentration, and to complete its dimorphic transition high putrescine concentration was required. Δspd mutants required spermidine to grow and cannot form mycelium at pH 3. In this work, the increased expression of the mating genes, mfa1 and mfa2, on Δodc mutants, was related to high putrescine concentration. Global gene expression analysis comparisons of Δodc and Δspd U. maydis mutants indicated that 2,959 genes were differentially expressed in the presence of exogenous putrescine at pH 7 and 475 genes at pH 3. While, in Δspd mutant, the expression of 1,426 genes was affected by exogenous spermine concentration at pH 7 and 11 genes at pH 3. Additionally, we identified 28 transcriptional modules with correlated expression during seven tested conditions: mutant genotype, morphology (yeast, and mycelium), pH, and putrescine or spermidine concentration. Furthermore, significant differences in transcript levels were noted for genes in modules relating to pH and genotype genes involved in ribosome biogenesis, mitochondrial oxidative phosphorylation, N-glycan synthesis, and Glycosylphosphatidylinositol (GPI)-anchor. In summary, our results offer a valuable tool for the identification of potential factors involved in phenomena related to polyamines and dimorphism.
Collapse
|
4
|
Eom J, Choi J, Suh SS, Seo JB. SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation. Mol Cells 2022; 45:963-975. [PMID: 36572564 PMCID: PMC9794554 DOI: 10.14348/molcells.2022.0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/28/2022] Open
Abstract
Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.
Collapse
Affiliation(s)
- Jin Eom
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
| | - Juhyun Choi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| | - Sung-Suk Suh
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
5
|
Zhang N, Zhou S, Zhang Z, Li W, Peng Y, Zheng J. Evidence for adduction of biologic amines with reactive metabolite of 8-epidiosbulbin E acetate in vitro and in vivo. Toxicol Lett 2022; 365:1-10. [PMID: 35680040 DOI: 10.1016/j.toxlet.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Dioscorea bulbifera L. (DBL) is one of traditional Chinese medicines and has been used for the treatment of goiter, tumor and carbuncles. However, clinic application of the herbal medicine has been limited, due to reported severe hepatotoxicity. 8-Epidiosbulbin E acetate (EEA), one of the major components of DBL, can cause severe liver damage. The furan ring of EEA is metabolized by CYP3A4 to a cis-enedial reactive intermediate prone to react amino and/or thiol groups of amino acid residues. In this study, we investigated the interaction of the reactive intermediate with biologic amines. EEA-derived biologic amine adducts, including spermidine, spermine, putrescine, ornithine, lysine and glutamine were detected in cultured mouse primary hepatocytes treated with EEA. Only spermidine adduct was observed in bile of mice given EEA. The detection of the adducts was established by labeling with bromobenzyl mercaptan and LC-MS/MS analysis. Exposure of EEA resulted in concentration dependent cytotoxicity in hepatocytes. Pretreatment with spermidine attenuated the susceptibility of cells to the cytotoxicity of EEA, because of the compensation of the depleted spermidine.
Collapse
Affiliation(s)
- Na Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shenzhi Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Zhengyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
6
|
Dörner K, Badertscher L, Horváth B, Hollandi R, Molnár C, Fuhrer T, Meier R, Sárazová M, van den Heuvel J, Zamboni N, Horvath P, Kutay U. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Res 2022; 50:2872-2888. [PMID: 35150276 PMCID: PMC8934630 DOI: 10.1093/nar/gkac072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.
Collapse
Affiliation(s)
- Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Bianka Horváth
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Csaba Molnár
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger Meier
- ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Marie Sárazová
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Makletsova MG, Rikhireva GT, Kirichenko EY, Trinitatsky IY, Vakulenko MY, Ermakov AM. The Role of Polyamines in the Mechanisms of Cognitive Impairment. NEUROCHEM J+ 2022; 16. [PMCID: PMC9575633 DOI: 10.1134/s1819712422030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract—As the population ages, age-related cognitive impairments are becoming an increasingly pressing problem. Currently, the role of polyamines (putrescine, spermidine, and spermine) in the pathogenesis of cognitive impairments of various origin is actively discussed. It was shown that the content of polyamines in the brain tissue decreases with age. Exogenous administration of polyamines makes it possible to avoid cognitive impairment and/or influence the pathogenetic processes associated with disease progression. There are 3 known ways that polyamines can enter the human body: food, synthesis by intestinal bacteria, and biosynthesis in the body. Currently, one of the most promising approaches to the prevention of cognitive impairment is the use of foods with a high content of polyamines, as well as the use of various probiotics that affect intestinal bacteria that synthesize polyamines. Since 2018, in a number of European countries projects have been launched aimed at evaluation of the impact of a diet high in polyamines on cognitive processes. The review, based on analysis of modern scientific literature and the authors' own data, presents material on the effect of polyamines on cognitive processes and the role of polyamines in the regulation of neurotransmitter processes, and discusses the role of polyamines in cognitive disorders in mental and neurological diseases.
Collapse
Affiliation(s)
| | - G. T. Rikhireva
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - A. M. Ermakov
- Don State Technical University, Rostov-on-Don, Russia
| |
Collapse
|
8
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
10
|
Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS. Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 2020; 59:4456-4462. [PMID: 33175508 PMCID: PMC7735664 DOI: 10.1021/acs.biochem.0c00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Polyamines are known to mediate diverse biological processes, and specifically to bind and stabilize compact conformations of nucleic acids, acting as chemical chaperones that promote folding by offsetting the repulsive negative charges of the phosphodiester backbone. However, whether and how polyamines modulate the structure and function of proteins remain unclear. In particular, early proteins are thought to have been highly acidic, like nucleic acids, due to a scarcity of basic amino acids in the prebiotic context. Perhaps polyamines, the abiotic synthesis of which is simple, could have served as chemical chaperones for such primordial proteins? We replaced all lysines of an ancestral 60-residue helix-bundle protein with glutamate, resulting in a disordered protein with 21 glutamates in total. Polyamines efficiently induce folding of this hyperacidic protein at submillimolar concentrations, and their potency scaled with the number of amine groups. Compared to cations, polyamines were several orders of magnitude more potent than Na+, while Mg2+ and Ca2+ had an effect similar to that of a diamine, inducing folding at approximately seawater concentrations. We propose that (i) polyamines and dications may have had a role in promoting folding of early proteins devoid of basic residues and (ii) coil-helix transitions could be the basis of polyamine regulation in contemporary proteins.
Collapse
Affiliation(s)
- Dragana Despotović
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Liam M. Longo
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Earth-Life
Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Einav Aharon
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Amit Kahana
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Department
of Molecular Genetics, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Tali Scherf
- Department
of Chemical Research Support, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department
of Chemistry, Faculty of Science, University
of Zagreb, 10000 Zagreb, Croatia
| | - Dan S. Tawfik
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| |
Collapse
|
11
|
ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress. Proc Natl Acad Sci U S A 2020; 117:31198-31207. [PMID: 33229544 PMCID: PMC7733819 DOI: 10.1073/pnas.1922342117] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in ATP13A2 cause a spectrum of related neurodegenerative disorders. ATP13A2 is a lysosomal exporter of polyamines that contributes to lysosomal health and controls cellular polyamine content. Conversely, loss of ATP13A2 leads to lysosomal dysfunction, a hallmark of neurodegeneration. Here, we show that polyamines transported by ATP13A2 provide cellular protection by lowering reactive oxygen species (ROS), which may relate to the antioxidant properties of polyamines. Consequently, dysfunctional ATP13A2 sensitizes cells to oxidative stress, which impairs mitochondria, and induces toxicity and cell death. ATP13A2-mediated polyamine transport represents a conserved pathway that protects against mitochondrial oxidative stress. The combined protective impact of ATP13A2 on lysosomal health and mitochondrial oxidative stress may explain why ATP13A2 exerts potent neuroprotective effects. Recessive loss-of-function mutations in ATP13A2 (PARK9) are associated with a spectrum of neurodegenerative disorders, including Parkinson’s disease (PD). We recently revealed that the late endo-lysosomal transporter ATP13A2 pumps polyamines like spermine into the cytosol, whereas ATP13A2 dysfunction causes lysosomal polyamine accumulation and rupture. Here, we investigate how ATP13A2 provides protection against mitochondrial toxins such as rotenone, an environmental PD risk factor. Rotenone promoted mitochondrial-generated superoxide (MitoROS), which was exacerbated by ATP13A2 deficiency in SH-SY5Y cells and patient-derived fibroblasts, disturbing mitochondrial functionality and inducing toxicity and cell death. Moreover, ATP13A2 knockdown induced an ATF4-CHOP-dependent stress response following rotenone exposure. MitoROS and ATF4-CHOP were blocked by MitoTEMPO, a mitochondrial antioxidant, suggesting that the impact of ATP13A2 on MitoROS may relate to the antioxidant properties of spermine. Pharmacological inhibition of intracellular polyamine synthesis with α-difluoromethylornithine (DFMO) also increased MitoROS and ATF4 when ATP13A2 was deficient. The polyamine transport activity of ATP13A2 was required for lowering rotenone/DFMO-induced MitoROS, whereas exogenous spermine quenched rotenone-induced MitoROS via ATP13A2. Interestingly, fluorescently labeled spermine uptake in the mitochondria dropped as a consequence of ATP13A2 transport deficiency. Our cellular observations were recapitulated in vivo, in a Caenorhabditis elegans strain deficient in the ATP13A2 ortholog catp-6. These animals exhibited a basal elevated MitoROS level, mitochondrial dysfunction, and enhanced stress response regulated by atfs-1, the C. elegans ortholog of ATF4, causing hypersensitivity to rotenone, which was reversible with MitoTEMPO. Together, our study reveals a conserved cell protective pathway that counters mitochondrial oxidative stress via ATP13A2-mediated lysosomal spermine export.
Collapse
|
12
|
Dietary Polyamines Intake and Risk of Colorectal Cancer: A Case-Control Study. Nutrients 2020; 12:nu12113575. [PMID: 33266410 PMCID: PMC7700244 DOI: 10.3390/nu12113575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Polyamines (including putrescine, spermidine, and spermine) are small, cationic molecules that are necessary for cell proliferation and differentiation. Few studies have examined the association of dietary polyamines intake with colorectal cancer risk. The aim of this study was to evaluate total polyamines, putrescine, spermidine, and spermine intake in relation to colorectal cancer risk in China. In total, 2502 colorectal cancer cases and 2538 age-(5-year interval) and sex-matched controls were recruited from July 2010 to April 2019. Odds ratios (ORs) and 95% confidence intervals (CI) were calculated by multivariable unconditional logistic regression after adjustment for various potential confounding factors. Higher intake of total polyamine, putrescine and spermidine was significantly associated with reduced risk of colorectal cancer. The adjusted ORs for the highest compared with the lowest quartile of intake were 0.60 (95% CI 0.50, 0.72; Ptrend < 0.001) for total polyamines, 0.35 (95% CI 0.29, 0.43; Ptrend < 0.001) for putrescine and 0.79 (95% CI 0.66, 0.95; Ptrend = 0.001) for spermidine, respectively. However, higher intake of spermine was associated with increased risk of colorectal cancer, with an adjusted OR of 1.58 (95% CI 1.29, 1.93; Ptrend < 0.001). This data indicate that higher intake of total polyamines, putrescine and spermidine, as well as lower intake of spermine, is associated with a decreased risk of colorectal cancer.
Collapse
|
13
|
Adacan K, Obakan-Yerlikaya P, Arisan ED, Coker-Gurkan A, Kaya RI, Palavan-Unsal N. Epibrassinolide-induced autophagy occurs in an Atg5-independent manner due to endoplasmic stress induction in MEF cells. Amino Acids 2020; 52:871-891. [PMID: 32449072 DOI: 10.1007/s00726-020-02857-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Epibrassinolide (EBR), a polyhydroxysteroid belongs to plant growth regulator family, brassinosteroids and has been shown to have a similar chemical structure to mammalian steroid hormones. Our findings indicated that EBR could trigger apoptosis in cancer cells via induction of endoplasmic reticulum (ER) stress, caused by protein folding disturbance in the ER. Normal cells exhibited a remarkable resistance to EBR treatment and avoid from apoptotic cell death. The unfolded protein response clears un/misfolded proteins and restore ER functions. When stress is chronic, cells tend to die due to improper cellular functions. To understand the effect of EBR in non-malign cells, mouse embryonic fibroblast (MEF) cells were investigated in detail for ER stress biomarkers, autophagy, and polyamine metabolism in this study. Evolutionary conserved autophagy mechanism is a crucial cellular process to clean damaged organelles and protein aggregates through lysosome under the control of autophagy-related genes (ATGs). Cells tend to activate autophagy to promote cell survival under stress conditions. Polyamines are polycationic molecules playing a role in the homeostasis of important cellular events such as cell survival, growth, and, proliferation. The administration of PAs has been markedly extended the lifespan of various organisms via inducing autophagy and inhibiting oxidative stress. Our data indicated that ER stress is induced following EBR treatment in MEF cells as well as MEF Atg5-/- cells. In addition, autophagy is activated following EBR treatment by targeting PI3K/Akt/mTOR in wildtype (wt) cells. However, EBR-induced autophagy targets ULK1 in MEF cells lacking Atg5 expression. Besides, EBR treatment depleted the PA pool in MEF cells through the alterations of metabolic enzymes. The administration of Spd with EBR further increased autophagic vacuole formation. In conclusion, EBR is an anticancer drug candidate with selective cytotoxicity for cancer cells, in addition the induction of autophagy and PA metabolism are critical for responses of normal cells against EBR.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey.
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Resul Ismail Kaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Narçın Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| |
Collapse
|
14
|
Capella Roca B, Doolan P, Barron N, O'Neill F, Clynes M. Altered gene expression in CHO cells following polyamine starvation. Biotechnol Lett 2020; 42:927-936. [PMID: 32078082 DOI: 10.1007/s10529-020-02841-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/15/2020] [Indexed: 11/27/2022]
Abstract
AIM To investigate the impact of polyamine deprivation on the transcriptome of CHO cells RESULTS: Polyamines play a central but poorly-understood role in cell proliferation. Most studies to date have utilised chemical inhibitors to probe polyamine function. Here we exploit the fact that CHO cells grown in serum-free medium have an absolute requirement for putrescine supplementation due to their deficiency in activity of the enzyme arginase. A gene expression microarray (Affymetrix) analysis of CHO-K1 cells starved of polyamines for 3 days showed that cessation of growth, associated with increased G1/S transition and inhibition of M/G1 transition was accompanied by increased mRNA levels of mitotic complex checkpoint genes (Mad2l1, Tkk, Bub1b) and in the transition of G1- to S-phase (such as Skp2 and Tfdp1). mRNAs associated with DNA homologous recombination and repair (including Fanconi's anaemia-related genes) and with RNA splicing were consistently increased. Alterations in mRNA levels for genes related to protein processing in the ER, to ER stress, and to p53-related and apoptosis pathways were also observed. mRNAs showing highest levels of fold-change included several which code for membrane-localised proteins and receptors (Thbs1, Tfrc1, Ackr3, Extl1). CONCLUSIONS Growth-arrest induced by polyamine deprivation was associated with significant alterations in levels of mRNAs associated with cell cycle progression, DNA repair, RNA splicing, ER trafficking and membrane signalling as well as p53 and apoptosis-related pathways.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
15
|
Luo X, Liu J. Transcriptome Analysis of Acid-Responsive Genes and Pathways Involved in Polyamine Regulation in Iron Walnut. Genes (Basel) 2019; 10:E605. [PMID: 31405132 PMCID: PMC6723594 DOI: 10.3390/genes10080605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
We reported changes in the co-regulated mRNA expression in iron walnut (Juglans sigillata) in response to soil pH treatments and identified mRNAs specific to acidic soil conditions. Phenotypic and physiological analyses revealed that iron walnut growth was greater for the pH 4-5 and pH 5-6 treatments than for the pH 3-4 and pH 6-7 treatments. A total of 2768 differentially expressed genes were detected and categorized into 12 clusters by Short Time-series Expression Miner (STEM). The 994 low-expression genes in cluster III and 255 high-expression genes in cluster X were classified as acid-responsive genes on the basis of the relationships between phenotype, physiology, and STEM clustering, and the two gene clusters were analyzed by a maximum likelihood (ML) evolutionary tree with the greatest log likelihood values. No prominent sub-clusters occurred in cluster III, but three occurred in cluster X. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that acid-responsive genes were related primarily to arginine biosynthesis and the arginine/proline metabolism pathway, implying that polyamine accumulation may enhance iron walnut acid stress tolerance. Overall, our results revealed 1249 potentially acid-responsive genes in iron walnut, indicating that its response to acid stress involves different pathways and activated genes.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211 in Wenjiang District, Chengdu 611130, China.
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Huimin Road 211 in Wenjiang District, Chengdu 611130, China
| |
Collapse
|
16
|
Horie Y, Goto A, Tsubuku S, Itoh M, Ikegawa S, Ogawa S, Higashi T. Changes in Polyamine Content in Rice Bran due to Fermentation with Aspergillus oryzae Analyzed by LC/ESI-MS/MS Combined with Derivatization. ANAL SCI 2019; 35:427-432. [PMID: 30584182 DOI: 10.2116/analsci.18p483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many studies have demonstrated that the dietary supplementation of polyamines, especially spermidine (SPD), prevents age-related diseases. Rice bran is rich in polyamines and their amounts could be increased by fermentation with Aspergillus oryzae (A. oryzae). In this study, we developed a method for the determination of putrescine (PUT), SPD and spermine (SPM) in rice bran samples by liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) after derivatization with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). The derivatization improved the LC retention and ESI-MS/MS detectability of the polyamines, and consequently enabled precise and accurate quantification. Using this method, we found that the SPD content increased to 158% due to fermentation with A. oryzae, while the content of PUT and SPM decreased. SPD is known as the polyamine playing a central role in cell proliferation and growth, and therefore has health benefits. The fermented rice bran might be a good material for functional foods aimed at SPD supplementation.
Collapse
Affiliation(s)
- Yukiko Horie
- Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Research and Development Division, Koken Co., Ltd
| | - Ayaka Goto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sumi Tsubuku
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mari Itoh
- Research and Development Division, Koken Co., Ltd
| | | | - Shoujiro Ogawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
17
|
Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front Nutr 2019; 6:24. [PMID: 30923709 PMCID: PMC6426781 DOI: 10.3389/fnut.2019.00024] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
18
|
Roci I, Watrous JD, Lagerborg KA, Lafranchi L, Lindqvist A, Jain M, Nilsson R. Mapping Metabolic Events in the Cancer Cell Cycle Reveals Arginine Catabolism in the Committed SG 2M Phase. Cell Rep 2019; 26:1691-1700.e5. [PMID: 30759381 PMCID: PMC6663478 DOI: 10.1016/j.celrep.2019.01.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Alterations in cell-cycle regulation and cellular metabolism are associated with cancer transformation, and enzymes active in the committed cell-cycle phase may represent vulnerabilities of cancer cells. Here, we map metabolic events in the G1 and SG2M phases by combining cell sorting with mass spectrometry-based isotope tracing, revealing hundreds of cell-cycle-associated metabolites. In particular, arginine uptake and ornithine synthesis are active during SG2M in transformed but not in normal cells, with the mitochondrial arginase 2 (ARG2) enzyme as a potential mechanism. While cancer cells exclusively use ARG2, normal epithelial cells synthesize ornithine via ornithine aminotransferase (OAT). Knockdown of ARG2 markedly reduces cancer cell growth and causes G2M arrest, while not inducing compensation via OAT. In human tumors, ARG2 is highly expressed in specific tumor types, including basal-like breast tumors. This study sheds light on the interplay between metabolism and cell cycle and identifies ARG2 as a potential metabolic target.
Collapse
Affiliation(s)
- Irena Roci
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Kim A Lagerborg
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Lorenzo Lafranchi
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA 92093, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
19
|
Inducing controlled cell cycle arrest and re-entry during asexual proliferation of Plasmodium falciparum malaria parasites. Sci Rep 2018; 8:16581. [PMID: 30409996 PMCID: PMC6224408 DOI: 10.1038/s41598-018-34964-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
The life cycle of the malaria parasite Plasmodium falciparum is tightly regulated, oscillating between stages of intense proliferation and quiescence. Cyclic 48-hour asexual replication of Plasmodium is markedly different from cell division in higher eukaryotes, and mechanistically poorly understood. Here, we report tight synchronisation of malaria parasites during the early phases of the cell cycle by exposure to DL-α-difluoromethylornithine (DFMO), which results in the depletion of polyamines. This induces an inescapable cell cycle arrest in G1 (~15 hours post-invasion) by blocking G1/S transition. Cell cycle-arrested parasites enter a quiescent G0-like state but, upon addition of exogenous polyamines, re-initiate their cell cycle. This ability to halt malaria parasites at a specific point in their cell cycle, and to subsequently trigger re-entry into the cell cycle, provides a valuable framework to investigate cell cycle regulation in these parasites. We subsequently used gene expression analyses to show that re-entry into the cell cycle involves expression of Ca2+-sensitive (cdpk4 and pk2) and mitotic kinases (nima and ark2), with deregulation of the pre-replicative complex associated with expression of pk2. Changes in gene expression could be driven through transcription factors MYB1 and two ApiAP2 family members. This new approach to parasite synchronisation therefore expands our currently limited toolkit to investigate cell cycle regulation in malaria parasites.
Collapse
|
20
|
Abstract
Polyamines are organic polycations that bind to a variety of cellular molecules, including nucleic acids. Within cells, polyamines contribute to both the efficiency and fidelity of protein synthesis. In addition to directly acting on the translation apparatus to stimulate protein synthesis, the polyamine spermidine serves as a precursor for the essential post-translational modification of the eukaryotic translation factor 5A (eIF5A), which is required for synthesis of proteins containing problematic amino acid sequence motifs, including polyproline tracts, and for termination of translation. The impact of polyamines on translation is highlighted by autoregulation of the translation of mRNAs encoding key metabolic and regulatory proteins in the polyamine biosynthesis pathway, including S-adenosylmethionine decarboxylase (AdoMetDC), antizyme (OAZ), and antizyme inhibitor 1 (AZIN1). Here, we highlight the roles of polyamines in general translation and also in the translational regulation of polyamine biosynthesis.
Collapse
Affiliation(s)
- Thomas E Dever
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Ivaylo P Ivanov
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
21
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
22
|
Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018; 19:1219. [PMID: 29673197 PMCID: PMC5979612 DOI: 10.3390/ijms19041219] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H₂O₂ production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon 69003, France.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|
23
|
He W, Roh E, Yao K, Liu K, Meng X, Liu F, Wang P, Bode AM, Dong Z. Targeting ornithine decarboxylase (ODC) inhibits esophageal squamous cell carcinoma progression. NPJ Precis Oncol 2017; 1:13. [PMID: 29872701 PMCID: PMC5859467 DOI: 10.1038/s41698-017-0014-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
To explore the function of ornithine decarboxylase in esophageal squamous cell carcinoma progression and test the effectiveness of anti-ornithine decarboxylase therapy for esophageal squamous cell carcinoma. In this study, we examined the expression pattern of ornithine decarboxylase in esophageal squamous cell carcinoma cell lines and tissues using immunohistochemistry and Western blot analysis. Then we investigated the function of ornithine decarboxylase in ESCC cells by using shRNA and an irreversible inhibitor of ornithine decarboxylase, difluoromethylornithine. To gather more supporting pre-clinical data, a human esophageal squamous cell carcinoma patient-derived xenograft mouse model (C.B-17 severe combined immunodeficient mice) was used to determine the antitumor effects of difluoromethylornithine in vivo. Our data showed that the expression of the ornithine decarboxylase protein is increased in esophageal squamous cell carcinoma tissues compared with esophagitis or normal adjacent tissues. Polyamine depletion by ODC shRNA not only arrests esophageal squamous cell carcinoma cells in the G2/M phase, but also induces apoptosis, which further suppresses esophageal squamous cell carcinoma cell tumorigenesis. Difluoromethylornithine treatment decreases proliferation and also induces apoptosis of esophageal squamous cell carcinoma cells and implanted tumors, resulting in significant reduction in the size and weight of tumors. The results of this study indicate that ornithine decarboxylase is a promising target for esophageal squamous cell carcinoma therapy and difluoromethylornithine warrants further study in clinical trials to test its effectiveness against esophageal squamous cell carcinoma. Blocking an enzyme involved in the cellular synthesis of essential compounds called polyamines could help treat esophageal cancer. Zigang Dong from the University of Minnesota’s Hormel Institute, USA, and colleagues showed that this enzyme, called ornithine decarboxylase (ODC), is expressed at elevated levels in tumor tissues taken from patients with esophageal squamous cell carcinoma. The researchers blocked ODC activity in esophageal cancer cells using either RNA interference techniques or a drug called difluoromethylornithine (DFMO). In both cases, the treatment suppressed further growth and induced cell death. DFMO treatment also reduced the size and weight of tumors in mice implanted with human patient-derived esophageal cancer tissue. The findings point DFMO, which is already used as a medication to treat African sleeping sickness and excessive hair growth, as a potential therapy for cancer patients.
Collapse
Affiliation(s)
- Wei He
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA.,2The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China.,3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Eunmiri Roh
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ke Yao
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Kangdong Liu
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Xing Meng
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Fangfang Liu
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Penglei Wang
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Ann M Bode
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Zigang Dong
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA.,3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| |
Collapse
|
24
|
SMN Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3708048. [PMID: 28337249 PMCID: PMC5350423 DOI: 10.1155/2017/3708048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
Collapse
Affiliation(s)
- Rabiatul Basria SMN Mydin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Srimala Sreekantan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 South Seberang Perai, Penang, Malaysia
| | - Roshasnorlyza Hazan
- Materials Technology Group, Industrial Technology Division, Nuclear Malaysia Agency, Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Ishak Mat
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| |
Collapse
|
25
|
Alexiou GA, Lianos GD, Ragos V, Galani V, Kyritsis AP. Difluoromethylornithine in cancer: new advances. Future Oncol 2017; 13:809-819. [PMID: 28125906 DOI: 10.2217/fon-2016-0266] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Difluoromethylornithine (DFMO; eflornithine) is an irreversible suicide inhibitor of the enzyme ornithine decarboxylase which is involved in polyamine synthesis. Polyamines are important for cell survival, thus DFMO was studied as an anticancer agent and as a chemoprevention agent. DFMO exhibited mainly cytostatic activity and had single agent efficacy as well as activity in combination with other chemotherapeutic drugs for some cancers and leukemias. Herewith, we summarize the current knowledge of the anticancer and chemopreventive properties of DFMO and assess the status of clinical trials.
Collapse
Affiliation(s)
- George A Alexiou
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Georgios D Lianos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vassileios Ragos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Athanassios P Kyritsis
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| |
Collapse
|
26
|
Pozhitkov AE, Neme R, Domazet-Lošo T, Leroux BG, Soni S, Tautz D, Noble PA. Tracing the dynamics of gene transcripts after organismal death. Open Biol 2017; 7:160267. [PMID: 28123054 PMCID: PMC5303275 DOI: 10.1098/rsob.160267] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
In life, genetic and epigenetic networks precisely coordinate the expression of genes-but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations.
Collapse
Affiliation(s)
- Alex E Pozhitkov
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Rafik Neme
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10002 Zagreb, Croatia
- Catholic University of Croatia, Ilica 242, Zagreb, Croatia
| | - Brian G Leroux
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
| | - Shivani Soni
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Peter A Noble
- Department of Periodontics, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
- PhD Program in Microbiology, Alabama State University, Montgomery, AL 36101-0271, USA
| |
Collapse
|
27
|
Spearman M, Chan S, Jung V, Kowbel V, Mendoza M, Miranda V, Butler M. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells. J Biotechnol 2016; 233:129-42. [DOI: 10.1016/j.jbiotec.2016.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/18/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
|
28
|
Gillespie ZE, Pickering J, Eskiw CH. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan. Front Genet 2016; 7:142. [PMID: 27588026 PMCID: PMC4988992 DOI: 10.3389/fgene.2016.00142] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Joshua Pickering
- Department of Biochemistry, University of Saskatchewan Saskatoon, SK, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of SaskatchewanSaskatoon, SK, Canada; Department of Biochemistry, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
29
|
Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells. Development 2016; 142:1228-41. [PMID: 25804735 DOI: 10.1242/dev.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors.
Collapse
Affiliation(s)
- Yuwen Li
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jiao Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Wencheng Li
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Aaron Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | - Marilyn Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Carroll
- Department of Internal Medicine (Nephrology) and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Yumei Feng
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Schick S, Fournier D, Thakurela S, Sahu SK, Garding A, Tiwari VK. Dynamics of chromatin accessibility and epigenetic state in response to UV damage. J Cell Sci 2015; 128:4380-94. [PMID: 26446258 DOI: 10.1242/jcs.173633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.
Collapse
Affiliation(s)
- Sandra Schick
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Brenner S, Bercovich Z, Feiler Y, Keshet R, Kahana C. Dual Regulatory Role of Polyamines in Adipogenesis. J Biol Chem 2015; 290:27384-27392. [PMID: 26396188 DOI: 10.1074/jbc.m115.686980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
Adipogenesis is a complex process, accompanied by a chain of interdependent events. Disruption of key events in this cascade may interfere with the correct formation of adipose tissue. Polyamines were demonstrated necessary for adipogenesis; however, the underlying mechanism by which they act has not been established. Here, we examined the effect of polyamine depletion on the differentiation of 3T3-L1 preadipocytes. Our results demonstrate that polyamines are required early in the adipogenic process. Polyamine depletion inhibited the second division of the mitotic clonal expansion (MCE), and inhibited the expression of PPARγ and C/EBPα, the master regulators of adipogenesis. However, it did not affect the expression of their transcriptional activator, C/EBPβ. Additionally, polyamine depletion resulted in elevation of mRNA and protein levels of the stress-induced C/EBP homologous protein (CHOP), whose dominant negative function is known to inhibit C/EBPβ DNA binding activity. Conditional knockdown of CHOP in polyamine-depleted preadipocytes restored PPARγ and C/EBPα expression, but failed to recover MCE and differentiation. Thus, our results suggest that the need for MCE in the adipogenic process is independent from the requirement for PPARγ and C/EBPα expression. We conclude that de novo synthesis of polyamines during adipogenesis is required for down-regulation of CHOP to allow C/EBPβ activation, and for promoting MCE.
Collapse
Affiliation(s)
- Shirley Brenner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zippi Bercovich
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yulia Feiler
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rom Keshet
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chaim Kahana
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
32
|
Park MH, Igarashi K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther (Seoul) 2014; 21:1-9. [PMID: 24009852 PMCID: PMC3762300 DOI: 10.4062/biomolther.2012.097] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/31/2023] Open
Abstract
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.
Collapse
Affiliation(s)
- Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
33
|
Moschou PN, Roubelakis-Angelakis KA. Polyamines and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1285-96. [PMID: 24218329 DOI: 10.1093/jxb/ert373] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) have been considered as important molecules for survival. However, evidence reinforces that PAs are also implicated, directly or indirectly, in pathways regulating programmed cell death (PCD). Direct correlation of PAs with cell death refers to their association with particular biological processes, and their physical contact with molecules or structures involved in cell death. Indirectly, PAs regulate PCD through their metabolic derivatives, such as catabolic and interconversion products. Cytotoxic products of PA metabolism are involved in PCD cascades, whereas it remains largely elusive how PAs directly control pathways leading to PCD. In this review, we present and compare advances in PA-dependent PCD in animals and plants.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | | |
Collapse
|
34
|
Minois N. Molecular Basis of the Anti-Aging' Effect of Spermidine and Other Natural Polyamines - A Mini-Review. Gerontology 2014; 60:319-26. [DOI: 10.1159/000356748] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
|
35
|
El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 2013; 6:37-55. [PMID: 25278778 PMCID: PMC4147769 DOI: 10.4137/jcd.s11034] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeutic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is considered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well as their role as targets for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Denis Selimovic
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|