1
|
Solntceva V, Kostrzewa M, Larrouy-Maumus G. Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Front Cell Infect Microbiol 2021; 10:621452. [PMID: 33634037 PMCID: PMC7902069 DOI: 10.3389/fcimb.2020.621452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
MALDI-TOF mass spectrometry has revolutionized clinical microbiology diagnostics by delivering accurate, fast, and reliable identification of microorganisms. It is conventionally based on the detection of intracellular molecules, mainly ribosomal proteins, for identification at the species-level and/or genus-level. Nevertheless, for some microorganisms (e.g., for mycobacteria) extensive protocols are necessary in order to extract intracellular proteins, and in some cases a protein-based approach cannot provide sufficient evidence to accurately identify the microorganisms within the same genus (e.g., Shigella sp. vs E. coli and the species of the M. tuberculosis complex). Consequently lipids, along with proteins are also molecules of interest. Lipids are ubiquitous, but their structural diversity delivers complementary information to the conventional protein-based clinical microbiology matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based approaches currently used. Lipid modifications, such as the ones found on lipid A related to polymyxin resistance in Gram-negative pathogens (e.g., phosphoethanolamine and aminoarabinose), not only play a role in the detection of microorganisms by routine MALDI-TOF mass spectrometry but can also be used as a read-out of drug susceptibility. In this review, we will demonstrate that in combination with proteins, lipids are a game-changer in both the rapid detection of pathogens and the determination of their drug susceptibility using routine MALDI-TOF mass spectrometry systems.
Collapse
Affiliation(s)
- Vera Solntceva
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Sawettanai N, Leelayuwapan H, Karoonuthaisiri N, Ruchirawat S, Boonyarattanakalin S. Synthetic Lipomannan Glycan Microarray Reveals the Importance of α(1,2) Mannose Branching in DC-SIGN Binding. J Org Chem 2019; 84:7606-7617. [PMID: 31099561 DOI: 10.1021/acs.joc.8b02944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipomannan (LM), a glycophospholipid found on the cell surface of mycobacteria, involves the virulence and survival in host cells. However, there is little to no information on how exactly mannan alignment, including the number of mannose units and the branched motif of LM, affects protein engagement during host-pathogen interactions. In this study, we synthesized the exact substructures of the LM glycans that consist of an α(1,6) mannan core, with and without the complete α(1,2) mannose branching, and comparatively studied their protein-carbohydrate interactions. The synthetic LM glycans were equipped with a thiol linker for immobilizations on the surfaces of microarrays. As per our findings, the presence of the branching α(1,2) mannose on the LM glycans increases their binding toward the dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin receptor. An increase in the number of mannose units on the glycans also increases the binding with the mannose receptor. Thus, the set of synthetic glycans can serve as a useful tool to study the biological activities of LM and can provide a better understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Nithinan Sawettanai
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Harin Leelayuwapan
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Somsak Ruchirawat
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand.,Laboratory of Medicinal Chemistry , Chulabhorn Research Institute, and Centre of Excellence on Environmental Health and Toxicology , Bangkok 10210 , Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani 12121 , Thailand
| |
Collapse
|
3
|
Leelayuwapan H, Ruchirawat S, Boonyarattanakalin S. Rapid synthesis and immunogenicity of mycobacterial (1→5)-α-d-arabinofuranan. Carbohydr Polym 2018; 206:262-272. [PMID: 30553321 DOI: 10.1016/j.carbpol.2018.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022]
Abstract
A rapid synthesis of the α(1→5) arabinofuranan polysaccharides, found on the outer surface of Mycobacterium tuberculosis (Mtb), is achieved by a regio- and stereocontrolled ring opening polymerization of β-d-arabinofuranose-1,2,5-orthobenzoate. The robust polymerization reaction allows the incorporation of an amine linker, which was used to conjugate with protein tetanus toxoid (TT) to further investigate its adjuvant activities. The synthetic arabinan, which is the glycan on the non-reducing end of Mtb lipoarabinomannan (LAM), was evaluated for its immunological properties in vitro and in vivo. Systemic inflammation and the promotion of innate immune response were observed in macrophages treated with the synthetic arabinan as an adjuvant through an increase in the production of TNF-α and IL-12. In vivo evaluation of IFN-γ, IL-2, and TNF-α productions in mice pre-immunized with the synthetic arabinan conjugated TT indicated great enhancements of the immunological responses when compared to that of TT alone.
Collapse
Affiliation(s)
- Haris Leelayuwapan
- Program in Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), PERDO, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), PERDO, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute (CRI), 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12121, Thailand.
| |
Collapse
|
4
|
Saeed A, Paściak M, Górska S, Ceremuga I, Gamian E, Ziółkowski P, Drab M, Gamian A. Structural elucidation of Tsukamurella pulmonis neutral polysaccharide and its visualization in infected mouse tissues by specific monoclonal antibodies. Sci Rep 2018; 8:11564. [PMID: 30068922 PMCID: PMC6070502 DOI: 10.1038/s41598-018-29864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 07/19/2018] [Indexed: 11/09/2022] Open
Abstract
Tsukamurella pulmonis is an opportunistic actinomycetal pathogen associated with a variety of rarely diagnosed human infections. In clinical cases of infection, T. pulmonis usually accompanies other bacterial pathogens. Because of these mixed infections, a robust diagnostic assay is important. The bacteria cell surface polysaccharides are considered not only useful targets for diagnostics but also intriguing subjects for analysis of the interactions that regulate the host response in general. Here, the structure of the polysaccharide component of the T. pulmonis cell wall was established. Sugar and methylation analysis and 2D-NMR techniques revealed that its polysaccharide belongs to the class of arabinomannan composed of branched tetrasaccharide repeating units, with addition of linear →6)-α-D-Manp-(1→ mannan. Rabbit polyclonal sera against T. pulmonis and T. paurometabola bacterial cells revealed cross reactivity between their antigens. Tissue samples from mice infected with T. pulmonis revealed liver abscesses and pathologic granules located intracellularly when immunohistochemically stained with monoclonal antibodies raised against T. pulmonis polysaccharide. Ultrastructural studies revealed that these granules contain T. pulmonis cells. These observations indicate that T. pulmonis is a pathogenic species capable of spreading within the organism, presumably through the blood.
Collapse
Affiliation(s)
- Adnan Saeed
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Mariola Paściak
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | - Sabina Górska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Ireneusz Ceremuga
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Elżbieta Gamian
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Marek Drab
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
- USI, Unit of Nanostructural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
- Wrocław Research Center EIT+, Stablowicka 147, 54-066, Wrocław, Poland
| |
Collapse
|
5
|
The role of corynomycolic acids in Corynebacterium-host interaction. Antonie Van Leeuwenhoek 2018; 111:717-725. [PMID: 29435693 DOI: 10.1007/s10482-018-1036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Within the Actinobacteria, the genera Corynebacterium, Mycobacterium, Nocardia and Rhodococcus form the so-called CMNR group, also designated as mycolic acid-containing actinomycetes. Almost all members of this group are characterized by a mycolic acid layer, the mycomembrane, which covers the cell wall and is responsible for a high resistance of these bacteria against chemical and antibiotic stress. Furthermore, components of the mycomembrane are crucial for the interaction of bacteria with host cells. This review summarizes the current knowledge of mycolic acid synthesis and interaction with components of the immune system for the genus Corynebacterium with an emphasis on the pathogenic species Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans as well as the biotechnology workhorse Corynebacterium glutamicum.
Collapse
|
6
|
Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids. Infect Immun 2017; 85:IAI.00075-17. [PMID: 28483856 DOI: 10.1128/iai.00075-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 01/01/2023] Open
Abstract
Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors.
Collapse
|
7
|
Cope EK, Goldberg AN, Pletcher SD, Lynch SV. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. MICROBIOME 2017; 5:53. [PMID: 28494786 PMCID: PMC5427582 DOI: 10.1186/s40168-017-0266-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by persistent sinonasal inflammation and sinus microbiome dysbiosis. The basis of this heterogeneity is poorly understood. We sought to address the hypothesis that a limited number of compositionally distinct pathogenic bacterial microbiota exist in CRS patients and invoke discrete immune responses and clinical phenotypes in CRS patients. RESULTS Sinus brushings from patients with CRS (n = 59) and healthy individuals (n = 10) collected during endoscopic sinus surgery were analyzed using 16S rRNA gene sequencing, predicted metagenomics, and RNA profiling of the mucosal immune response. We show that CRS patients cluster into distinct sub-groups (DSI-III), each defined by specific pattern of bacterial co-colonization (permutational multivariate analysis of variance (PERMANOVA); p = 0.001, r 2 = 0.318). Each sub-group was typically dominated by a pathogenic family: Streptococcaceae (DSI), Pseudomonadaceae (DSII), Corynebacteriaceae [DSIII(a)], or Staphylococcaceae [DSIII(b)]. Each pathogenic microbiota was predicted to be functionally distinct (PERMANOVA; p = 0.005, r 2 = 0.217) and encode uniquely enriched gene pathways including ansamycin biosynthesis (DSI), tryptophan metabolism (DSII), two-component response [DSIII(b)], and the PPAR-γ signaling pathway [DSIII(a)]. Each is also associated with significantly distinct host immune responses; DSI, II, and III(b) invoked a variety of pro-inflammatory, TH1 responses, while DSIII(a), which exhibited significantly increased incidence of nasal polyps (Fisher's exact; p = 0.034, relative risk = 2.16), primarily induced IL-5 expression (Kruskal Wallis; q = 0.045). CONCLUSIONS A large proportion of CRS patient heterogeneity may be explained by the composition of their sinus bacterial microbiota and related host immune response-features which may inform strategies for tailored therapy in this patient population.
Collapse
Affiliation(s)
- Emily K. Cope
- Department of Otolaryngology, University of California, San Francisco, CA 94143 USA
- Present Address: Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Andrew N. Goldberg
- Department of Otolaryngology, University of California, San Francisco, CA 94143 USA
| | - Steven D. Pletcher
- Department of Otolaryngology, University of California, San Francisco, CA 94143 USA
| | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
9
|
Jankute M, Alderwick LJ, Noack S, Veerapen N, Nigou J, Besra GS. Disruption of Mycobacterial AftB Results in Complete Loss of Terminal β(1 → 2) Arabinofuranose Residues of Lipoarabinomannan. ACS Chem Biol 2017; 12:183-190. [PMID: 28033704 PMCID: PMC5259755 DOI: 10.1021/acschembio.6b00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Lipoarabinomannan
(LAM) and arabinogalactan (AG) are the two major
mycobacterial cell wall (lipo)polysaccharides, which contain a structurally
similar arabinan domain that is highly branched and assembled in a
stepwise fashion by variety of arabinofuranosyltransferases (ArafT). In addition to playing an essential role in mycobacterial
physiology, LAM and its biochemical precursor lipomannan possess potent
immunomodulatory activities that affect the host immune response.
In the search of additional mycobacterial ArafTs
that participate in the synthesis of the arabinan segment of LAM,
we disrupted aftB (MSMEG_6400) in Mycobacterium smegmatis. The deletion of chromosomal aftB locus could only be achieved in the presence of a rescue
plasmid carrying a functional copy of aftB, strongly
suggesting that it is essential for the viability of M. smegmatis. Isolation and detailed structural characterization of a LAM molecule
derived from the conditional mutant deficient in AftB revealed the
absence of terminal β(1 → 2)-linked arabinofuranosyl
residues. Furthermore, we demonstrated that truncated LAM displays
proinflammatory activity, which is due to its ability to activate
Toll-like receptor 2. All together, our results indicate that AftB
is an essential mycobacterial ArafT that plays a
role in the synthesis of the arabinan domain of LAM.
Collapse
Affiliation(s)
- Monika Jankute
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Luke J. Alderwick
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Stephan Noack
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Natacha Veerapen
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Jérôme Nigou
- Institut
de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Gurdyal S. Besra
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
10
|
Elsaidi HRH, Lowary TL. Effect of phenolic glycolipids from Mycobacterium kansasii on proinflammatory cytokine release. A structure-activity relationship study. Chem Sci 2015; 6:3161-3172. [PMID: 28706688 PMCID: PMC5490424 DOI: 10.1039/c4sc04004j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
The cell wall of pathogenic mycobacteria is abundant with virulence factors, among which phenolic glycolipids (PGLs) are prominent examples. Mycobacterium kansasii, an important opportunistic pathogen, produces seven PGLs and their effect on the release of important proinflammatory cytokines that mediate disease progression has not been investigated. We previously showed that proinflammatory cytokines are modulated by PGLs from M. tuberculosis, M. leprae and M. bovis. In this paper we describe the synthesis of a series of 17 analogs of M. kansasii PGLs containing a truncated aglycone. Subsequently, the effect of these compounds on the release of proinflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1) and nitric oxide (NO) was evaluated. These compounds exerted an immunoinhibitory effect on the release of the tested cytokines. The concentration-dependent inhibitory profile of the tested molecules was also found to be dependent on the methylation pattern of the molecule and was mediated via toll-like receptor (TLR)-2. This study led to the discovery of a glycolipid (18) that shows promising potent anti-inflammatory properties making it a potential candidate for further optimization of its anti-inflammatory profile.
Collapse
Affiliation(s)
- Hassan R H Elsaidi
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton , AB , Canada T6G 2G2 .
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton , AB , Canada T6G 2G2 .
| |
Collapse
|
11
|
Non-replicating Mycobacterium tuberculosis elicits a reduced infectivity profile with corresponding modifications to the cell wall and extracellular matrix. PLoS One 2014; 9:e87329. [PMID: 24516549 PMCID: PMC3916317 DOI: 10.1371/journal.pone.0087329] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
A key feature of Mycobacterium tuberculosis is its ability to become dormant in the host. Little is known of the mechanisms by which these bacilli are able to persist in this state. Therefore, the focus of this study was to emulate environmental conditions encountered by M. tuberculosis in the granuloma, and determine the effect of such conditions on the physiology and infectivity of the organism. Non-replicating persistent (NRP) M. tuberculosis was established by the gradual depletion of nutrients in an oxygen-replete and controlled environment. In contrast to rapidly dividing bacilli, NRP bacteria exhibited a distinct phenotype by accumulating an extracellular matrix rich in free mycolate and lipoglycans, with increased arabinosylation. Microarray studies demonstrated a substantial down-regulation of genes involved in energy metabolism in NRP bacteria. Despite this reduction in metabolic activity, cells were still able to infect guinea pigs, but with a delay in the development of disease when compared to exponential phase bacilli. Using these approaches to investigate the interplay between the changing environment of the host and altered physiology of NRP bacteria, this study sheds new light on the conditions that are pertinent to M. tuberculosis dormancy and how this organism could be establishing latent disease.
Collapse
|
12
|
Stoop EJM, Mishra AK, Driessen NN, van Stempvoort G, Bouchier P, Verboom T, van Leeuwen LM, Sparrius M, Raadsen SA, van Zon M, van der Wel NN, Besra GS, Geurtsen J, Bitter W, Appelmelk BJ, van der Sar AM. Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity. Cell Microbiol 2013; 15:2093-108. [PMID: 23902464 PMCID: PMC3963455 DOI: 10.1111/cmi.12175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC-MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.
Collapse
Affiliation(s)
- Esther J M Stoop
- Department of Medical Microbiology and Infection Control, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giganti D, Alegre-Cebollada J, Urresti S, Albesa-Jové D, Rodrigo-Unzueta A, Comino N, Kachala M, López-Fernández S, Svergun DI, Fernández JM, Guerin ME. Conformational plasticity of the essential membrane-associated mannosyltransferase PimA from mycobacteria. J Biol Chem 2013; 288:29797-808. [PMID: 23963451 DOI: 10.1074/jbc.m113.462705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides, lipomannan, and lipoarabinomannan, which are key glycolipids/lipoglycans of the mycobacterial cell envelope. PimA belongs to a large family of peripheral membrane-associated GTs for which the understanding of the molecular mechanism and conformational changes that govern substrate/membrane recognition and catalysis remains a major challenge. Here we used single molecule force spectroscopy techniques to study the mechanical and conformational properties of PimA. In our studies, we engineered a polyprotein containing PimA flanked by four copies of the well characterized I27 protein, which provides an unambiguous mechanical fingerprint. We found that PimA exhibits weak mechanical stability albeit displaying β-sheet topology expected to unfold at much higher forces. Notably, PimA unfolds following heterogeneous multiple step mechanical unfolding pathways at low force akin to molten globule states. Interestingly, the ab initio low resolution envelopes obtained from small angle x-ray scattering of the unliganded PimA and the PimA·GDP complexed forms clearly demonstrate that not only the "open" and "closed" conformations of the GT-B enzyme are largely present in solution, but in addition, PimA experiences remarkable flexibility that undoubtedly corresponds to the N-terminal "Rossmann fold" domain, which has been proved to participate in protein-membrane interactions. Based on these results and on our previous experimental data, we propose a model wherein the conformational transitions are important for the mannosyltransferase to interact with the donor and acceptor substrates/membrane.
Collapse
Affiliation(s)
- David Giganti
- From the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|