1
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
2
|
Wang Y, Cheng S, Fleishman JS, Chen J, Tang H, Chen ZS, Chen W, Ding M. Targeting anoikis resistance as a strategy for cancer therapy. Drug Resist Updat 2024; 75:101099. [PMID: 38850692 DOI: 10.1016/j.drup.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
3
|
Wylaź M, Kaczmarska A, Pajor D, Hryniewicki M, Gil D, Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed Pharmacother 2023; 168:115676. [PMID: 37832401 DOI: 10.1016/j.biopha.2023.115676] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment. In this review, the inhibitors of these signaling pathways are compared, as well as their effectiveness in therapy and potential as therapeutic agents. The use of these inhibitors as polytherapy is evaluated, especially with the use of hormonal therapy, which has shown promising results.
Collapse
Affiliation(s)
- Mateusz Wylaź
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Anna Kaczmarska
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dawid Pajor
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Matthew Hryniewicki
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland.
| |
Collapse
|
4
|
Zhao X, Wang Z, Tang Z, Hu J, Zhou Y, Ge J, Dong J, Xu S. An anoikis-related gene signature for prediction of the prognosis in prostate cancer. Front Oncol 2023; 13:1169425. [PMID: 37664042 PMCID: PMC10469923 DOI: 10.3389/fonc.2023.1169425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose This study presents a novel approach to predict postoperative biochemical recurrence (BCR) in prostate cancer (PCa) patients which involves constructing a signature based on anoikis-related genes (ARGs). Methods In this study, we utilised data from TCGA-PARD and GEO databases to identify specific ARGs in prostate cancer. We established a signature of these ARGs using Cox regression analysis and evaluated their clinical predictive efficacy and immune-related status through various methods such as Kaplan-Meier survival analysis, subject work characteristics analysis, and CIBERSORT method. Our findings suggest that these ARGs may have potential as biomarkers for prostate cancer prognosis and treatment. To investigate the biological pathways of genes associated with anoikis, we utilised GSVA, GO, and KEGG. The expression of ARGs was confirmed by the HPA database. Furthermore, we conducted PPI analysis to identify the core network of ARGs in PCa. Results Based on analysis of the TCGA database, a set of eight ARGs were identified as prognostic signature genes for prostate cancer. The reliability and validity of this signature were well verified in both the TCGA and GEO codifications. Using this signature, patients were classified into two groups based on their risk for developing BCR. There was a significant difference in BCR-free time between the high and low risk groups (P < 0.05).This signature serves as a dependable and unbiased prognostic factor for predicting biochemical recurrence (BCR) in prostate cancer (PCa) patients. It outperforms clinicopathological characteristics in terms of accuracy and reliability. PLK1 may play a potential regulatory role as a core gene in the development of prostate cancer. Conclusion This signature suggests the potential role of ARGs in the development and progression of PCa and can effectively predict the risk of BCR in PCa patients after surgery. It also provides a basis for further research into the mechanism of ARGs in PCa and for the clinical management of patients with PCa.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| | - Zuheng Wang
- Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| | - Zilu Tang
- Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| | - Jun Hu
- Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| | - Yulin Zhou
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| | - Jingping Ge
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| | - Jie Dong
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| | - Song Xu
- Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Eastern Theater General Hospital of Medical School Of Nan Jing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Nepali PR, Kyprianou N. Anoikis in phenotypic reprogramming of the prostate tumor microenvironment. Front Endocrinol (Lausanne) 2023; 14:1160267. [PMID: 37091854 PMCID: PMC10113530 DOI: 10.3389/fendo.2023.1160267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is one of the most common malignancies in males wherein 1 in 8 men are diagnosed with this disease in their lifetime. The urgency to find novel therapeutic interventions is associated with high treatment resistance and mortality rates associated with castration-resistant prostate cancer. Anoikis is an apoptotic phenomenon for normal epithelial or endothelial cells that have lost their attachment to the extracellular matrix (ECM). Tumor cells that lose their connection to the ECM can die via apoptosis or survive via anoikis resistance and thus escaping to distant organs for metastatic progression. This review discusses the recent advances made in our understanding of the signaling effectors of anoikis in prostate cancer and the approaches to translate these mechanistic insights into therapeutic benefits for reducing lethal disease outcomes (by overcoming anoikis resistance). The prostate tumor microenvironment is a highly dynamic landscape wherein the balance between androgen signaling, cell lineage changes, epithelial-mesenchymal transition (EMT), extracellular matrix interactions, actin cytoskeleton remodeling as well as metabolic changes, confer anoikis resistance and metastatic spread. Thus, these mechanisms also offer unique molecular treatment signatures, exploitation of which can prime prostate tumors to anoikis induction with a high translational significance.
Collapse
Affiliation(s)
- Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Fang H, Li H, Zhang H, Wang S, Xu S, Chang L, Yang Y, Cui R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front Pharmacol 2022; 13:1019312. [PMID: 36313354 PMCID: PMC9614034 DOI: 10.3389/fphar.2022.1019312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.
Collapse
Affiliation(s)
- He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hanyang Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Yang J, Ye J, Ma T, Tang F, Huang L, Liu Z, Tian S, Cheng X, Zhang L, Guo Z, Tu F, He M, Xu X, Lu X, Wu Y, Zeng X, Zou J, Wang X, Peng W, Zhang P. Tripartite motif-containing protein 11 promotes hepatocellular carcinogenesis through ubiquitin-proteasome-mediated degradation of pleckstrin homology domain leucine-rich repeats protein phosphatase 1. Hepatology 2022; 76:612-629. [PMID: 34767673 DOI: 10.1002/hep.32234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Juan Yang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jianming Ye
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.,Huanggang Institute of Translational Medicine, Huanggang, China
| | - Fangfang Tang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Li Huang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenli Guo
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Fuping Tu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Miao He
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xueming Xu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xiaojuan Lu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Yanyang Wu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xiaoli Zeng
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Jiahua Zou
- Cancer Center of Huanggang Central Hospital, Huanggang, China
| | - Xiangcai Wang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
| | - Peng Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Li Z, Nong D, Li B, Wang H, Li C, Chen Z, Li X, Huang G, Lin J, Hao N, Li W. Effect of AKT silence on malignant biological behavior of renal cell carcinoma cells. BMC Urol 2022; 22:129. [PMID: 35996134 PMCID: PMC9396790 DOI: 10.1186/s12894-022-01087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the most common malignant tumor of primary renal tumor, renal cell carcinoma (RCC) is the highly invasive disease with high mortality. AKT is a serine/threonine kinase that play a critical role in the phosphoinositide 3-kinase (PI3K) signaling pathway, and it is an attractive target for RCC treatment. The aim of present study was to investigate the effect of AKT silence on malignant behavior of renal cell carcinoma cells. METHODS AKT expression was quantified by immunohistochemistry in tumor tissues and normal tissues. The human RCC cell lines Caki-2 cell were chosen for this study. The optimal silencing siRNA was subsequently selected by RT-qPCR and western blot. The effect of AKT silence on RCC cells was investigated by CCK8 assay, transwell assay, scratch test and flow cytometry. The AKT1 expression in human renal cell carcinoma tissue was detected by immunohistochemical staining. RESULTS The AKT in Caki-2 cells was silenced successfully. The results shown AKT silence could inhibit cell proliferation, invasion, and, migration. In addition, AKT silence could promote Caki-2 cell apoptosis with prevention of RCC cells move from G1 phase to S phase. Immunohistochemical staining revealed significant difference of expression of AKT1 in RCC tissues and normal renal tissues. Taken together, AKT family members might involve in malignant growth of RCC, and might be a potential therapeutic target. CONCLUSION Our data show that AKT silence inhibited cell proliferation, invasion, and, migration of Caki-2 cell, and promoted Caki-2 cell apoptosis. Moreover, AKT silence prevented RCC cells move from G1 phase to S phase. Therefore, AKT may act as an effective therapeutic target for RCC.
Collapse
Affiliation(s)
- Zuan Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - DeYong Nong
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bincai Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haojian Wang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chunlin Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhi Chen
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ximing Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guihai Huang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Junhao Lin
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Nan Hao
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
9
|
HUS1 as a Potential Therapeutic Target in Urothelial Cancer. J Clin Med 2022; 11:jcm11082208. [PMID: 35456300 PMCID: PMC9031773 DOI: 10.3390/jcm11082208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Platinum-based chemotherapy is the standard of care with concern to first-line systemic therapy for metastatic disease in urothelial cancer (UC). Resistance to chemotherapy despite an initial response is linked with the ability to remove platinum-based DNA adducts and to repair chemotherapy-induced DNA lesions by various DNA repair proteins. The Rad9-Rad1-HUS1 complex that is loaded onto DNA at sites of damage is involved in checkpoint activation as well as DNA repair. Here, we addressed for the first time the potential influence of HUS1 expression in urothelial carcinogenesis (using two human basal urothelial cancer cell lines UM-UC-3 and HT1197) and its role as a potential therapeutic target for predicting responses to platinum-based chemotherapy. Specific inhibition of HUS1 expression in both cell lines was achieved by specific siRNA and validated by Western blot. In order to define the possible importance of HUS1 in the regulation of cellular proliferation, parental and resistant cells were treated with increasing concentrations of either control or HUS1 siRNA. HUS1 protein expression was observed in both human basal urothelial cancer cell lines UM-UC-3 and HT1197. In cisplatin-sensitive cells, knock-down of HUS1 inhibited cellular proliferation in the presence of cisplatin. On the contrary, knock-down of HUS1 in resistant cells did not result in a re-sensitization to cisplatin. Finally, RNAseq data from the Cancer Genome Atlas provided evidence that HUS1 expression is a significant prognostic factor for poor survival in UC patients. In summary, HUS1 may acts as an oncogene in UC and might be a key determinant of the cellular response to cisplatin-based chemotherapy.
Collapse
|
10
|
Galetzka D, Böck J, Wagner L, Dittrich M, Sinizyn O, Ludwig M, Rossmann H, Spix C, Radsak M, Scholz-Kreisel P, Mirsch J, Linke M, Brenner W, Marron M, Poplawski A, Haaf T, Schmidberger H, Prawitt D. Hypermethylation of RAD9A intron 2 in childhood cancer patients, leukemia and tumor cell lines suggest a role for oncogenic transformation. EXCLI JOURNAL 2022; 21:117-143. [PMID: 35221838 PMCID: PMC8859646 DOI: 10.17179/excli2021-4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.
Collapse
Affiliation(s)
- Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Lukas Wagner
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| | - Marcus Dittrich
- Bioinformatics Department, Julius Maximilians University, Würzburg, Germany
| | - Olesja Sinizyn
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | | | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre, Mainz, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, University Medical Centre, Mainz, Germany
| | | | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Centre, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Centre, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| |
Collapse
|
11
|
FOXP1 and NDRG1 act differentially as downstream effectors of RAD9-mediated prostate cancer cell functions. Cell Signal 2021; 86:110091. [PMID: 34298089 DOI: 10.1016/j.cellsig.2021.110091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Metastatic progression is the key feature of prostate cancer primarily responsible for mortality caused by this disease. RAD9 is an oncogene for prostate cancer, and the encoded protein enhances metastasis-related phenotypes. RAD9 is a transcription factor with a limited set of regulated target genes, but the complete list of downstream genes critical for prostate carcinogenesis is unknown. We used microarray gene expression profiling and chromatin immunoprecipitation in parallel to identify genes transcriptionally controlled by RAD9 that contribute to this cancer. We found expression of 44 genes altered in human prostate cancer DU145 cells when RAD9 is knocked down by siRNA, and all of them bind RAD9 at their genomic location. FOXP1 and NDRG1 were down regulated when RAD9 expression was reduced, and we evaluated them further. We demonstrate that reduced RAD9, FOXP1 or NDGR1 expression decreases cell proliferation, rapid migration, anchorage-independent growth, anoikis resistance, and aerobic glycolysis. Ectopic expression of FOXP1 or NDRG1 partially restored aerobic glycolysis to prostate cancer cells with reduced RAD9 abundance, but only FOXP1 significantly complemented the other deficiencies. We thus show, for the first time, that RAD9 regulates FOXP1 and NDRG1 expression, and they function differently as downstream effectors for RAD9-mediated prostate cancer cell activities.
Collapse
|
12
|
Ren K, Yu Y, Wang X, Liu H, Zhao J. MiR-340-3p-HUS1 axis suppresses proliferation and migration in lung adenocarcinoma cells. Life Sci 2021; 274:119330. [PMID: 33711383 DOI: 10.1016/j.lfs.2021.119330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023]
Abstract
AIMS The functions and molecular mechanisms of miR-340-3p in lung adenocarcinoma (LUAD) progression remain unclear. On the other hand, the role of HUS1 in LUAD progression should be further explored. MAIN METHODS Data from cancer database were subjected to bioinformatics analysis. Quantitative real-time PCR and western blot were performed to detect gene expression. Colony formation and MTT assay were performed to examine cell growth in vitro. Wound healing assays and transwell assays were performed to examine cell migration. KEY FINDINGS Here, our results showed that miR-340-3p was lower expressed in LUAD tissues and LUAD-derived cell lines. And miR-340-3p suppressed the proliferation and migration ability of LUAD cells. Further, miR-340-3p inhibits HUS1 expression, which was higher expressed in LUAD tissues and promoted the proliferation and migration ability of LUAD cells. Moreover, higher HUS1 expression was associated with poor survival rate and shorter survival time in patients with LUAD, and HUS1 expression was negative correlated with that of miR-340-3p in clinical samples. In addition, overexpression of HUS1 counteracted the downregulation of cell growth by miR-340-3p. SIGNIFICANCE The study mainly indicated that miR-340-3p may play a tumor suppressor role in the progression of LUAD, with the function of restraining HUS1 expression, highlighting a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Kaiming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jungang Zhao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
13
|
Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG, Lieberman HB. DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis 2021; 42:220-231. [PMID: 32780107 PMCID: PMC7905840 DOI: 10.1093/carcin/bgaa088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.
Collapse
Affiliation(s)
- Aiping Zhu
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Joshua D Bernstock
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
14
|
Wang YA, Sfakianos J, Tewari AK, Cordon-Cardo C, Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene 2020; 39:7225-7238. [PMID: 33046797 DOI: 10.1038/s41388-020-01496-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023]
Abstract
Prostate cancer is diagnosed mostly in men over the age of 50 years, and has favorable 5-year survival rates due to early cancer detection and availability of curative surgical management. However, progression to metastasis and emergence of therapeutic resistance are responsible for the majority of prostate cancer mortalities. Recent advancement in sequencing technologies and computational capabilities have improved the ability to organize and analyze large data, thus enabling the identification of novel biomarkers for survival, metastatic progression and patient prognosis. Large-scale sequencing studies have also uncovered genetic and epigenetic signatures associated with prostate cancer molecular subtypes, supporting the development of personalized targeted-therapies. However, the current state of mainstream prostate cancer management does not take full advantage of the personalized diagnostic and treatment modalities available. This review focuses on interrogating biomarkers of prostate cancer progression, including gene signatures that correspond to the acquisition of tumor lethality and those of predictive and prognostic value in progression to advanced disease, and suggest how we can use our knowledge of biomarkers and molecular subtypes to improve patient treatment and survival outcomes.
Collapse
Affiliation(s)
- Yuanshuo Alice Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carlos Cordon-Cardo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Zhan W, Zhang J, Luo Y, Yu R. GOLPH3 silencing inhibits adhesion of glioma U251 cells by regulating ITGB1 degradation under serum starvation. Biochem Biophys Res Commun 2020; 532:195-199. [PMID: 32859376 DOI: 10.1016/j.bbrc.2020.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 10/23/2022]
Abstract
GOLPH3, an oncoprotein, plays crucial roles in tumor etiology. Compelling evidences have demonstrated that GOLPH3 contributes to regulate tumor cell growth, migration and invasion under normal nutrient condition. However, the oncogenic activity of GOLPH3 under serum starvation remains largely unknown. In this study, we reported that GOLPH3 depletion led to marked reduction in adhesion of glioma U251 cells, particularly under serum deprivation. We found that silencing of GOLPH3 expression reduced the protein amount of ITGB1 only in serum-free medium. Further insights into the mechanism between GOLPH3 and ITGB1, we applied proteasome or lysosome inhibitor to block the degradation of ITGB1, and identified GOLPH3 silencing can prompt ITGB1 lysosomal degradation under serum starvation. Finally, we found the reductions in glioma cell adhesion and ITGB1 protein amount could be rescued by ITGB1 overexpression. Taken together, these results show that GOLPH3 contributes to the adhesion of glioma cells by regulating the lysosomal degradation of ITGB1 under serum starvation.
Collapse
Affiliation(s)
- Wenjian Zhan
- Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China; Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China; Department of Neurosurgery, The Afliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China
| | - Jilun Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China
| | - Yongchuan Luo
- Department of Neurosurgery, Zigong First People's Hospital, Zigong, 643000, Sichuan, PR China
| | - Rutong Yu
- Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China; Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China; Department of Neurosurgery, The Afliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China.
| |
Collapse
|
16
|
Broustas CG, Hopkins KM, Panigrahi SK, Wang L, Virk RK, Lieberman HB. RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2). Carcinogenesis 2019; 40:164-172. [PMID: 30295739 DOI: 10.1093/carcin/bgy131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
RAD9A plays an important role in prostate tumorigenesis and metastasis-related phenotypes. The protein classically functions as part of the RAD9A-HUS1-RAD1 complex but can also act independently. RAD9A can selectively transactivate multiple genes, including CDKN1A and NEIL1 by binding p53-consensus sequences in or near promoters. RAD9A is overexpressed in human prostate cancer specimens and cell lines; its expression correlates with tumor progression. Silencing RAD9A in prostate cancer cells impairs their ability to form tumors in vivo and migrate as well as grow anchorage independently in vitro. We demonstrate herein that RAD9A transcriptionally controls AGR2, a gene aberrantly overexpressed in patients with metastatic prostate cancer. Transient or stable knockdown of RAD9A in PC-3 cells caused downregulation of AGR2 protein abundance. Reduced AGR2 protein levels were due to lower abundance of AGR2 mRNA. The AGR2 genomic region upstream of the coding initiation site contains several p53 consensus sequences. RAD9A bound specifically to the 5'-untranslated region of AGR2 in PC-3 cells at a partial p53 consensus sequence at position +3136 downstream from the transcription start site, determined by chromatin immunoprecipitation, followed by PCR amplification. Binding of RAD9A to the p53 consensus sequence was sufficient to drive AGR2 gene transcription, shown by a luciferase reporter assay. In contrast, when the RAD9A-binding sequence on the AGR2 was mutated, no luciferase activity was detected. Knockdown of RAD9A in PC-3 cells impaired cell migration and anchorage-independent growth. However, ectopically expressed AGR2 in RAD9A-depleted PC-3 cells restored these phenotypes. Our results suggest RAD9A drives metastasis by controlling AGR2 abundance.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K Panigrahi
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Li Wang
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Wang J, Cai C, Nie D, Song X, Sun G, Zhi T, Li B, Qi J, Zhang J, Chen H, Shi Q, Yu R. FRK suppresses human glioma growth by inhibiting ITGB1/FAK signaling. Biochem Biophys Res Commun 2019; 517:588-595. [PMID: 31395336 DOI: 10.1016/j.bbrc.2019.07.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Fyn-related kinase (FRK), a member of the Src-related tyrosine kinase family, functions as a tumor suppressor in several malignancies. We previously showed that FRK overexpression inhibited the growth of glioma cells. However, it is unknown whether FRK is equally effective against intracranial glioma in vivo, and the mechanism by which FRK influences glioma cell growth remains unclear. In this study, we found that tumor volume was reduced by about one-third in mice with FRK overexpression, which showed improved survival relative to controls. Immunofluorescence analysis revealed that FRK overexpression inhibited glioma cell proliferation and induced their apoptosis. Importantly, in vitro we further found that FRK decreased the expression of integrin subunit β1 (ITGB1) at both the mRNA and protein levels. FRK also inhibited transactivation by ITGB1, resulting in the suppression of its target proteins AKT and focal adhesion kinase (FAK). ITGB1 overexpression promoted glioma cell growth and partially reduced FRK-induced growth suppression. These results indicate that FRK inhibits human glioma growth via regulating ITGB1/FAK signaling and provide a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, PR China; Department of Neurosurgery, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, PR China
| | - Chang Cai
- Department of Neurosurgery, Suqian First Hospital, 120 Su Zhi Road, Suqian, 223800, Jiangsu, PR China
| | - Dekang Nie
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, PR China
| | - Xu Song
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, PR China
| | - Guan Sun
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, PR China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, PR China
| | - Bing Li
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, PR China
| | - Juxing Qi
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, PR China
| | - Jianyong Zhang
- Department of Neurosurgery, Suqian First Hospital, 120 Su Zhi Road, Suqian, 223800, Jiangsu, PR China
| | - Honglin Chen
- Department of Neurosurgery, Suqian First Hospital, 120 Su Zhi Road, Suqian, 223800, Jiangsu, PR China
| | - Qiong Shi
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, PR China.
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, PR China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, PR China.
| |
Collapse
|
18
|
Zhou ZQ, Zhao JJ, Chen CL, Liu Y, Zeng JX, Wu ZR, Tang Y, Zhu Q, Weng DS, Xia JC. HUS1 checkpoint clamp component (HUS1) is a potential tumor suppressor in primary hepatocellular carcinoma. Mol Carcinog 2018; 58:76-87. [PMID: 30182378 DOI: 10.1002/mc.22908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
The HUS1 checkpoint clamp component (HUS1), which is a member of an evolutionarily conserved, genotoxin-activated checkpoint complex (Rad9-Rad1-Hus1 [9-1-1] complex), is involved in cell cycle arrest and DNA repair in response to DNA damage. We conducted this study to investigate the biological significances of HUS1 expression in hepatocellular carcinoma (HCC) development. The mRNA and protein expression levels of HUS1 were determined using Real-time PCR and Western blot, respectively. One hundered and twenty four paraffin sections from HCC tissues were analyzed by immunohistochemistry to assess the association between HUS1 expression and clinicopathological characteristics of patients. The Kaplan-Meier method was performed to calculate the OS and RFS curves. Cell proliferation and colony formation assays, cell migration and invasion assays and cell cycle assays were used to determine the suppressor role of HUS1 in vitro. A mouse model was used to determine the effect of HUS1 on tumorigenesis. The expression of HUS1 was significantly decreased in HCC cell lines and tissues, and low HUS1 expression was associated with poor prognosis of HCC patients. Upregulation of HUS1 expression inhibited the cell proliferation, colony formation, migration, and invasion, as well as arrested cell cycle at G0/G1 in HCC cells in vitro. Moreover, sufficient HUS1 expression inhibited the tumor growth in nude mice. Our study revealed for the first time that HUS1 is a potential tumor suppressor that might produce an antitumor effect in human HCC. Furthermore, HUS1 may serve as a prognostic indicator and could be used for therapeutic application in HCC patients.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang-Long Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Xiong Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zheng-Rong Wu
- Department of Pathology, School of Basic Medicine, Southern Medical University, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Sheng Weng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Lieberman HB, Rai AJ, Friedman RA, Hopkins KM, Broustas CG. Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management. Transl Cancer Res 2018; 7:S651-S661. [PMID: 30079300 PMCID: PMC6071673 DOI: 10.21037/tcr.2018.01.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a complex disease, with multiple subtypes and clinical presentations. Much progress has been made in recent years to understand the underlying genetic basis that drives prostate cancer. Such mechanistic information is useful for development of novel therapeutic targets, to identify biomarkers for early detection or to distinguish between aggressive and indolent disease, and to predict treatment outcome. Multiple tests have become available in recent years to address these clinical needs for prostate cancer. We describe several of these assays, summarizing test details, performance characteristics, and acknowledging their limitations. There is a pressing unmet need for novel biomarkers that can demonstrate improvement in these areas. We introduce one such candidate biomarker, RAD9, describe its functions in the DNA damage response, and detail why it can potentially fill this void. RAD9 has multiple roles in prostate carcinogenesis, making it potentially useful as a clinical tool for men with prostate cancer. RAD9 was originally identified as a radioresistance gene, and subsequent investigations revealed several key functions in the response of cells to DNA damage, including involvement in cell cycle checkpoint control, at least five DNA repair pathways, and apoptosis. Further studies indicated aberrant overexpression in approximately 45% of prostate tumors, with a strong correlation between RAD9 abundance and cancer stage. A causal relationship between RAD9 and prostate cancer was first demonstrated using a mouse model, where tumorigenicity of human prostate cancer cells after subcutaneous injection into nude mice was diminished when RNA interference was used to reduce the normally high levels of the protein. In addition to activity needed for the initial development of tumors, cell culture studies indicated roles for RAD9 in promoting prostate cancer progression by controlling cell migration and invasion through regulation of ITGB1 protein levels, and anoikis resistance by modulating AKT activation. Furthermore, RAD9 enhances the resistance of human prostate cancer cells to radiation in part by regulating ITGB1 protein abundance. RAD9 binds androgen receptor and inhibits androgen-induced androgen receptor's activity as a transcription factor. Moreover, RAD9 also acts as a gene-specific transcription factor, through binding p53 consensus sequences at target gene promoters, and this likely contributes to its oncogenic activity. Given these diverse and extensive activities, RAD9 plays important roles in the initiation and progression of prostate cancer and can potentially serve as a valuable biomarker useful in the management of patients with this disease.
Collapse
Affiliation(s)
- Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alex J. Rai
- Department of Pathology and Cell Biology and Special Chemistry Laboratories, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
20
|
Abstract
Maintaining the genetic integrity is a key process in cell viability and is enabled by a wide network of repair pathways. When this system is defective, it generates genomic instability and results in an accumulation of chromosomal aberrations and mutations that may be responsible for various clinical phenotypes, including susceptibility to develop cancer. Indeed, these defects can promote not only the initiation of cancer, but also allow the tumor cells to rapidly acquire mutations during their evolution. Several genes are involved in these damage repair systems and particular polymorphisms are predictive of the onset of cancer, the best described of them being BRCA. In addition to its impact on carcinogenesis, the DNA damage repair system is now considered as a therapeutic target of choice for cancer treatment, as monotherapy or in combination with other cytotoxic therapies, such as chemotherapies or radiotherapy. PARP inhibitors are nowadays the best known, but other agents are emerging in the field of clinical research. The enthusiasm in this area is coupled with promising results and a successful collaboration between clinicians and biologists would allow to optimize treatment plans in order to take full advantage of the DNA repair system modulation.
Collapse
|
21
|
Huang L, Wang ZB, Qi ST, Ma XS, Liang QX, Lei G, Meng TG, Liang LF, Xian YX, Hou Y, Sun XF, Zhao Y, Wang WH, Sun QY. Rad9a is required for spermatogonia differentiation in mice. Oncotarget 2016; 7:86350-86358. [PMID: 27861152 PMCID: PMC5349919 DOI: 10.18632/oncotarget.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis in testes requires precise spermatogonia differentiation. Spermatocytes lacking the Rad9a gene are arrested in pachytene prophase, implying a possible role for RAD9A in spermatogonia differentiation. However, numerous RAD9A-positive pachytene spermatocytes are still observed in mouse testes following Rad9a excision using the Stra8-Cre system, and it is unclear whether Rad9a deletion in spermatogonia interrupts differentiation. Here, we generated a mouse model in which Rad9a was specifically deleted in spermatogonial stem cells (SSCs) using Cre recombinase expression driven by the germ cell-specific Vasa promoter. Adult Rad9a-null male mice were infertile as a result of completely blocked spermatogonia differentiation. No early spermatocytes were detected in mutant testicular cords of 9-day-old mice. Mutant spermatogonia were prone to apoptosis, although proliferation rates were unaffected. Rad9a deletion also resulted in malformation of seminiferous tubules, in which cells assembled irregularly into clusters, and malformation led to testicular cord disruption. Our findings suggest that Rad9a is indispensable for spermatogonia differentiation and testicular development in mice.
Collapse
Affiliation(s)
- Lin Huang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shu-Tao Qi
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Guo Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Feng Liang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Ye-Xin Xian
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Fang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Hua Wang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China.,Houston Fertility Institute/Houston Fertility Laboratory, Houston, Texas, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Xu Z, Zhu L, Wu W, Liao Y, Zhang W, Deng Z, Shen J, Yuan Q, Zheng L, Zhang Y, Shen W. Immediate early response protein 2 regulates hepatocellular carcinoma cell adhesion and motility via integrin β1-mediated signaling pathway. Oncol Rep 2016; 37:259-272. [DOI: 10.3892/or.2016.5215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/25/2016] [Indexed: 11/05/2022] Open
|
23
|
Li XL, Lu X, Parvathaneni S, Bilke S, Zhang H, Thangavel S, Vindigni A, Hara T, Zhu Y, Meltzer PS, Lal A, Sharma S. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion. Cell Cycle 2015; 13:2431-45. [PMID: 25483193 DOI: 10.4161/cc.29419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Xiao Ling Li
- a Regulatory RNAs and Cancer Section; Genetics Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
HUS1 regulates in vivo responses to genotoxic chemotherapies. Oncogene 2015; 35:662-9. [PMID: 25915840 DOI: 10.1038/onc.2015.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
Cells are under constant attack from genotoxins and rely on a multifaceted DNA damage response (DDR) network to maintain genomic integrity. Central to the DDR are the ATM and ATR kinases, which respond primarily to double-strand DNA breaks (DSBs) and replication stress, respectively. Optimal ATR signaling requires the RAD9A-RAD1-HUS1 (9-1-1) complex, a toroidal clamp that is loaded at damage sites and scaffolds signaling and repair factors. Whereas complete ATR pathway inactivation causes embryonic lethality, partial Hus1 impairment has been accomplished in adult mice using hypomorphic (Hus1(neo)) and null (Hus1(Δ1)) Hus1 alleles, and here we use this system to define the tissue- and cell type-specific actions of the HUS1-mediated DDR in vivo. Hus1(neo/Δ1) mice showed hypersensitivity to agents that cause replication stress, including the crosslinking agent mitomycin C (MMC) and the replication inhibitor hydroxyurea, but not the DSB inducer ionizing radiation. Analysis of tissue morphology, genomic instability, cell proliferation and apoptosis revealed that MMC treatment caused severe damage in highly replicating tissues of mice with partial Hus1 inactivation. The role of the 9-1-1 complex in responding to MMC was partially ATR-independent, as a HUS1 mutant that was proficient for ATR-induced checkpoint kinase 1 phosphorylation nevertheless conferred MMC hypersensitivity. To assess the interplay between the ATM and ATR pathways in responding to replication stress in vivo, we used Hus1/Atm double mutant mice. Whereas Hus1(neo/neo) and Atm(-/-) single mutant mice survived low-dose MMC similar to wild-type controls, Hus1(neo/neo)Atm(-/-) double mutants showed striking MMC hypersensitivity, consistent with a model in which MMC exposure in the context of Hus1 dysfunction results in DSBs to which the ATM pathway normally responds. This improved understanding of the inter-dependency between two major DDR mechanisms during the response to a conventional chemotherapeutic illustrates how inhibition of checkpoint factors such as HUS1 may be effective for the treatment of ATM-deficient and other cancers.
Collapse
|
25
|
Panigrahi SK, Hopkins KM, Lieberman HB. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 2015; 43:4531-46. [PMID: 25873625 PMCID: PMC4482081 DOI: 10.1093/nar/gkv327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/21/2022] Open
Abstract
RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9−/− relative to Rad9+/+ embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9−/− mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.
Collapse
Affiliation(s)
- Sunil K Panigrahi
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Howard B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
26
|
Xia ZJ, Hu W, Wang YB, Zhou K, Sun GJ. Expression heterogeneity research of ITGB3 and BCL-2 in lung adenocarcinoma tissue and adenocarcinoma cell line. ASIAN PAC J TROP MED 2015; 7:473-7. [PMID: 25066397 DOI: 10.1016/s1995-7645(14)60077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To analyze expression heterogeneity of Integrin beta 3 (ITGB3) and B-cell lymphoma 2 (BCL-2) in lung adenocarcinoma tissue and adenocarcinoma cell line and further provide theoretical direction for molecular biological research of lung adenocarcinoma. METHODS Tissue microarray was used to observe relation among expression, heterogeneitpy and clinical characteristics of ITGB3 and BCL-2 in lung cancer. RESULTS ITGB3 and BCL-2 increased significantly in A549 cells in CAFs group withβ-actin as control; the expression level of BCL-2 also increased in ITGB3 transfected cells with GFP plasmid transfected A549 cells as control; immunohistochemistry staining showed that positive rates of ITGB3, ITGB1 and BCL-2 in normal lung tissues were 0, the positive rates in lung adenocarcinoma were 7.04%, 84.51% and 4.23%, respectively; in the results of immunohistochemistry staining, the expression of Girdin protein in lung adenocarcinoma was homogeneous, however protein expression of ITGB3, ITGB1 and BCL-2 showed different patterns in the same location with significant heterogeneity; majority of ITGB3, ITGB1 or BCL-2 positive tissue showed heterogeneity that expression in trailing edge was higher than that of trailing edge in lung adenocarcinoma tissue, the patients with BCL-2 heterogeneity showed higher lymph node metastasis ratio and lower clinical stage (P<0.05); and the expression of ITGB3 and the clinical characteristics of patients were not significant related (P>0.05). CONCLUSIONS Expression of ITGB3 and BCL-2 in lung adenocarcinoma and adenocarcinoma cell line showed heterogeneity that expression in trailing edge was higher than that of trailing edge, which may play an important role in promoting tumor lymph node metastasis and vascular invasion, and provides a new research direction for exploration of lung adenocarcinoma metastasis mechanism.
Collapse
Affiliation(s)
- Zong-Jiang Xia
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Hu
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yue-Bin Wang
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Kun Zhou
- Department of Thoracic surgery, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guo-Ju Sun
- Department of Cardiology, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
27
|
Broustas CG, Lieberman HB. RAD9 enhances radioresistance of human prostate cancer cells through regulation of ITGB1 protein levels. Prostate 2014; 74:1359-70. [PMID: 25111005 PMCID: PMC4142073 DOI: 10.1002/pros.22842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/03/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Mouse embryonic stem cells null for Rad9 are sensitive to deleterious effects of ionizing radiation exposure. Likewise, integrin β1 is a known radioprotective factor. Previously, we showed that RAD9 downregulation in human prostate cancer cells reduces integrin β1 protein levels and ectopic expression of Mrad9 restores inherent high levels. METHODS We used RNA interference to knockdown Rad9 expression in PC3 and DU145 prostate cancer cells. These cells were then exposed to ionizing radiation, and integrin β1 protein levels were measured by immunoblotting. Survival of irradiated cells was measured by clonogenicity, cell cycle analysis, PARP-1 cleavage, and trypan blue exclusion. RESULTS The function of RAD9 in controlling integrin β1 expression is unique and not shared by the other members of the 9-1-1 complex, HUS1 and RAD1. RAD9 or integrin β1 silencing sensitizes DU145 and PC3 cells to ionizing radiation. Irradiation of DU145 cells with low levels of RAD9 induces cleavage of PARP-1 protein. High levels of ionizing radiation have no effect on integrin β1 protein levels. However, when RAD9 downregulation is combined with 10 Gy of ionizing radiation in DU145 or PC3 cells, there is an additional 50% downregulation of integrin β1 compared with levels in unirradiated RAD9 knockdown cells. Finally, PC3 cells growing on fibronectin display increased radioresistance. However, PC3 cells with RAD9 knockdown are no longer protected by fibronectin after treatment with ionizing radiation. CONCLUSIONS Downregulation of RAD9 when combined with ionizing radiation results in reduction of ITGB1 protein levels in prostate cancer cells, and increased lethality.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| |
Collapse
|
28
|
Abstract
DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-)factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genome-wide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
29
|
Melo RDCC, Longhini AL, Bigarella CL, Baratti MO, Traina F, Favaro P, de Melo Campos P, Saad STO. CXCR7 is highly expressed in acute lymphoblastic leukemia and potentiates CXCR4 response to CXCL12. PLoS One 2014; 9:e85926. [PMID: 24497931 PMCID: PMC3908922 DOI: 10.1371/journal.pone.0085926] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023] Open
Abstract
Recently, a novel CXCL12-binding receptor, has been identified. This CXCL12-binding receptor commonly known as CXCR7 (CXC chemokine receptor 7), has lately, based on a novel nomenclature, has received the name ACKR3 (atypical chemokine receptor 3). In this study, we aimed to investigate the expression of CXCR7 in leukemic cells, as well as its participation in CXCL12 response. Interesting, we clearly demonstrated that CXCR7 is highly expressed in acute lymphoid leukemic cells compared with myeloid or normal hematopoietic cells and that CXCR7 contributed to T-acute lymphoid leukemic cell migration induced by CXCL12. Moreover, we showed that the cellular location of CXCR7 varied among T-lymphoid cells and this finding may be related to their migration capacity. Finally, we hypothesized that CXCR7 potentiates CXCR4 response and may contribute to the maintenance of leukemia by initiating cell recruitment to bone marrow niches that were once occupied by normal hematopoietic stem cells.
Collapse
Affiliation(s)
| | - Ana Leda Longhini
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | | | - Mariana Ozello Baratti
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | - Fabiola Traina
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | - Patrícia Favaro
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
| | - Paula de Melo Campos
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | | |
Collapse
|
30
|
Wen FC, Chang TW, Tseng YL, Lee JC, Chang MC. hRAD9 functions as a tumor suppressor by inducing p21-dependent senescence and suppressing epithelial-mesenchymal transition through inhibition of Slug transcription. Carcinogenesis 2014; 35:1481-90. [PMID: 24403312 DOI: 10.1093/carcin/bgu009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Senescence and epithelial-mesenchymal transition (EMT) have opposing roles in tumor progression, in that, one is a barrier against tumorigenesis, whereas the other is required for invasive malignancies. Here, we report that the DNA damage response (DDR) protein hRAD9 contributes to induction of senescence and inhibition of EMT. Our data show that hRAD9 is frequently downregulated in breast and lung cancers. Loss of hRAD9 expression is associated with tumor stage in breast and lung cancers, as well as with acquisition of an invasive phenotype. Ectopic hRAD9 expression in highly invasive cancer cell lines, H1299 and MDA-MB 231, with low endogenous hRAD9 induced senescence by upregulation of nuclear p21, independent of the p53 status. Ectopic expression of hRAD9 also significantly attenuated cellular migration and invasion in vitro and tumor growth in a xenograft mouse model in vivo. In contrast, silencing hRAD9 in lower invasive cancer cell lines, A549 and MCF7, with high endogenous hRAD9 dramatically increased their migration and invasion abilities, and simultaneously activated EMT. Knockdown of hRAD9 increased, whereas ectopic expression of hRAD9 decreased, the expression of Slug. Moreover, hRAD9 directly bound to the promoter region of slug gene and repressed its transcriptional activity. Taken together, these results suggest that hRAD9 is a potential tumor suppressor in breast and lung cancers and that it is likely to function by upregulating p21 and inhibiting Slug to regulate tumorigenesis.
Collapse
Affiliation(s)
- Fan-Chih Wen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsai-Wang Chang
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 70101, Taiwan and
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 70101, Taiwan and
| | - Janq-Chang Lee
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 70101, Taiwan and
| | - Ming-Chung Chang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Department of Nutrition, College of Medicine and Nursing, Hung Kuang University, Taichung 43302, Taiwan
| |
Collapse
|
31
|
Yang J, Zheng Z, Yan X, Li X, Liu Z, Ma Z. Integration of autophagy and anoikis resistance in solid tumors. Anat Rec (Hoboken) 2013; 296:1501-8. [PMID: 23963853 DOI: 10.1002/ar.22769] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/16/2013] [Indexed: 12/27/2022]
Abstract
Macroautophagy or autophagy is a lysosome-dependent process in which enzymatic degradation and recycling of cytosolic components occurred due to stressful conditions. This cellular arrangement imparts anoikis resistance in solid tumors. Anoikis, a special form of apoptosis occurring when cells detach from the extracellular matrix, is a critical mechanism in maintaining tissue homeostasis and development. Anoikis resistance facilitates tumorigenesis and metastasis. However, the complexity of the role of autophagy in tumor is underscored by evidence that autophagy can function as both a pro-survival or pro-death depending on the context and the stimuli, which are likely exploitable for tumor therapy. This review focuses on recent progress in understanding anoikis resistance and autophagy signaling, paying particular attention to its relevance in solid tumor metastasis.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biochemistry and Molecular Biology, Heping District, Tianjin, 300070, China
| | | | | | | | | | | |
Collapse
|