1
|
Xu N, Lai C, He QM, Cai Y, Yu H, Zhong W, Chen S, Wu FC, Chen H. Integrated proteomics and phosphoproteomics analyses of esophageal cancer cells with different invasive abilities. Life Sci 2023; 332:122078. [PMID: 37734435 DOI: 10.1016/j.lfs.2023.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
AIMS Esophageal squamous cell carcinoma (ESCC) is one of the aggressive and lethal malignancies with an extremely poor prognosis. It is necessary to explore the molecular mechanisms of ESCC invasion. MAIN METHODS We utilized high-throughput mass spectrometry to analyze the proteomes and phosphorylation profiles of two ESCC cell lines with differing invasion capacities (HK vs TE10). Differentially expressed proteins and phosphorites were identified, followed by comprehensive bioinformatics analyses encompassing function and pathway enrichment, protein-protein interaction (PPI) network analysis, hub gene identification, co-expression analysis, kinase-substrate prediction, and drug-target network analysis. CCK-8 assay, transwell examination, wound-healing assay, and western blot was used to validate the effects of fostamatinib on ESCC cells proliferation, invasion, migration, and LYN expression. KEY FINDINGS The Q4 cluster of differentially phosphorylated proteins was primarily associated with functions and pathways relevant to tumor metastasis. Phosphorylated hub proteins including ARHGAP35, CTNNA1, and SHC1 were identified through the analysis of PPI network, and their respective regulated kinases were predicted. Among the predicted kinases, LYN was validated to be associated with lymph node metastasis (N0 vs. N1-3) and prognosis in ESCC patients at mRNA levels using TGGA data and protein levels in ESCC tissues (p < 0.05). Validation experiments confirmed the inhibitory effects of fostamatinib on ESCC cells proliferation, migration, invasion, and LYN expression. SIGNIFICANCE Our multi-omics analysis offers deeper perspectives on ESCC invasiveness and unveils new phosphorylated hub proteins with their regulatory kinase. This study also suggests that fostamatinib may be a potential agent for treating ESCC.
Collapse
Affiliation(s)
- Nansong Xu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Changchun Lai
- Department of Clinical Laboratory, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Qing-Mei He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yubo Cai
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, China
| | - Hui Yu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenhao Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shulin Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Fang-Cai Wu
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, China.
| | - Hao Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
2
|
Kiepas A, Voorand E, Senecal J, Ahn R, Annis MG, Jacquet K, Tali G, Bisson N, Ursini-Siegel J, Siegel PM, Brown CM. The SHCA adapter protein cooperates with lipoma-preferred partner in the regulation of adhesion dynamics and invadopodia formation. J Biol Chem 2020; 295:10535-10559. [PMID: 32299913 DOI: 10.1074/jbc.ra119.011903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor β (TGFβ)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFβ enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFβ-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFβ-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFβ. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFβ, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada.,Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada
| | - Ryuhjin Ahn
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada
| | - George Tali
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada.,PROTEO Network and Cancer Research Centre, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Oncology, McGill University, Montréal H4A 3T2, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada .,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada .,Advanced BioImaging Facility (ABIF), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
3
|
Kiepas A, Voorand E, Mubaid F, Siegel PM, Brown CM. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J Cell Sci 2020; 133:jcs242834. [PMID: 31988150 DOI: 10.1242/jcs.242834] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 08/31/2023] Open
Abstract
Fluorescence illumination can cause phototoxicity that negatively affects living samples. This study demonstrates that much of the phototoxicity and photobleaching experienced with live-cell fluorescence imaging occurs as a result of 'illumination overhead' (IO). This occurs when a sample is illuminated but fluorescence emission is not being captured by the microscope camera. Several technological advancements have been developed, including fast-switching LED lamps and transistor-transistor logic (TTL) circuits, to diminish phototoxicity caused by IO. These advancements are not standard features on most microscopes and many biologists are unaware of their necessity for live-cell imaging. IO is particularly problematic when imaging rapid processes that require short exposure times. This study presents a workflow to optimize imaging conditions for measuring both slow and dynamic processes while minimizing phototoxicity on any standard microscope. The workflow includes a guide on how to (1) determine the maximum image exposure time for a dynamic process, (2) optimize excitation light intensity and (3) assess cell health with mitochondrial markers.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
| | - Firas Mubaid
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
- Department of Medicine, McGill University, Montreal, Canada, H4A 3J1
- Department of Anatomy & Cell Biology, McGill University, Canada, H3G 0B1
| | - Claire M Brown
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
- Department of Anatomy & Cell Biology, McGill University, Canada, H3G 0B1
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Canada, H3A 0C7
- Cell Information Systems, McGill University, Montreal, Canada, H3G 0B1
- Centre for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, Montreal, Canada, H3G 1Y6
| |
Collapse
|
4
|
Lewis K, Kiepas A, Hudson J, Senecal J, Ha JR, Voorand E, Annis MG, Sabourin V, Ahn R, La Selva R, Tabariès S, Hsu BE, Siegel MJ, Dankner M, Canedo EC, Lajoie M, Watson IR, Brown CM, Siegel PM, Ursini-Siegel J. p66ShcA functions as a contextual promoter of breast cancer metastasis. Breast Cancer Res 2020; 22:7. [PMID: 31941526 PMCID: PMC6964019 DOI: 10.1186/s13058-020-1245-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/05/2020] [Indexed: 01/25/2023] Open
Abstract
Background The p66ShcA redox protein is the longest isoform of the Shc1 gene and is variably expressed in breast cancers. In response to a variety of stress stimuli, p66ShcA becomes phosphorylated on serine 36, which allows it to translocate from the cytoplasm to the mitochondria where it stimulates the formation of reactive oxygen species (ROS). Conflicting studies suggest both pro- and anti-tumorigenic functions for p66ShcA, which prompted us to examine the contribution of tumor cell-intrinsic functions of p66ShcA during breast cancer metastasis. Methods We tested whether p66ShcA impacts the lung-metastatic ability of breast cancer cells. Breast cancer cells characteristic of the ErbB2+/luminal (NIC) or basal (4T1) subtypes were engineered to overexpress p66ShcA. In addition, lung-metastatic 4T1 variants (4T1-537) were engineered to lack endogenous p66ShcA via Crispr/Cas9 genomic editing. p66ShcA null cells were then reconstituted with wild-type p66ShcA or a mutant (S36A) that cannot translocate to the mitochondria, thereby lacking the ability to stimulate mitochondrial-dependent ROS production. These cells were tested for their ability to form spontaneous metastases from the primary site or seed and colonize the lung in experimental (tail vein) metastasis assays. These cells were further characterized with respect to their migration rates, focal adhesion dynamics, and resistance to anoikis in vitro. Finally, their ability to survive in circulation and seed the lungs of mice was assessed in vivo. Results We show that p66ShcA increases the lung-metastatic potential of breast cancer cells by augmenting their ability to navigate each stage of the metastatic cascade. A non-phosphorylatable p66ShcA-S36A mutant, which cannot translocate to the mitochondria, still potentiated breast cancer cell migration, lung colonization, and growth of secondary lung metastases. However, breast cancer cell survival in the circulation uniquely required an intact p66ShcA S36 phosphorylation site. Conclusion This study provides the first evidence that both mitochondrial and non-mitochondrial p66ShcA pools collaborate in breast cancer cells to promote their maximal metastatic fitness.
Collapse
Affiliation(s)
- Kyle Lewis
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Jesse Hudson
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Jacqueline R Ha
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Elena Voorand
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Ryuhjin Ahn
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Rachel La Selva
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Brian E Hsu
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Matthew J Siegel
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Matthew Dankner
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada.,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada
| | - Eduardo Cepeda Canedo
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada.,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Mathieu Lajoie
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Ian R Watson
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Peter M Siegel
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada. .,Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, West, Room 513, Montreal, QC, H3A 1A3, Canada. .,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H3G 1Y6, Canada.
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada. .,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada. .,Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada. .,Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
5
|
Niveshika, Maurya SK, Tiwari B, Chakraborty S, Verma E, Mishra R, Mishra AK. Cyanobacterial bioactive compound EMTAHDCA recovers splenomegaly, affects protein profile of E. coli and spleen of lymphoma bearing mice. Mol Biol Rep 2019; 46:2617-2629. [DOI: 10.1007/s11033-019-04659-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
|
6
|
Sun JP, Ge QX, Ren Z, Sun XF, Xie SP. Down-regulation of HOXB5 inhibits TGF-β-induced migration and invasion in hepatocellular carcinoma cells via inactivation of the PI3K/Akt pathway. RSC Adv 2018; 8:41415-41421. [PMID: 35559288 PMCID: PMC9091567 DOI: 10.1039/c8ra06860g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
HOXB5, a member of the HOX gene family, is a developmental gene which encodes homeoproteins and is known to be a crucial player in development of enteric nervous systems. Recently, HOXB5 was reported to be associated with cancer progression. However, the specific effect of HOXB5 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the important role of HOXB5 in HCC. We showed that HOXB5 was up-regulated in HCC tissues and cell lines. Furthermore, down-regulation of HOXB5 inhibited TGF-β-induced HCC cell migration and invasion in vitro and suppressed tumor metastasis in vivo. We also found that the PI3K/Akt pathway partly accounted for the mechanisms underlying the inhibitory effect of HOXB5 down-regulation on TGF-β-induced HCC progression. Taken together, these findings demonstrated that down-regulation of HOXB5 inhibits TGF-β-induced migration and invasion in HCC cells via inactivation of the PI3K/Akt pathway. Thus, HOXB5 may be a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jin-Ping Sun
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Quan-Xing Ge
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Zheng Ren
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Xin-Fang Sun
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Shu-Ping Xie
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| |
Collapse
|
7
|
Andrzejewski S, Klimcakova E, Johnson RM, Tabariès S, Annis MG, McGuirk S, Northey JJ, Chénard V, Sriram U, Papadopoli DJ, Siegel PM, St-Pierre J. PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs. Cell Metab 2017; 26:778-787.e5. [PMID: 28988825 DOI: 10.1016/j.cmet.2017.09.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/31/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Metabolic adaptations play a key role in fueling tumor growth. However, less is known regarding the metabolic changes that promote cancer progression to metastatic disease. Herein, we reveal that breast cancer cells that preferentially metastasize to the lung or bone display relatively high expression of PGC-1α compared with those that metastasize to the liver. PGC-1α promotes breast cancer cell migration and invasion in vitro and augments lung metastasis in vivo. Pro-metastatic capabilities of PGC-1α are linked to enhanced global bioenergetic capacity, facilitating the ability to cope with bioenergetic disruptors like biguanides. Indeed, biguanides fail to mitigate the PGC-1α-dependent lung metastatic phenotype and PGC-1α confers resistance to stepwise increases in metformin concentration. Overall, our results reveal that PGC-1α stimulates bioenergetic potential, which promotes breast cancer metastasis and facilitates adaptation to metabolic drugs.
Collapse
Affiliation(s)
- Sylvia Andrzejewski
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Eva Klimcakova
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Radia M Johnson
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Shawn McGuirk
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jason J Northey
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Valérie Chénard
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Urshila Sriram
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - David J Papadopoli
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Julie St-Pierre
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
8
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
9
|
LPP is a Src substrate required for invadopodia formation and efficient breast cancer lung metastasis. Nat Commun 2017; 8:15059. [PMID: 28436416 PMCID: PMC5413977 DOI: 10.1038/ncomms15059] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
We have previously shown that lipoma preferred partner (LPP) mediates TGFβ-induced breast cancer cell migration and invasion. Herein, we demonstrate that diminished LPP expression reduces circulating tumour cell numbers, impairs cancer cell extravasation and diminishes lung metastasis. LPP localizes to invadopodia, along with Tks5/actin, at sites of matrix degradation and at the tips of extravasating breast cancer cells as revealed by intravital imaging of the chick chorioallantoic membrane (CAM). Invadopodia formation, breast cancer cell extravasation and metastasis require an intact LPP LIM domain and the ability of LPP to interact with α-actinin. Finally, we show that Src-mediated LPP phosphorylation at specific tyrosine residues (Y245/301/302) is critical for invadopodia formation, breast cancer cell invasion and metastasis. Together, these data define a previously unknown function for LPP in the formation of invadopodia and reveal a requirement for LPP in mediating the metastatic ability of breast cancer cells.
Collapse
|
10
|
Schüler-Toprak S, Häring J, Inwald EC, Moehle C, Ortmann O, Treeck O. Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro. BMC Cancer 2016; 16:951. [PMID: 28003019 PMCID: PMC5178087 DOI: 10.1186/s12885-016-2973-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Background Estrogen receptor β (ERβ) is expressed in the majority of invasive breast cancer cases, irrespective of their subtype, including triple-negative breast cancer (TNBC). Thus, ERβ might be a potential target for therapy of this challenging cancer type. In this in vitro study, we examined the role of ERβ in invasion of two triple-negative breast cancer cell lines. Methods MDA-MB-231 and HS578T breast cancer cells were treated with the specific ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol. Knockdown of ERβ expression was performed by means of siRNA transfection. Effects on cellular invasion were assessed in vitro by means of a modified Boyden chamber assay. Transcriptome analyses were performed using Affymetrix Human Gene 1.0 ST microarrays. Pathway and gene network analyses were performed by means of Genomatix and Ingenuity Pathway Analysis software. Results Invasiveness of MBA-MB-231 and HS578T breast cancer cells decreased after treatment with ERβ agonists ERB-041 and WAY200070. Agonists Liquiritigenin and 3β-Adiol only reduced invasion of MDA-MB-231 cells. Knockdown of ERβ expression increased invasiveness of MDA-MB-231 cells about 3-fold. Transcriptome and pathway analyses revealed that ERβ knockdown led to activation of TGFβ signalling and induced expression of a network of genes with functions in extracellular matrix, tumor cell invasion and vitamin D3 metabolism. Conclusions Our data suggest that ERβ suppresses invasiveness of triple-negative breast cancer cells in vitro. Whether ERβ agonists might be useful drugs in the treatment of triple-negative breast cancer, has to be evaluated in further animal and clinical studies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2973-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Schüler-Toprak
- Department of Gynaecology and Obstetrics, University Medical Center Regensburg, Caritas-Hospital St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany.
| | - Julia Häring
- Department of Gynaecology and Obstetrics, University Medical Center Regensburg, Caritas-Hospital St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany
| | - Elisabeth C Inwald
- Department of Gynaecology and Obstetrics, University Medical Center Regensburg, Caritas-Hospital St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics (KFB), Am BioPark 9, 93053, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynaecology and Obstetrics, University Medical Center Regensburg, Caritas-Hospital St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany
| | - Oliver Treeck
- Department of Gynaecology and Obstetrics, University Medical Center Regensburg, Caritas-Hospital St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany
| |
Collapse
|
11
|
Huang H, Svoboda RA, Lazenby AJ, Saowapa J, Chaika N, Ding K, Wheelock MJ, Johnson KR. Up-regulation of N-cadherin by Collagen I-activated Discoidin Domain Receptor 1 in Pancreatic Cancer Requires the Adaptor Molecule Shc1. J Biol Chem 2016; 291:23208-23223. [PMID: 27605668 DOI: 10.1074/jbc.m116.740605] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are highly malignant cancers characterized by extensive invasion into surrounding tissues, metastasis to distant organs, and a limited response to therapy. A main feature of pancreatic ductal adenocarcinomas is desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A hallmark of EMT is an increase in the expression of the mesenchymal cadherin N-cadherin. Previously we showed up-regulation of N-cadherin promotes tumor cell invasion and that collagen I-induced EMT is mediated by two collagen receptors, α2β1-integrin and discoidin domain receptor 1 (DDR1). DDR1 is a receptor-tyrosine kinase widely expressed during embryonic development and in many adult tissues and is also highly expressed in many different cancers. In the signaling pathway initiated by collagen, we have shown proline-rich tyrosine kinase 2 (Pyk2) is downstream of DDR1. In this study we found isoform b of DDR1 is responsible for collagen I-induced up-regulation of N-cadherin and tyrosine 513 of DDR1b is necessary. Knocking down Shc1, which binds to tyrosine 513 of DDR1b via its PTB (phosphotyrosine binding) domain, eliminates the up-regulation of N-cadherin. The signaling does not require a functional SH2 domain or the tyrosine residues commonly phosphorylated in Shc1 but is mediated by the interaction between a short segment of the central domain of Shc1 and the proline-rich region of Pyk2. Taken together, these data illustrate DDR1b, but not DDR1a, mediates collagen I-induced N-cadherin up-regulation, and Shc1 is involved in this process by coupling to both DDR1 and Pyk2.
Collapse
Affiliation(s)
- Huocong Huang
- From the Department of Biochemistry and Molecular Biology, College of Medicine
| | | | - Audrey J Lazenby
- Department of Pathology and Microbiology, College of Medicine, and
| | | | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Ke Ding
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China, and
| | - Margaret J Wheelock
- From the Department of Biochemistry and Molecular Biology, College of Medicine.,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, College of Medicine, .,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
12
|
Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Mol Cell Biol 2016; 36:1509-25. [PMID: 26976638 DOI: 10.1128/mcb.00600-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling.
Collapse
|
13
|
Ha JR, Siegel PM, Ursini-Siegel J. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness. J Cell Biochem 2016; 117:1971-90. [PMID: 27392311 DOI: 10.1002/jcb.25561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Abstract
Tumour metastasis, the movement of tumour cells from a primary site to progressively colonize distant organs, is a major contributor to the deaths of cancer patients. Therapeutic goals are the prevention of an initial metastasis in high-risk patients, shrinkage of established lesions and prevention of additional metastases in patients with limited disease. Instead of being autonomous, tumour cells engage in bidirectional interactions with metastatic microenvironments to alter antitumour immunity, the extracellular milieu, genomic stability, survival signalling, chemotherapeutic resistance and proliferative cycles. Can targeting of these interactions significantly improve patient outcomes? In this Review preclinical research, combination therapies and clinical trial designs are re-examined.
Collapse
Affiliation(s)
- Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis. Oncogene 2015; 34:5494-504. [PMID: 25772243 DOI: 10.1038/onc.2015.8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022]
Abstract
Glycoprotein nmb (GPNMB) promotes breast tumor growth and metastasis and its expression in tumor epithelium correlates with poor prognosis in breast cancer patients. Despite its biological and clinical significance, little is known regarding the molecular mechanisms engaged by GPNMB. Herein, we show that GPNMB engages distinct functional domains and mechanisms to promote primary tumor growth and metastasis. We demonstrate that neuropilin-1 (NRP-1) expression is increased in breast cancer cells that overexpress GPNMB. Interestingly, the GPNMB-driven increase in NRP-1 expression potentiated vascular endothelial growth factor signaling in breast cancer cells and was required for the growth, but not metastasis, of these cells in vivo. Interrogation of RNAseq data sets revealed a positive correlation between GPNMB and NRP-1 levels in human breast tumors. Furthermore, we ascribe pro-growth and pro-metastatic functions of GPNMB to its ability to bind α5β1 integrin and increase downstream signaling in breast cancer cells. We show that GPNMB enhances breast cancer cell adhesion to fibronectin, increases α5β1 expression and associates with this receptor through its RGD motif. GPNMB recruitment into integrin complexes activates Src and Fak signaling pathways in an RGD-dependent manner. Importantly, both the RGD motif and cytoplasmic tail of GPNMB are required to promote primary mammary tumor growth; however, only mutation of the RGD motif impaired the formation of lung metastases. Together, these findings identify novel and distinct molecular mediators of GPNMB-induced breast cancer growth and metastasis.
Collapse
|
16
|
Sagi O, Budovsky A, Wolfson M, Fraifeld VE. ShcC proteins: brain aging and beyond. Ageing Res Rev 2015; 19:34-42. [PMID: 25462193 DOI: 10.1016/j.arr.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 02/02/2023]
Abstract
To date, most studies of Shc family of signaling adaptor proteins have been focused on the near-ubiquitously expressed ShcA, indicating its relevance to age-related diseases and longevity. Although the role of the neuronal ShcC protein is much less investigated, accumulated evidence suggests its importance for neuroprotection against such aging-associated conditions as brain ischemia and oxidative stress. Here, we summarize more than decade of studies on the ShcC expression and function in normal brain, age-related brain pathologies and immune disorders with a focus on the interactions of ShcC with signaling proteins/pathways, and the possible implications of these interactions for changes associated with aging.
Collapse
Affiliation(s)
- Orli Sagi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Judea Regional Research & Development Center, Carmel 90404, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
17
|
Ciftci R, Tas F, Yasasever CT, Aksit E, Karabulut S, Sen F, Keskin S, Kilic L, Yildiz I, Bozbey HU, Duranyildiz D, Vatansever S. High serum transforming growth factor beta 1 (TGFB1) level predicts better survival in breast cancer. Tumour Biol 2014; 35:6941-8. [PMID: 24740564 DOI: 10.1007/s13277-014-1932-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
The transforming growth factor beta 1 (TGFB1) is a regulatory cytokine with both tumor suppressor and tumor-promoting effects in breast cancer (BC) cell lines and tissue. Data about level of circulating TGFB1 and its prognostic significance in BC patients is conflicting. The objective of this study is to determine the clinical significance of the serum TGFB1 levels in BC patients. We enrolled 96 female patients with histopathologically diagnosed BC who did not receive chemotherapy (CT) or radiotherapy. Serum TGFB1 levels were measured by ELISA method and compared with 30 healthy controls. The mean serum TGFB1 level of BC patients was significantly higher than controls (0.08 vs. 0.04 ng/ml, p < 0.001). There was no significant difference according to known disease-related clinicopathological or laboratory parameters. Serum TGFB1 level had a significant impact on overall survival in both univariate (p = 0.01) and multivariate analysis (p = 0.013). Serum TGFB1 level is elevated in BC patients and has a favorable prognostic value. However, it has no predictive role on CT response.
Collapse
Affiliation(s)
- Rumeysa Ciftci
- Medical Oncology Department, Institute of Oncology, Istanbul University, Capa, Istanbul, Turkey,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pomerleau V, Landry M, Bernier J, Vachon PH, Saucier C. Met receptor-induced Grb2 or Shc signals both promote transformation of intestinal epithelial cells, albeit they are required for distinct oncogenic functions. BMC Cancer 2014; 14:240. [PMID: 24708867 PMCID: PMC4234027 DOI: 10.1186/1471-2407-14-240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Background Deregulation of receptor tyrosine kinases (RTK) contributes to the initiation and progression of intestinal-derived epithelial cancers, including colorectal cancer (CRC). However, the roles of the proximal signaling molecules engaged by RTKs in different oncogenic functions of CRC remain unclear. Methods Herein, the functional impact of expressing variant forms of the oncogenic Met receptor (Tpr-Met) that selectively recruit the adaptor proteins Grb2 or Shc was investigated in a model derived from normal intestinal epithelial cells (IEC-6). An RNA interference (RNAi) approach was used to define the requirement of Grb2 or Shc in Tpr-Met-transformed IEC-6 cells. Since Grb2 and Shc couple RTKs to the activation of the Ras/MEK/Erk and PI3K/Akt pathways, Erk and Akt phosphorylation/activation states were monitored in transformed IEC-6 cells, and a pharmacological approach was employed to provide insights into the roles of these pathways in oncogenic processes evoked by activated Met, and downstream of Grb2 and Shc. Results We show, for the first time, that constitutive activation of either Grb2 or Shc signals in IEC-6 cells, promotes morphological transformation associated with down-regulation of E-cadherin, as well as increased cell growth, loss of growth contact inhibition, anchorage-independent growth, and resistance to serum deprivation and anoikis. Oncogenic activation of Met was revealed to induce morphological transformation, E-cadherin down-regulation, and protection against anoikis by mechanisms dependent on Grb2, while Shc was shown to be partly required for enhanced cell growth. The coupling of activated Met to the Ras/MEK/Erk and PI3K/Akt pathways, and the sustained engagement of Grb2 or Shc in IECs, was shown to trigger negative feedback, limiting the extent of activation of these pathways. Nonetheless, morphological alterations and E-cadherin down-regulation induced by the oncogenic Tpr-Met, and by Grb2 or Shc signals, were blocked by MEK, but not PI3K, inhibitors while the enhanced growth and resistance to anoikis induced by Tpr-Met were nearly abolished by co-treatment with both inhibitors. Conclusion Overall, these results identify Grb2 and Shc as central signaling effectors of Met-driven progression of intestinal epithelial-derived cancers. Notably, they suggest that Grb2 may represent a promising target for the design of novel CRC therapies.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean-Mignault, Sherbrooke, Quebec J1E 4K8, Canada.
| |
Collapse
|