1
|
Abstract
LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Meihua She
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
2
|
Amhaz S, Boëda B, Chouchène M, Colasse S, Dingli F, Loew D, Henri J, Prunier C, Levy L. The UAS thioredoxin-like domain of UBXN7 regulates E3 ubiquitin ligase activity of RNF111/Arkadia. BMC Biol 2023; 21:73. [PMID: 37024974 PMCID: PMC10080908 DOI: 10.1186/s12915-023-01576-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND E3 ubiquitin ligases play critical roles in regulating cellular signaling pathways by inducing ubiquitylation of key components. RNF111/Arkadia is a RING E3 ubiquitin ligase that activates TGF-β signaling by inducing ubiquitylation and proteasomal degradation of the transcriptional repressor SKIL/SnoN. In this study, we have sought to identify novel regulators of the E3 ubiquitin ligase activity of RNF111 by searching for proteins that specifically interacts with its RING domain. RESULTS We found that UBXN7, a member of the UBA-UBX family, directly interacts with the RING domain of RNF111 or its related E3 RNF165/ARK2C that shares high sequence homology with RNF111. We showed that UBXN7 docks on RNF111 or RNF165 RING domain through its UAS thioredoxin-like domain. Overexpression of UBXN7 or its UAS domain increases endogenous RNF111, while an UBXN7 mutant devoid of UAS domain has no effect. Conversely, depletion of UBXN7 decreases RNF111 protein level. As a consequence, we found that UBXN7 can modulate degradation of the RNF111 substrate SKIL in response to TGF-β signaling. We further unveiled this mechanism of regulation by showing that docking of the UAS domain of UBXN7 inhibits RNF111 ubiquitylation by preventing interaction of the RING domain with the E2 conjugating enzymes. By analyzing the interactome of the UAS domain of UBXN7, we identified that it also interacts with the RING domain of the E3 TOPORS and similarly regulates its E3 ubiquitin ligase activity by impairing E2 binding. CONCLUSIONS Taken together, our results demonstrate that UBXN7 acts as a direct regulator for the E3 ubiquitin ligases RNF111, RNF165, and TOPORS and reveal that a thioredoxin-like domain can dock on specific RING domains to regulate their E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Sadek Amhaz
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris Cité, F-75015, Paris, France
| | - Mouna Chouchène
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France
| | - Sabrina Colasse
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Julien Henri
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 75005, Paris, France
| | - Céline Prunier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France.
| | - Laurence Levy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France.
| |
Collapse
|
3
|
Laigle V, Dingli F, Amhaz S, Perron T, Chouchène M, Colasse S, Petit I, Poullet P, Loew D, Prunier C, Levy L. Quantitative ubiquitylome analysis reveals specificity of RNF111/Arkadia E3 ubiquitin ligase for its degradative substrates SKI and SKIL/SnoN in TGF-β signaling pathway. Mol Cell Proteomics 2021; 20:100173. [PMID: 34740826 PMCID: PMC8665411 DOI: 10.1016/j.mcpro.2021.100173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
RNF111/Arkadia is an E3 ubiquitin ligase that activates the TGF-β pathway by degrading transcriptional repressors SKIL/SnoN and SKI, and truncations of the RING C-terminal domain of RNF111 that abolish its E3 function and subsequently TGF-β signaling are observed in some cancers. In the present study, we sought to perform a comprehensive analysis of RNF111 endogenous substrates upon TGF-β signaling activation using an integrative proteomic approach. In that aim we carried out label free quantitative proteomics after enrichment of ubiquitylated proteins (ubiquitylome) in parental U2OS cell line compared to U2OS CRISPR engineered clones expressing a truncated form of RNF111 devoid of its C-terminal RING domain. We compared two methods of enrichment for ubiquitylated proteins prior to proteomics analysis by mass spectrometry, the diGly remnant peptide immunoprecipitation with a K-ε-GG antibody (diGly) and a novel approach using protein immunoprecipitation with a ubiquitin pan nanobody (pan UB) that recognizes all ubiquitin chains and monoubiquitylation. While we detected SKIL ubiquitylation among 108 potential RNF111 substrates with the diGly method, we found that the pan UB method also constitutes a powerful approach since it enabled detection of 52 potential RNF111 substrates including SKI, SKIL and RNF111. Integrative comparison of the RNF111-dependent proteome and ubiquitylomes enabled identification of SKI and SKIL as the only targets ubiquitylated and degraded by RNF111 E3 ligase function in presence of TGF-β. Our results indicate that lysine 343 localized in the SAND domain of SKIL constitutes a target for RNF111 ubiquitylation and demonstrate that RNF111 E3 ubiquitin ligase function specifically targets SKI and SKIL ubiquitylation and degradation upon TGF-β pathway activation.
Collapse
Affiliation(s)
- Victor Laigle
- Institut Curie, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, 75005 Paris, France
| | - Sadek Amhaz
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Tiphaine Perron
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Mouna Chouchène
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Sabrina Colasse
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Isabelle Petit
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | | | - Damarys Loew
- Institut Curie, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, 75005 Paris, France
| | - Céline Prunier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Laurence Levy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France.
| |
Collapse
|
4
|
Zhou Q, Zhang J. K27-linked noncanonic ubiquitination in immune regulation. J Leukoc Biol 2021; 111:223-235. [PMID: 33857334 DOI: 10.1002/jlb.4ru0620-397rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is a common form of posttranslational modification that has been implicated in regulating considerable immune signaling pathways. The functions of canonic K48- and K63-linked ubiquitination have been well studied. However, the roles of noncanonic ubiquitination remain largely unexplored and require further investigations. There is increasing evidence suggesting that K27-linked noncanonic ubiquitination turns out to be indispensable to both innate immune signaling and T cell signaling. In this review, we provide an overview of the latest findings related to K27-linked ubiquitination, and highlight the crucial roles of K27-linked ubiquitination in regulating antimicrobial response, cytokine signaling and response, as well as T cell activation and differentiation. We also propose interesting areas for better understanding how K27-linked ubiquitination regulates immunity.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
6
|
Liu X, Qin J, Gao T, Li C, Chen X, Zeng K, Xu M, He B, Pan B, Xu X, Pan Y, Sun H, Xu T, Wang S. Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:21638-21659. [PMID: 33159022 PMCID: PMC7695415 DOI: 10.18632/aging.103959] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/01/2020] [Indexed: 12/25/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation is the most prevalent modification of messenger RNAs (mRNAs) and catalyzed by a multicomponent methyltransferase complex (MTC), among which methyltransferase-like 3 (METTL3) and METTL14 are two core molecules. However, METTL3 and METTL14 play opposite regulatory roles in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, we conducted a multi-omics analysis of METTL3 and METTL14 in HCC, including RNA-sequencing, m6ARIP-sequencing, and ribosome-sequencing profiles. We found that the expression and prognostic value of METTL3 and METTL14 are opposite in HCC. Besides, after METTL3 and METTL14 knockdown, most of the dysregulated mRNAs, signaling pathways and biological processes are distinct in HCC, which partly explains the contrary regulatory role of METTL3 and METTL14. Intriguingly, these mRNAs whose stability or translation efficiency are influenced by METTL3 or METTL14 in an m6A dependent manner, jointly regulate multiple signaling pathways and biological processes, which supports the cooperative role of METTL3 and METTL14 in catalyzing m6A modification. In conclusion, our study further clarified the contradictory role of METTL3 and METTL14 in HCC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Tianyi Gao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chenmeng Li
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xueni Xu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China
| |
Collapse
|
7
|
Shi Y, Wang X, Xu Z, He Y, Guo C, He L, Huan C, Cai C, Huang J, Zhang J, Li Y, Zeng C, Zhang X, Wang L, Ke Y, Cheng H. PDLIM5 inhibits STUB1-mediated degradation of SMAD3 and promotes the migration and invasion of lung cancer cells. J Biol Chem 2020; 295:13798-13811. [PMID: 32737199 DOI: 10.1074/jbc.ra120.014976] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) signaling plays an important role in regulating tumor malignancy, including in non-small cell lung cancer (NSCLC). The major biological responses of TGFβ signaling are determined by the effector proteins SMAD2 and SMAD3. However, the regulators of TGFβ-SMAD signaling are not completely revealed yet. Here, we showed that the scaffolding protein PDLIM5 (PDZ and LIM domain protein 5, ENH) critically promotes TGFβ signaling by maintaining SMAD3 stability in NSCLC. First, PDLIM5 was highly expressed in NSCLC compared with that in adjacent normal tissues, and high PDLIM5 expression was associated with poor outcome. Knockdown of PDLIM5 in NSCLC cells decreased migration and invasion in vitro and lung metastasis in vivo In addition, TGFβ signaling and TGFβ-induced epithelial-mesenchymal transition was repressed by PDLIM5 knockdown. Mechanistically, PDLIM5 knockdown resulted in a reduction of SMAD3 protein levels. Overexpression of SMAD3 reversed the TGFβ-signaling-repressing and anti-migration effects induced by PDLIM5 knockdown. Notably, PDLIM5 interacted with SMAD3 but not SMAD2 and competitively suppressed the interaction between SMAD3 and its E3 ubiquitin ligase STUB1. Therefore, PDLIM5 protected SMAD3 from STUB1-mediated proteasome degradation. STUB1 knockdown restored SMAD3 protein levels, cell migration, and invasion in PDLIM5-knockdown cells. Collectively, our findings indicate that PDLIM5 is a novel regulator of basal SMAD3 stability, with implications for controlling TGFβ signaling and NSCLC progression.
Collapse
Affiliation(s)
- Yueli Shi
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Wang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Chunyi Guo
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjuan He
- Department of Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caijuan Huan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changhong Cai
- Department of Cardiology, Lishui Central Hospital, Lishui, China
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Central Hospital, Lishui, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrun Wang
- Department of Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China; Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Zhang L, Li R, Chen L, Xing Z, Song Y, Nie X, Wang L, Han H, Liu A, Ma X, Ma RZ, Tian S. Expression, location and biological effects of four and a half LIM domain protein 2 (FHL2) on granulosa cells in ovine. Reprod Domest Anim 2020; 55:737-746. [PMID: 32181932 DOI: 10.1111/rda.13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
Abstract
Previous studies have shown that four and a half LIM domain protein 2 (FHL2) plays an essential role in the regulation of follicular development in mammals. Although the FHL2 genes of human and mouse have been well characterized, the expression and location of FHL2 in ovary and the biological functions of FHL2 on granulosa cells (GCs) of ovine are still not clear. In this study, full-length complementary DNA (cDNA) of FHL2 from ovine follicular GCs was amplified by real-time PCR (RT-PCR). The expression and location of FHL2 in ovary and GCs of ovine were studied by immunohistochemistry and immunofluorescence, and the biological effects of FHL2 on the cell proliferation, cell apoptosis, cell cycles and expression level of related genes of ovine GCs were also explored by overexpression or knockdown of FHL2. The results indicated that FHL2 was expressed in ovine follicular GCs and the sequence of the FHL2 cDNA was consistent with that predicted in GenBank, which did not cause an amino acid change. According to the results, FHL2 was expressed in ovine ovary and mainly located in the cytoplasm and nucleus of GCs. In addition, overexpression of FHL2 significantly reduced the cell viability, promoted the cell apoptosis and decreased the percentage of G0/G1 and S phase cells. RT-PCR showed that overexpression of FHL2 significantly increased the mRNA expression level of Bax and decreased the expression of Bcl-2 and the Bcl-2/Bax mRNA ratio compared with the control group. Besides, the knockdown of FHL2 gene in ovine GCs significantly improved the cell viability, suppressed the cell apoptosis, decreased the mRNA expression level of Caspase-3 gene, increased the Bcl-2/Bax mRNA ratio and increased the percentage of S and G2/M phase cells. Our results suggest that FHL2 may play an important role in the biological functions of GCs in ovine.
Collapse
Affiliation(s)
- Limeng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Runting Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Longxin Chen
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Zhenzhen Xing
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Yue Song
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Xiaoning Nie
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Linqing Wang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Hongye Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Aiju Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaofei Ma
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Runlin Z Ma
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China.,State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,Research Center of Cattle and Sheep, Embryonic Technique of Hebei Province, Baoding, China
| |
Collapse
|
9
|
FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY) 2020; 12:53-69. [PMID: 31935687 PMCID: PMC6977653 DOI: 10.18632/aging.102564] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is intractable due to its strong invasiveness and metastatic ability. Epithelial-mesenchymal transition (EMT) is the pivotal driver of tumor invasion and metastasis. The four-and-a-half LIM domain (FHL) family is involved in regulating transforming growth factor (TGF)-β and Ras signaling, which might control the EMT process. In this study, we found that higher expression of four-and-a-half LIM domains 3 (FHL3) predicted poor prognosis in PDAC. The decreasing of FHL3 changed the EMT phenotype by blocking the TGFβ/Atk/GSK3β/ubiquitin pathways. Interestingly, the GSK3β inhibitor could abrogate the role of FHL3 in the regulation of snail1 and twist1 expression, which implied that GSK3β plays a pivotal role in the FHL3-mediated EMT process. Furthermore, we found that FHL3 can directly bind to GSK3β, which weakened the interaction between GSK3β and snail1/twist1. We also found that the LIM-3 domain of FHL3 was required for the binding of FHL3 to GSK3β. Collectively, our study implied that FHL3, as a binding partner of GSK3β, promoted tumor metastasis in PDAC through inhibiting the ubiquitin-degradation of snail1 and twist1.
Collapse
|
10
|
Kroone C, Vos M, Rademakers T, Kuijpers M, Hoogenboezem M, van Buul J, Heemskerk JWM, Ruf W, van Hylckama Vlieg A, Versteeg HH, Goumans MJ, de Vries CJM, Kurakula K. LIM-only protein FHL2 attenuates vascular tissue factor activity, inhibits thrombus formation in mice and FHL2 genetic variation associates with human venous thrombosis. Haematologica 2019; 105:1677-1685. [PMID: 31467128 PMCID: PMC7271603 DOI: 10.3324/haematol.2018.203026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Bleeding disorders and thrombotic complications are major causes of morbidity and mortality with many cases being unexplained. Thrombus formation involves aberrant expression and activation of tissue factor (TF) in vascular endothelial and smooth muscle cells. Here, we sought to identify factors that modulate TF gene expression and activity in these vascular cells. The LIM-only protein FHL2 is a scaffolding protein that modulates signal transduction pathways with crucial functions in endothelial and smooth muscle cells. However, the role of FHL2 in TF regulation and thrombosis remains unexplored. Using a murine model of venous thrombosis in mesenteric vessels, we demonstrated that FHL2 deficiency results in exacerbated thrombus formation. Gain- and loss-of-function experiments revealed that FHL2 represses TF expression in endothelial and smooth muscle cells through inhibition of the transcription factors nuclear factor κB and activating protein-1. Furthermore, we observed that FHL2 interacts with the cytoplasmic tail of TF. In line with our in vivo observations, FHL2 decreases TF activity in endothelial and smooth muscle cells whereas FHL2 knockdown or deficiency results in enhanced TF activity. Finally, the FHL2 single nucleotide polymorphism rs4851770 was associated with the risk of venous thrombosis in a large population of venous thrombosis cases and control subjects from 12 studies (INVENT consortium). Altogether, our results highlight functional involvement of FHL2 in TF-mediated coagulation and identify FHL2 as a novel gene associated with venous thrombosis in humans.
Collapse
Affiliation(s)
- Chantal Kroone
- The Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (UMC), Leiden, the Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo Rademakers
- Department of Molecular Cell Biology, Sanquin Research, Amsterdam, the Netherlands
| | - Marijke Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC, Maastricht, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research, Amsterdam, the Netherlands
| | - Jaap van Buul
- Department of Molecular Cell Biology, Sanquin Research, Amsterdam, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC, Maastricht, The Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Center for Thrombosis and Hemostasis Mainz, Germany
| | | | - Henri H Versteeg
- The Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (UMC), Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kondababu Kurakula
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands .,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
11
|
Abstract
The 4-and-a-half LIM domain protein 2 (FHL2) is a multifunctional adaptor protein that can interact with cell surface receptors, cytosolic adaptor and structural proteins, kinases, and nuclear transcription factors. It is involved in numerous functional activities, including the epithelial-mesenchymal transition, cell proliferation, apoptosis, adhesion, migration, structural stability, and gene expression. Despite this, FHL2-knockout (KO) mice are viable and fertile with no obvious abnormalities, rather suggesting a high capacity for fine-tuning adjustment and functional redundancy of FHL2. Indeed, challenging FHL2-KO cells or mice provided numerous evidences for the great functional significance of FHL2. In recent years, several reviews have been published describing the high capacity of FHL2 to bind diverse proteins as well as the versatile functions of FHL2, emphasizing in particular its role in cardiovascular diseases and carcinogenesis. Here, we view the function of FHL2 from a different perspective. We summarize the published data demonstrating the impact of FHL2 on wound healing and inflammation. FHL2 seems to be involved in numerous steps of these extremely complex and multidirectional but tightly regulated tissue remodeling processes, supporting tissue repair and coordinating inflammation. Deficiency of FHL2 not only slows down ongoing wound healing but also often turns it into a chronic condition.-Wixler, V. The role of FHL2 in wound healing and inflammation.
Collapse
Affiliation(s)
- Viktor Wixler
- Centre for Molecular Biology of Inflammation, Institute of Molecular Virology, Westfaelische Wilhelms University Muenster, Muenster, Germany
| |
Collapse
|
12
|
Jin X, Jiao X, Jiao J, Zhang T, Cui B. Increased expression of FHL2 promotes tumorigenesis in cervical cancer and is correlated with poor prognosis. Gene 2018; 669:99-106. [PMID: 29800735 DOI: 10.1016/j.gene.2018.05.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Increasing evidence demonstrates that the four and a half LIM domain (FHL) gene and its protein products have different functions in the progression of various malignancies. However, the role of FHL protein 2 (FHL2) in cervical cancer (CC) has not been fully elucidated. In this study, we investigated the prognostic value of FHL2 expression in human CC tissues and the potential molecular mechanisms through which FHL2 modulates CC cell proliferation and apoptosis. MATERIALS AND METHODS We measured FHL2 expression in CC cell lines and tissues by quantitative real-time polymerase chain reaction and Western blot assays. The effects of FHL2 knockdown on cell proliferation and apoptosis in two CC cell lines were examined using RNA interference, cell counting kit-8, Western blot and flow cytometry assays. Furthermore, we assessed phosphorylated protein kinase B (p-AKT) and phosphorylated mammalian target of rapamycin (p-mTOR) expression in two CC cell lines to determine whether the AKT/mTOR pathway is involved in the effects of FHL2 silencing on cell proliferation and apoptosis. Nude mice tumorigenicity experiments were also performed to evaluate the effects of FHL2 on HeLa cell growth in vivo. RESULTS We found that FHL2 was significantly upregulated in CC cell lines and tissues. According to survival curves, high FHL2 expression levels in patients were correlated with poor prognosis. Moreover, by decreasing p-AKT and p-mTOR protein levels, silencing FHL2 significantly inhibited cell proliferation and induced apoptosis. FHL2 knockdown also induced apoptosis by increasing the Bax-to-Bcl2 ratio. By contrast, FHL2 overexpression significantly promoted cell proliferation. Finally, decreased tumour growth in an in vivo animal model also demonstrated the tumour-suppressing effects of FHL2 knockdown. CONCLUSION Our findings indicate that FHL2 is an important prognostic factor in CC and that it plays a crucial oncoprotein role by promoting cell proliferation and inhibiting apoptosis in CC, possibly by targeting the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xuejing Jin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Obstetrics and Gynecology, Hangzhou Women's Hospital & Hangzhou Maternity and Child Health Care Hospital, Hangzhou 310000, China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jun Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
13
|
Ma Y, Yuan S, Tian X, Lin S, Wei S, Hu T, Chen S, Li X, Chen S, Wu D, Wang M, Guo D. ABIN1 inhibits HDAC1 ubiquitination and protects it from both proteasome- and lysozyme-dependent degradation. J Cell Biochem 2017; 119:3030-3043. [PMID: 29058807 DOI: 10.1002/jcb.26428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
ABIN1, an important immune regulator, has been shown to be involved in various cellular functions, such as immunity, development, tissue homeostasis, and tumor progression. It inhibits TNF- and TLR-induced NF-κB signaling activation and the consequent gene expression. Despite its functional significance, the mechanism of ABIN1 in the regulation of various cellular functions remains unclear. In this study, we identified HDAC1, a key regulator of eukaryotic gene expression and many important cellular events, including cell proliferation, differentiation, cancer and immunity, as an interacting partner of ABIN1. The results showed that ABIN1 acted as a modulator to down-regulate HDAC1 ubiquitination via three different linkages, thereby stabilizing HDAC1 by inhibiting its lysosomal and proteasomal degradation. Interestingly, the inhibitory function of ABIN1 required direct binding with HDAC1. Moreover, the level of p53, which was a tumor suppressor and a well-studied substrate of HDAC1, was under the regulation of ABIN1 via the modulation of HDAC1 levels, suggesting that ABIN1 was physiologically significant in tumor progression. This study has revealed a new function of ABIN1 in mediating HDAC1 modification and stability.
Collapse
Affiliation(s)
- Yuhong Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Sen Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xuezhang Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shanchuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shangmou Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Tongtong Hu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiyou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Xueqing Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Dongcheng Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China.,School of Basic Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
14
|
Walachowski S, Tabouret G, Fabre M, Foucras G. Molecular Analysis of a Short-term Model of β-Glucans-Trained Immunity Highlights the Accessory Contribution of GM-CSF in Priming Mouse Macrophages Response. Front Immunol 2017; 8:1089. [PMID: 28955331 PMCID: PMC5601002 DOI: 10.3389/fimmu.2017.01089] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022] Open
Abstract
β-Glucans (BGs) are glucose polymers present in the fungal cell wall (CW) and, as such, are recognized by innate immune cells as microbial-associated pattern through Dectin-1 receptor. Recent studies have highlighted the ability of the pathogenic yeast Candida albicans or its CW-derived β(1,3) (1,6)-glucans to increase human monocytes cytokine secretion upon secondary stimulation, a phenomenon now referred as immune training. This ability of monocytes programming confers BGs an undeniable immunotherapeutic potential. Our objective was to determine whether BGs from Saccharomyces cerevisiae, a non-pathogenic yeast, are endowed with such a property. For this purpose, we have developed a short-term training model based on lipopolysaccharide re-stimulation of mouse bone marrow-derived macrophages primed with S. cerevisiae BGs. Through a transcriptome analysis, we demonstrated that BGs induced a specific gene expression signature involving the PI3K/AKT signaling pathway as in human monocytes. Moreover, we showed that over-expression of Csf2 (that encodes for GM-CSF) was a Dectin-1-dependent feature of BG-induced priming of macrophages. Further experiments confirmed that GM-CSF up-regulated Dectin-1 cell surface expression and amplified macrophages response along BG-mediated training. However, the blockade of GM-CSFR demonstrated that GM-CSF was not primarily required for BG-induced training of macrophages although it can substantially improve it. In addition, we found that mouse macrophages trained with BGs upregulated their expression of the four and a half LIM-only protein 2 (Fhl2) in a Dectin-1-dependent manner. Consistently, we observed that intracellular levels of FHL2 increased after stimulation of macrophages with BGs. In conclusion, our experiments provide new insights on GM-CSF contribution to the training of cells from the monocytic lineage and highlights FHL2 as a possible regulator of BG-associated signaling.
Collapse
Affiliation(s)
| | | | - Marion Fabre
- Université de Toulouse, INRA, INP, ENVT, IHAP, Toulouse, France
| | - Gilles Foucras
- Université de Toulouse, INRA, INP, ENVT, IHAP, Toulouse, France
| |
Collapse
|
15
|
Hu W, Yu X, Liu Z, Sun Y, Chen X, Yang X, Li X, Lam WK, Duan Y, Cao X, Steller H, Liu K, Huang P. The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms. eLife 2017; 6. [PMID: 28656888 PMCID: PMC5503512 DOI: 10.7554/elife.28021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/28/2017] [Indexed: 12/03/2022] Open
Abstract
Adenylyl cyclases (ACs) generate cAMP, a second messenger of utmost importance that regulates a vast array of biological processes in all kingdoms of life. However, almost nothing is known about how AC activity is regulated through protein degradation mediated by ubiquitination or other mechanisms. Here, we show that transcriptional regulator interacting with the PHD-bromodomain 1 (TRIP-Br1, Sertad1), a newly identified protein with poorly characterized functions, acts as an adaptor that bridges the interaction of multiple AC isoforms with X-linked inhibitor of apoptosis protein (XIAP), a RING-domain E3 ubiquitin ligase. XIAP ubiquitinates a highly conserved Lys residue in AC isoforms and thereby accelerates the endocytosis and degradation of multiple AC isoforms in human cell lines and mice. XIAP/TRIP-Br1-mediated degradation of ACs forms part of a negative-feedback loop that controls the homeostasis of cAMP signaling in mice. Our findings reveal a previously unrecognized mechanism for degrading multiple AC isoforms and modulating the homeostasis of cAMP signaling. DOI:http://dx.doi.org/10.7554/eLife.28021.001
Collapse
Affiliation(s)
- Wenbao Hu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaojie Yu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhengzhao Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Sun
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xibing Chen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaofen Li
- Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Kwan Lam
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuanyuan Duan
- Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xu Cao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
16
|
LIM-Only Protein FHL2 Is a Negative Regulator of Transforming Growth Factor β1 Expression. Mol Cell Biol 2017; 37:MCB.00636-16. [PMID: 28223370 DOI: 10.1128/mcb.00636-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) is a master cytokine in many biological processes, including tissue homeostasis, epithelial-to-mesenchymal transition, and wound repair. Here, we report that four and a half LIM-only protein 2 (FHL2) is a critical regulator of TGF-β1 expression. Devoid of a DNA-binding domain, FHL2 is a transcriptional cofactor that plays the role of coactivator or corepressor, depending on the cell and promoter contexts. We detected association of FHL2 with the TGF-β1 promoter, which showed higher activity in Fhl2-/- cells than in wild-type (WT) cells in a reporter assay. Overexpression of FHL2 abrogates the activation of the TGF-β1 promoter, whereas the upregulation of TGF-β1 gene transcription correlates with reduced occupancy of FHL2 on the promoter. Moreover, ablation of FHL2 facilitates recruitment of RNA polymerase II on the TGF-β1 promoter, suggesting that FHL2 may be involved in chromatin remodeling in the control of TGF-β1 gene transcription. Enhanced expression of TGF-β1 mRNA and cytokine was evidenced in the livers of Fhl2-/- mice. We tested the in vivo impact of Fhl2 loss on hepatic fibrogenesis that involves TGF-β1 activation. Fhl2-/- mice developed more severe fibrosis than their WT counterparts. These results demonstrate the repressive function of FHL2 on TGF-β1 expression and contribute to the understanding of the TGF-β-mediated fibrogenic response.
Collapse
|
17
|
Four and a half LIM domains 2 contributes to the development of human tongue squamous cell carcinoma. J Mol Histol 2016; 47:105-16. [PMID: 26759260 DOI: 10.1007/s10735-016-9654-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Four and a half LIM domains 2 (FHL2) is a protein of 279 amino acids in length containing four full LIM-domains and a half LIM-domain at the amino terminus. FHL2 is one transcriptional cofactor that can interact with many different proteins, such as AP-1, BRCA1, IGFBP, and integrin, and involved in organ differentiation, development, cell apoptosis, and carcinogenesis. Recent studies showed that FHL2 could play different roles acting as co-activator or corepressor in different cancer types, depending on the cell types involved. However, no report about FHL2 function in tongue squamous cell carcinoma (TSCC) is available to date. This study aims to determine the FHL2 expression and its biological functions in TSCC via in vitro and in vivo studies. Results show that FHL2 expression was associated with the pathological differentiation of TSCC samples through immunohistochemistry. FHL2 overexpression could stimulate cell proliferation, invasiveness, and metastases investigated by MTT, flow cytometry, Transwell and cell scratch methods. FHL2 could also elevate tumor-related molecule nuclear transcription factor-B (NF-кB) and β-catenin expression levels both at transcriptional and translational levels through real-time PCR and Western blot analyses. The in vivo nude mice experiment showed that the tumorigenicity of FHL2 overexpression group was significantly increased compared with control groups. These results suggest that FHL2 overexpression could contribute to the growth, proliferation, invasiveness, and metastasis of human tongue squamous cell carcinoma; furthermore, its function in TSCC might be related with the upregulation of NF-кB and β-catenin expressions.
Collapse
|
18
|
Tran MK, Kurakula K, Koenis DS, de Vries CJM. Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:219-28. [PMID: 26548523 DOI: 10.1016/j.bbamcr.2015.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022]
Abstract
FHL2 belongs to the LIM-domain only proteins and contains four and a half LIM domains, each of which are composed of two zinc finger structures. FHL2 exhibits specific interaction with proteins exhibiting diverse functions, including transmembrane receptors, transcription factors and transcription co-regulators, enzymes, and structural proteins. The function of these proteins is regulated by FHL2, which modulates intracellular signal transduction pathways involved in a plethora of cellular tasks. The present review summarizes the current knowledge on the protein interactome of FHL2 and provides an overview of the functional implication of these interactions in apoptosis, migration, and regulation of nuclear receptor function. FHL2 was originally identified in the heart and there is extensive literature available on the role of FHL2 in the cardiovascular system, which is also summarized in this review.
Collapse
Affiliation(s)
- M Khang Tran
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kondababu Kurakula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Duco S Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Tsubakihara Y, Hikita A, Yamamoto S, Matsushita S, Matsushita N, Oshima Y, Miyazawa K, Imamura T. Arkadia enhances BMP signalling through ubiquitylation and degradation of Smad6. J Biochem 2015; 158:61-71. [PMID: 25762727 DOI: 10.1093/jb/mvv024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/17/2015] [Indexed: 02/02/2023] Open
Abstract
Arkadia, a positive regulator of Smad-dependent signalling via the transforming growth factor-β (TGF-β) family, is an E3 ubiquitin ligase that induces ubiquitylation and proteasome-dependent degradation of TGF-β suppressors such as Smad7, c-Ski and SnoN. In this study, we examined the effects of Arkadia on bone morphogenetic protein (BMP)-induced osteoblast differentiation. Knockdown of Arkadia reduced mineralization and expression of osteoblast differentiation markers. Furthermore, we showed that Smad6, a BMP-specific inhibitory Smad, is a target of Arkadia: wild-type (WT) Arkadia, but not the C937A (CA) mutant lacking E3 ubiquitin-ligase activity, induced ubiquitylation and proteasome-dependent degradation of Smad6. Accordingly, protein levels of Smad6, Smad7 and c-Ski were elevated in MEFs from Arkadia KO mice. Finally, expression of Arkadia attenuated blockade of BMP signalling by Smad6 in a transcriptional reporter assay. These results demonstrate that Smad6 is a novel target of Arkadia, and that Arkadia positively regulates BMP signalling via degradation of Smad6, Smad7 and c-Ski/SnoN.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsuhiko Hikita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shin Yamamoto
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Sachi Matsushita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Natsuki Matsushita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yusuke Oshima
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-im
| | - Keiji Miyazawa
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-im
| |
Collapse
|
20
|
Westphal P, Mauch C, Florin A, Czerwitzki J, Olligschläger N, Wodtke C, Schüle R, Büttner R, Friedrichs N. Enhanced FHL2 and TGF-β1 Expression Is Associated With Invasive Growth and Poor Survival in Malignant Melanomas. Am J Clin Pathol 2015; 143:248-56; quiz 307. [PMID: 25596251 DOI: 10.1309/ajcpxec6cit2txaf] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVES This study examines the expression and the role of four-and-a-half LIM domains protein 2 (FHL2) and transforming growth factor β1 (TGF-β1) in human malignant melanoma. It is determined whether both proteins influence melanoma survival time. METHODS We analyzed the immunohistochemical staining intensities of FHL2 and TGF-β1 in normal skin and in 50 malignant melanomas with different mutation status (BRAF-V600E, NRAS codon 61 mutation, and wild type). Survival data were available for 45 cases. RESULTS In melanocytes of nonneoplastic human skin, FHL2 expression was absent. In contrast, 38 (76%) of 50 melanomas showed strong cytoplasmic and partly nuclear FHL2 expression. At the invasion front, cytoplasmic TGF-β1 staining was observed in 32 (64%) of 50 melanomas, and a correlation of FHL2 and TGF-β1 staining intensities was detectable. In follow-up analyses, enhanced FHL2 and TGF-β1 staining intensities in the tumor invasion front were associated with poor survival. CONCLUSIONS Enhanced FHL2 and TGF-β1 expression is correlated with poor survival in human malignant melanoma. Protumorigenic effects of autocrine TGF-β1 secretion might be exerted by induction of FHL2 expression in melanoma cells. Since melanomas treated with targeted therapies often do not show sufficient response rates, inhibition of FHL2 and/or TGF-β1 might be a promising therapeutic approach.
Collapse
Affiliation(s)
- Philipp Westphal
- Institute of Pathology, University of Cologne Medical School, Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology, University Hospital of Cologne, Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University of Cologne Medical School, Cologne, Germany
| | | | - Nina Olligschläger
- Institute of Pathology, University of Cologne Medical School, Cologne, Germany
| | - Claudia Wodtke
- Institute of Pathology, University of Cologne Medical School, Cologne, Germany
| | - Roland Schüle
- Center for Clinical Research, University of Freiburg Medical School, Freiburg, Germany
| | - Reinhard Büttner
- Institute of Pathology, University of Cologne Medical School, Cologne, Germany
| | - Nicolaus Friedrichs
- Institute of Pathology, University of Cologne Medical School, Cologne, Germany
| |
Collapse
|
21
|
Ng CF, Xu JY, Li MS, Tsui SKW. Identification of FHL2-regulated genes in liver by microarray and bioinformatics analysis. J Cell Biochem 2014; 115:744-53. [PMID: 24453047 DOI: 10.1002/jcb.24714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/07/2013] [Indexed: 01/18/2023]
Abstract
FHL2 is a LIM domain protein that is able to form various protein complexes and regulate gene transcription. Recent findings showed that FHL2 is a potential tumor suppressor gene that was down-regulated in hepatocellular carcinoma. In the present study, microarray profiling of gene expression was performed to identify the genes regulated by FHL2 in mouse livers. The differentially expressed genes were further analyzed by bioinformatics tools including DAVID, KEGG, and STRING. Our data illustrate that FHL2 affects genes involved in various functions including signal transduction, responses to external stimulus, cancer-related pathways, cardiovascular function and regulation of actin cytoskeleton. Moreover, a network of differentially expressed genes identified in this study and known FHL2-interacting proteins was constructed. Then, genes identified by bioinformatics tools and most functional relevant to FHL2 were selected for further validation. Finally, the differential expression of Ar, Id3, Inhbe, Alas1, Bcl6, Pparδ, Angptl4, and Erbb4 were confirmed by quantitative real-time PCR. In summary, we have established a database of genes that are potentially regulated by FHL2 and these genes should be future targets for the elucidation of functional roles of FHL2.
Collapse
Affiliation(s)
- Chor-Fung Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | |
Collapse
|
22
|
Xu J, Zhou J, Li MS, Ng CF, Ng YK, Lai PBS, Tsui SKW. Transcriptional regulation of the tumor suppressor FHL2 by p53 in human kidney and liver cells. PLoS One 2014; 9:e99359. [PMID: 25121502 PMCID: PMC4133229 DOI: 10.1371/journal.pone.0099359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Four and a Half LIM protein 2 (FHL2) is a LIM domain only protein that is able to form various protein complexes and regulate gene transcription. Recent findings showed that FHL2 is a potential tumor suppressor gene that was down-regulated in hepatocellular carcinoma (HCC). Moreover, FHL2 can bind to and activate the TP53 promoter in hepatic cells. In this study, the activity of the two promoters of FHL2, 1a and 1b, were determined in the human embryonic kidney cell line HEK293 and the activation of these two promoters by p53 was investigated. Our results showed that the 1b promoter has a higher activity than the 1a promoter in HEK 293 cells but the 1a promoter is more responsive to the activation by p53 when compared with the 1b promoter. The regulation of FHL2 by p53 was further confirmed in liver cells by the overexpression of p53 in Hep3B cells and the knockdown of p53 in HepG2 cells. Combining promoter activity results of truncated mutants and predictions by bioinformatics tools, a putative p53 binding site was found in the exon 1a of FHL2 from +213 to +232. The binding between the p53 protein and the putative p53 binding site was then validated by the ChIP assay. Furthermore, the expression of FHL2 and TP53 were down-regulated in majority of HCC tumour samples (n = 41) and significantly correlated (P = 0.026). Finally, we found that the somatic mutation 747 (G→T), a hot spot mutation of the TP53 gene, is potentially associated with a higher expression of FHL2 in HCC tumour samples. Taken together, this is the first in-depth study about the transcriptional regulation of FHL2 by p53.
Collapse
Affiliation(s)
- Jiaying Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man-Shan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chor-Fung Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yuen-Keng Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- * E-mail:
| |
Collapse
|
23
|
Multiple Arkadia/RNF111 structures coordinate its Polycomb body association and transcriptional control. Mol Cell Biol 2014; 34:2981-95. [PMID: 24912682 DOI: 10.1128/mcb.00036-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RING domain protein Arkadia/RNF111 is a ubiquitin ligase in the transforming growth factor β (TGFβ) pathway. We previously identified Arkadia as a small ubiquitin-like modifier (SUMO)-binding protein with clustered SUMO-interacting motifs (SIMs) that together form a SUMO-binding domain (SBD). However, precisely how SUMO interaction contributes to the function of Arkadia was not resolved. Through analytical molecular and cell biology, we found that the SIMs share redundant function with Arkadia's M domain, a region distinguishing Arkadia from its paralogs ARKL1/ARKL2 and the prototypical SUMO-targeted ubiquitin ligase (STUbL) RNF4. The SIMs and M domain together promote both Arkadia's colocalization with CBX4/Pc2, a component of Polycomb bodies, and the activation of a TGFβ pathway transcription reporter. Transcriptome profiling through RNA sequencing showed that Arkadia can both promote and inhibit gene expression, indicating that Arkadia's activity in transcriptional control may depend on the epigenetic context, defined by Polycomb repressive complexes and DNA methylation.
Collapse
|
24
|
Zhang P, Li W, Liu H, Li J, Wang J, Li Y, Chen X, Yang Z, Fan M. Dystrophin Involved in the Susceptibility of Slow Muscles to Hindlimb Unloading via Concomitant Activation of TGF-β1/Smad3 Signaling and Ubiquitin–Proteasome Degradation in Mice. Cell Biochem Biophys 2014; 70:1057-67. [DOI: 10.1007/s12013-014-0023-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Imamura T, Oshima Y, Hikita A. Regulation of TGF-β family signalling by ubiquitination and deubiquitination. J Biochem 2013; 154:481-9. [PMID: 24165200 DOI: 10.1093/jb/mvt097] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Members of the transforming growth factor-β (TGF-β) family, including TGF-βs, activin and bone morphogenetic proteins (BMPs), are multifunctional proteins that regulate a wide variety of cellular responses, such as proliferation, differentiation, migration and apoptosis. TGF-β family signalling is mainly mediated by membranous serine/threonine kinase receptors and intracellular Smad proteins. This signalling is tightly regulated by various post-translational modifications including ubiquitination. Several E3 ubiquitin ligases play a crucial role in the recognition and ubiquitin-dependent degradation of TGF-β family receptors, Smad proteins and their interacted proteins to regulate positively and negatively TGF-β family signalling. In contrast, non-degradative ubiquitin modifications also regulate TGF-β family signalling. Recently, in addition to protein ubiquitination, deubiquitination by deubiquitinating enzymes has been reported to control TGF-β family signalling pathways. Interestingly, more recent studies suggest that TGF-β signalling is not only regulated via ubiquitination and/or deubiquitination, but also it relies on ubiquitination for its effect on other pathways. Thus, ubiquitin modifications play key roles in TGF-β family signal transduction and cross-talk between TGF-β family signalling and other signalling pathways. Here, we review the current understandings of the positive and negative regulatory mechanisms by ubiquitin modifications that control TGF-β family signalling.
Collapse
Affiliation(s)
- Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine; Division of Bio-imaging, Proteo-Science Center, Ehime University; Translational Research Center, Ehime University Hospital; and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Shitsukawa, Toon, Ehime 791-0295, Japan
| | | | | |
Collapse
|
26
|
LIM-only protein FHL2 activates NF-κB signaling in the control of liver regeneration and hepatocarcinogenesis. Mol Cell Biol 2013; 33:3299-308. [PMID: 23775124 DOI: 10.1128/mcb.00105-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Four-and-a-half LIM-only protein 2 (FHL2) is an important mediator in many signaling pathways. In this study, we analyzed the functions of FHL2 in nuclear factor κB (NF-κB) signaling in the liver. We show that FHL2 enhanced tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) activity in transcriptional activation of NF-κB targets by stabilizing the protein. TRAF6 is a binding partner of FHL2 and an important component of the Toll-like receptor-NF-κB pathway. Knockdown of FHL2 in 293-hTLR4/MD2-CD14 cells impaired lipopolysaccharide (LPS)-induced NF-κB activity, which regulates expression of inflammatory cytokines. Indeed, FHL2(-/-) macrophages showed significantly reduced production of TNF and interleukin 6 (IL-6) following LPS stimulation. TNF and IL-6 are the key cytokines that prime liver regeneration after hepatic injury. Following partial hepatectomy, FHL2(-/-) mice exhibited diminished induction of TNF and IL-6 and delayed hepatocyte regeneration. In the liver, NF-κB signaling orchestrates inflammatory cross talk between hepatocytes and hepatic immune cells that promote chemical hepatocarcinogenesis. We found that deficiency of FHL2 reduced susceptibility to diethylnitrosamine-induced hepatocarcinogenesis, correlating with the activator function of FHL2 in NF-κB signaling. Our findings demonstrate FHL2 as a positive regulator of NF-κB activity in liver regeneration and carcinogenesis and highlight the importance of FHL2 in both hepatocytes and hepatic immune cells.
Collapse
|
27
|
Verset L, Tommelein J, Moles Lopez X, Decaestecker C, Mareel M, Bracke M, Salmon I, De Wever O, Demetter P. Epithelial expression of FHL2 is negatively associated with metastasis-free and overall survival in colorectal cancer. Br J Cancer 2013; 109:114-20. [PMID: 23756870 PMCID: PMC3708555 DOI: 10.1038/bjc.2013.290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 11/20/2022] Open
Abstract
Background: Four-and-a-half LIM domains protein 2 (FHL2) is a component of the focal adhesion structures and has been suggested to have a role in cancer progression. It has been shown to be overexpressed in the colorectal cancer (CRC). Methods: Here, we examined a possible prognostic value of FHL2 in CRC. Immunohistochemistry for FHL2 was performed on 296 CRCs without distant metastases at the time of surgery. Staining in the epithelial compartment was quantitatively evaluated using image analysis, and results were related to clinical variables. Antibody specificity was tested using small-interfering RNA transfection in hTERT-immortalised myofibroblasts. Results: Varying degrees of cytoplasmic FHL2 expression by neoplastic epithelial cells were detectable in all cases. Higher FHL2 expression in the epithelial compartment was an independent adverse prognostic factor. Multivariate Cox analysis shows that expression in the tumour invasion front (P<0.001) as well as in the centre of the tumour (P<0.001) was associated with metachronous metastases independently of the clinicopathological variables; expression in the tumour invasion front was also associated with overall survival independently of the clinicopathological variables (P<0.01). Conclusion: Higher FHL2 expression is involved in CRC progression and correlates with the development of metachronous metastases and overall survival, suggesting that FHL2 is an independent adverse prognostic indicator for CRC.
Collapse
Affiliation(s)
- L Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|