1
|
Readnour BM, Tjia-Fleck S, McCann NR, Ayinuola YA, Castellino FJ. High-resolution cryo-EM analysis of a Streptococcus pyogenes M-protein/human plasminogen complex. Structure 2024; 32:2231-2243.e4. [PMID: 39500317 DOI: 10.1016/j.str.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 12/08/2024]
Abstract
The importance of human plasminogen (hPg)/plasmin (hPm)/cell receptor complexes in invasiveness of cells has been amply established. The objective of this investigation was to determine a high-resolution structure of a major Group A Streptococcus (GAS) bacterial receptor (PAM) for hPg/hPm when bound on a cell surface to its major ligand, hPg. As a model cell surface with endogenous PAM, we employed engineered PAM-expressing lentivirus (LV) particles. We show that the ectodomain of a PAM-type M-Protein (M-Prt), in complex with hPg, is folded through distinct intra- and inter-domain interactions to a more compact form on the cell surface, thus establishing a new paradigm for membrane-bound M-Prt/ligand structures. These studies provide a framework for addressing the need for treatments of GAS disease by providing a molecular platform to solve structures of virulence-determining membrane proteins.
Collapse
Affiliation(s)
- Bradley M Readnour
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheiny Tjia-Fleck
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nathan R McCann
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Cho KH. Molecular Targets in Streptococcus pyogenes for the Development of Anti-Virulence Agents. Genes (Basel) 2024; 15:1166. [PMID: 39336757 PMCID: PMC11430994 DOI: 10.3390/genes15091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus pyogenes, commonly known as Group A Streptococcus (GAS), is a significant human pathogen responsible for a wide range of diseases, from mild pharyngitis to severe conditions such as necrotizing fasciitis and toxic shock syndrome. The increasing antibiotic resistance, especially against macrolide antibiotics, poses a challenge to the effective treatment of these infections. This paper reviews the current state and mechanisms of antibiotic resistance in S. pyogenes. Furthermore, molecular targets for developing anti-virulence agents, which aim to attenuate virulence rather than killing it outright, are explored. This review specifically focuses on virulence regulators, proteins that coordinate the expression of multiple virulence factors in response to environmental signals, playing a crucial role in the pathogen's ability to cause disease. Key regulatory systems, such as RopB, Mga, CovRS, and the c-di-AMP signaling system, are discussed for their roles in modulating virulence gene expression. Additionally, potential molecular target sites for the development of anti-virulence agents are suggested. By concentrating on these regulatory pathways, it is proposed that anti-virulence strategies could enhance the effectiveness of existing antibiotics and reduce the selective pressure that drives the development of resistance.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, 600 Chestnut St. S224, Terre Haute, IN 47809, USA
| |
Collapse
|
3
|
Readnour BM, Ayinuola YA, Russo BT, Liang Z, Lee SW, Ploplis VA, Fischetti VA, Castellino FJ. Evolution of Streptococcus pyogenes has maximized the efficiency of the Sortase A cleavage motif for cell wall transpeptidation. J Biol Chem 2022; 298:101940. [PMID: 35430253 PMCID: PMC9123276 DOI: 10.1016/j.jbc.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.
Collapse
Affiliation(s)
- Bradley M Readnour
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
4
|
Ayinuola YA, Tjia-Fleck S, Readnour BM, Liang Z, Ayinuola O, Paul LN, Lee SW, Fischetti VA, Ploplis VA, Castellino FJ. Relationships Between Plasminogen-Binding M-Protein and Surface Enolase for Human Plasminogen Acquisition and Activation in Streptococcus pyogenes. Front Microbiol 2022; 13:905670. [PMID: 35685926 PMCID: PMC9173704 DOI: 10.3389/fmicb.2022.905670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 02/03/2023] Open
Abstract
The proteolytic activity of human plasmin (hPm) is utilized by various cells to provide a surface protease that increases the potential of cells to migrate and disseminate. Skin-trophic Pattern D strains of Streptococcus pyogenes (GAS), e.g., GAS isolate AP53, contain a surface M-protein (PAM) that directly and strongly interacts (Kd ~ 1 nM) with human host plasminogen (hPg), after which it is activated to hPm by a specific coinherited bacterial activator, streptokinase (SK2b), or by host activators. Another ubiquitous class of hPg binding proteins on GAS cells includes "moonlighting" proteins, such as the glycolytic enzyme, enolase (Sen). However, the importance of Sen in hPg acquisition, especially when PAM is present, has not been fully developed. Sen forms a complex with hPg on different surfaces, but not in solution. Isogenic AP53 cells with a targeted deletion of PAM do not bind hPg, but the surface expression of Sen is also greatly diminished upon deletion of the PAM gene, thus confounding this approach for defining the role of Sen. However, cells with point deletions in PAM that negate hPg binding, but fully express PAM and Sen, show that hPg binds weakly to Sen on GAS cells. Despite this, Sen does not stimulate hPg activation by SK2b, but does stimulate tissue-type plasminogen activator-catalyzed activation of hPg. These data demonstrate that PAM plays the dominant role as a functional hPg receptor in GAS cells that also contain surface enolase.
Collapse
Affiliation(s)
- Yetunde A. Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Sheiny Tjia-Fleck
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Bradley M. Readnour
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Olawole Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Lake N. Paul
- BioAnalysis, LLC.Philadelphia, PA, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY, United States
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,*Correspondence: Francis J. Castellino,
| |
Collapse
|
5
|
Herrera AL, Chaussee MS. Signaling Peptide SpoV Is Essential for Streptococcus pyogenes Virulence, and Prophylaxis with Anti-SpoV Decreases Disease Severity. Microorganisms 2021; 9:microorganisms9112321. [PMID: 34835447 PMCID: PMC8619256 DOI: 10.3390/microorganisms9112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcal peptide of virulence (SpoV) is a Streptococcus pyogenes (group A streptococcus (GAS))-specific peptide that is important for GAS survival in murine blood, and the expression of the virulence factors streptolysin O (slo) and streptolysin S (sagA). We used a spoV mutant in isolate MGAS315 to assess the contribution of the SpoV peptide to virulence by using a murine model of invasive disease and an ex vivo human model (Lancefield assay). We then used antibodies to SpoV in both models to evaluate their ability to decrease morbidity and mortality. Results showed that SpoV is essential for GAS virulence, and targeting the peptide has therapeutic potential.
Collapse
|
6
|
Streptococcus pyogenes TrxSR Two-Component System Regulates Biofilm Production in Acidic Environments. Infect Immun 2021; 89:e0036021. [PMID: 34424754 DOI: 10.1128/iai.00360-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacteria form biofilms for their protection against environmental stress and produce virulence factors within the biofilm. Biofilm formation in acidified environments is regulated by a two-component system, as shown by studies on isogenic mutants of the sensor protein of the two-component regulatory system in Streptococcus pyogenes. In this study, we found that the LiaS histidine kinase sensor mediates biofilm production and pilus expression in an acidified environment through glucose fermentation. The liaS isogenic mutant produced biofilms in a culture acidified by hydrochloric acid but not glucose, suggesting that the acidified environment is sensed by another protein. In addition, the trxS isogenic mutant could not produce biofilms or activate the mga promoter in an acidified environment. Mass spectrometry analysis showed that TrxS regulates M protein, consistent with the transcriptional regulation of emm, which encodes M protein. Our results demonstrate that biofilm production during environmental acidification is directly under the control of TrxS.
Collapse
|
7
|
Vu HM, Hammers DE, Liang Z, Nguyen GL, Benz ME, Moran TE, Higashi DL, Park CJ, Ayinuola YA, Donahue DL, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group A Streptococcus-Induced Activation of Human Plasminogen Is Required for Keratinocyte Wound Retraction and Rapid Clot Dissolution. Front Cardiovasc Med 2021; 8:667554. [PMID: 34179133 PMCID: PMC8230121 DOI: 10.3389/fcvm.2021.667554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin β1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Gabrielle L. Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Mary E. Benz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Dustin L. Higashi
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Claudia J. Park
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Yetunde A. Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
8
|
Liang Z, Carothers K, Holmes A, Donahue D, Lee SW, Castellino FJ, Ploplis VA. Stable genetic integration of a red fluorescent protein in a virulent Group A Streptococcus strain. Access Microbiol 2020; 1:e000062. [PMID: 32974562 PMCID: PMC7472541 DOI: 10.1099/acmi.0.000062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022] Open
Abstract
There are several advantages, both in vitro and in vivo, in utilizing bacteria that express a fluorescent protein. Such a protein can be transiently incorporated into the bacteria or integrated within the bacterial genome. The most widely utilized fluorescent protein is green fluorescent protein (GFP), but limitations exist on its use. Additional fluorescent proteins have been designed that have many advantages over GFP and technologies for their incorporation into bacteria have been optimized. In the current study, we report the successful integration and expression of a stable fluorescent reporter, mCherry (red fluorescent protein, RFP), into the genome of a human pathogen, Group A Streptococcus pyogenes (GAS) isolate AP53(S-). RFP was targeted at the atg codon of the fcR pseudogene that is present in the mga regulon of AP53(S-). Transcription of critical bacterial genes was not functionally altered by the genomic integration of mCherry. Host virulence both in vitro (keratinocyte infection and cytotoxicity) and in vivo (skin infection) was maintained in AP53(S-)-RFP. Additionally, survival of mice infected with either AP53(S-) or AP53(S-)-RFP was similar, demonstrating that overall pathogenicity of the AP53(S-) strain was not altered by the expression of mCherry. These studies demonstrate the feasibility of integrating a fluorescent reporter into the bacterial genome of a naturally virulent isolate of Group A S. pyogenes for comparative experimental studies.
Collapse
Affiliation(s)
- Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Holmes
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Deborah Donahue
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
9
|
Carothers KE, Liang Z, Mayfield J, Donahue DL, Lee M, Boggess B, Ploplis VA, Castellino FJ, Lee SW. The Streptococcal Protease SpeB Antagonizes the Biofilms of the Human Pathogen Staphylococcus aureus USA300 through Cleavage of the Staphylococcal SdrC Protein. J Bacteriol 2020; 202:e00008-20. [PMID: 32205460 PMCID: PMC7221255 DOI: 10.1128/jb.00008-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pyogenes, or group A Streptococcus (GAS), is both a pathogen and an asymptomatic colonizer of human hosts and produces a large number of surface-expressed and secreted factors that contribute to a variety of infection outcomes. The GAS-secreted cysteine protease SpeB has been well studied for its effects on the human host; however, despite its broad proteolytic activity, studies on how this factor is utilized in polymicrobial environments are lacking. Here, we utilized various forms of SpeB protease to evaluate its antimicrobial and antibiofilm properties against the clinically important human colonizer Staphylococcus aureus, which occupies niches similar to those of GAS. For our investigation, we used a skin-tropic GAS strain, AP53CovS+, and its isogenic ΔspeB mutant to compare the production and activity of native SpeB protease. We also generated active and inactive forms of recombinant purified SpeB for functional studies. We demonstrate that SpeB exhibits potent biofilm disruption activity at multiple stages of S. aureus biofilm formation. We hypothesized that the surface-expressed adhesin SdrC in S. aureus was cleaved by SpeB, which contributed to the observed biofilm disruption. Indeed, we found that SpeB cleaved recombinant SdrC in vitro and in the context of the full S. aureus biofilm. Our results suggest an understudied role for the broadly proteolytic SpeB as an important factor for GAS colonization and competition with other microorganisms in its niche.IMPORTANCEStreptococcus pyogenes (GAS) causes a range of diseases in humans, ranging from mild to severe, and produces many virulence factors in order to be a successful pathogen. One factor produced by many GAS strains is the protease SpeB, which has been studied for its ability to cleave and degrade human proteins, an important factor in GAS pathogenesis. An understudied aspect of SpeB is the manner in which its broad proteolytic activity affects other microorganisms that co-occupy niches similar to that of GAS. The significance of the research reported herein is the demonstration that SpeB can degrade the biofilms of the human pathogen Staphylococcus aureus, which has important implications for how SpeB may be utilized by GAS to successfully compete in a polymicrobial environment.
Collapse
Affiliation(s)
- Katelyn E Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jeffrey Mayfield
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bill Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
10
|
Russo BT, Ayinuola YA, Singh D, Carothers K, Fischetti VA, Flores-Mireles AL, Lee SW, Ploplis VA, Liang Z, Castellino FJ. The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol 2020; 202:e00096-20. [PMID: 32123038 PMCID: PMC7186463 DOI: 10.1128/jb.00096-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Collapse
Affiliation(s)
- Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Damini Singh
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
11
|
Yuan Y, Ayinuola YA, Singh D, Ayinuola O, Mayfield JA, Quek A, Whisstock JC, Law RHP, Lee SW, Ploplis VA, Castellino FJ. Solution structural model of the complex of the binding regions of human plasminogen with its M-protein receptor from Streptococcus pyogenes. J Struct Biol 2019; 208:18-29. [PMID: 31301349 PMCID: PMC6983471 DOI: 10.1016/j.jsb.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.
Collapse
Affiliation(s)
- Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Damini Singh
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Olawole Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeffrey A Mayfield
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Quek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
12
|
Gogos A, Federle MJ. Modeling Streptococcus pyogenes Pharyngeal Colonization in the Mouse. Front Cell Infect Microbiol 2019; 9:137. [PMID: 31119108 PMCID: PMC6507483 DOI: 10.3389/fcimb.2019.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human-restricted pathogen most commonly found in the posterior oropharynx of the human host. The bacterium is responsible for 600 million annual cases of pharyngitis globally and has been found to asymptomatically colonize the pharynxes of 4-30% of the population. As such, many studies have utilized animals as models in order to decipher bacterial and host elements that contribute to the bacterial-pharyngeal interaction and determine differences between acute infection and asymptomatic colonization. The aim of this review is to first describe both bacterial and host factors that are important for the pharyngeal persistence of GAS in humans, then to detail the bacterial and host factors that are important for colonization in murine model, and finally to compare the two in order to evaluate the strength of murine pharyngeal colonization as a model for the human-GAS pharyngeal interaction.
Collapse
Affiliation(s)
- Artemis Gogos
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Qiu C, Yuan Y, Zajicek J, Liang Z, Balsara RD, Brito-Robionson T, Lee SW, Ploplis VA, Castellino FJ. Contributions of different modules of the plasminogen-binding Streptococcus pyogenes M-protein that mediate its functional dimerization. J Struct Biol 2018; 204:151-164. [PMID: 30071314 PMCID: PMC6544907 DOI: 10.1016/j.jsb.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
Group A Streptococcus pyogenes (GAS) is a causative agent of pharyngeal and dermal infections in humans. A major virulence determinant of GAS is its dimeric signature fibrillar M-protein (M-Prt), which is evolutionarily designed in modules, ranging from a hypervariable extracellular N-terminal region to a progressively more highly conserved C-terminus that is covalently anchored to the cell wall. Of the >250 GAS isolates classified, only the subset of skin-trophic Pattern D strains expresses a specific serotype of M-Prt, PAM, that directly binds to host human plasminogen (hPg) via its extracellular NH2-terminal variable A-domain region. This interaction allows these GAS strains to accumulate components of the host fibrinolytic system on their surfaces to serve extracellular functions. While structure-function studies have been accomplished on M-Prts from Pattern A-C GAS isolates with different direct ligand binding properties compared to PAM, much less is known regarding the structure-function relationships of PAM-type M-Prts, particularly their dimerization determinants. To examine these questions, PAMs from seven GAS strains with sequence variations in the NH2-terminal ligand binding domains, as well as truncated versions of PAM, were designed and studied. The results from bioinformatic and biophysical analyses show that the different domains of PAM are disparately engaged in dimerization. From these data, we propose an experimentally-based model for PAM secondary and quaternary structures that is highly dependent on the conserved helical C-terminal C-D-domains. In addition, while the N-terminal regions of PAMs are variable in sequence, the binding properties of hPg and its activated product, plasmin, to the A-domain, remain intact.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jaroslav Zajicek
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rashna D Balsara
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Teresa Brito-Robionson
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
14
|
Phenotypic Variation in the Group A Streptococcus Due to Natural Mutation of the Accessory Protein-Encoding Gene rocA. mSphere 2018; 3:3/5/e00519-18. [PMID: 30333182 PMCID: PMC6193603 DOI: 10.1128/msphere.00519-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Populations of a bacterial pathogen, whether recovered from a single patient or from a worldwide study, are often a heterogeneous mix of genetically and phenotypically divergent strains. Such heterogeneity is of value in changing environments and arises via mechanisms such as gene gain or gene mutation. Here, we identify an isolate of serotype M12 group A Streptococcus (GAS) (Streptococcus pyogenes) that has a natural mutation in rocA, which encodes an accessory protein to the virulence-regulating two-component system CovR/CovS (CovR/S). Disruption of RocA activity results in the differential expression of multiple GAS virulence factors, including the anti-phagocytic hyaluronic acid capsule and the chemokine protease SpyCEP. While some of our data regarding RocA-regulated genes overlaps with previous studies, which were performed with isolates of alternate GAS serotypes, some variability was also observed. Perhaps as a consequence of this alternate regulatory activity, we discovered that the contribution of RocA to the ability of the M12 isolate to survive and proliferate in human blood ex vivo is opposite that previously observed in M1, M3, and M18 GAS strains. Specifically, rocA mutation reduced, rather than enhanced, survival of the isolate. Finally, we also present data from an analysis of rocA transcription and show that rocA is transcribed in both mono- and polycistronic mRNAs. In aggregate, our data provide insight into the important regulatory role of RocA and into the mechanisms and consequences of GAS phenotypic heterogeneity.IMPORTANCE This study investigates the regulatory and phenotypic consequences of a naturally occurring mutation in a strain of the bacterial pathogen the group A Streptococcus (Streptococcus pyogenes). We show that this mutation, which occurs in a regulator-encoding gene, rocA, leads to altered virulence factor expression and reduces the ability of this isolate to survive in human blood. Critically, the blood survival phenotype and the assortment of genes regulated by RocA differ compared to previous studies into RocA activity. The data are consistent with there being strain- or serotype-specific variability in RocA function. Given that phenotypic variants can lead to treatment failures and escape from preventative regimes, our data provide information with regard to a mechanism of phenotypic variation in a prevalent Gram-positive pathogen.
Collapse
|
15
|
Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One 2017; 12:e0174464. [PMID: 28355251 PMCID: PMC5371370 DOI: 10.1371/journal.pone.0174464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - I-Chen Hsieh
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Glinton K, Beck J, Liang Z, Qiu C, Lee SW, Ploplis VA, Castellino FJ. Variable region in streptococcal M-proteins provides stable binding with host fibrinogen for plasminogen-mediated bacterial invasion. J Biol Chem 2017; 292:6775-6785. [PMID: 28280245 DOI: 10.1074/jbc.m116.768937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
Dimeric M-proteins (M-Prt) in group A Streptococcus pyogenes (GAS) are surface-expressed virulence factors implicated in processes that contribute to the pathogenicity of infection. Sequence analyses of various GAS M-Prts have shown that they contain a highly conserved sortase A-dependent cell wall-anchored C terminus, whereas the surface-exposed N terminus is highly variable, a feature used for identification and serotyping of various GAS strains. This variability also allows for strain-specific responses that suppress host defenses. Previous studies have indeed identified the N-terminal M-Prt B-domain as the site interacting with antiphagocytotic human-host fibrinogen (hFg). Herein, we show that hFg strongly interacts with M-Prts containing highly variable B-domains. We further demonstrate that specific GAS clinical isolates display high affinity for the D-domain of hFg, and this interaction allowed for subsequent surface binding of human-host plasminogen (hPg) to the E-domain of hFg. This GAS surface-bound hPg is then activated by GAS-secreted streptokinase, leading to the generation of an invasive proteolytic bacterial surface. Our results underscore the importance of the human fibrinolytic system in host-pathogen interactions in invasive GAS infections.
Collapse
Affiliation(s)
- Kristofor Glinton
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Julia Beck
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Zhong Liang
- From the W.M. Keck Center for Transgene Research and
| | - Cunjia Qiu
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Shaun W Lee
- From the W.M. Keck Center for Transgene Research and.,Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Francis J Castellino
- From the W.M. Keck Center for Transgene Research and .,the Departments of Chemistry and Biochemistry and
| |
Collapse
|
17
|
Genomic Characterization of a Pattern D Streptococcus pyogenes emm53 Isolate Reveals a Genetic Rationale for Invasive Skin Tropicity. J Bacteriol 2016; 198:1712-24. [PMID: 27044623 DOI: 10.1128/jb.01019-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The genome of an invasive skin-tropic strain (AP53) of serotype M53 group A Streptococcus pyogenes (GAS) is composed of a circular chromosome of 1,860,554 bp and carries genetic markers for infection at skin locales, viz, emm gene family pattern D and FCT type 3. Through genome-scale comparisons of AP53 with other GAS genomes, we identified 596 candidate single-nucleotide polymorphisms (SNPs) that reveal a potential genetic basis for skin tropism. The genome of AP53 differed by ∼30 point mutations from a noninvasive pattern D serotype M53 strain (Alab49), 4 of which are located in virulence genes. One pseudogene, yielding an inactive sensor kinase (CovS(-)) of the two-component transcriptional regulator CovRS, a major determinant for invasiveness, severely attenuated the expression of the secreted cysteine protease SpeB and enhanced the expression of the hyaluronic acid capsule compared to the isogenic noninvasive AP53/CovS(+) strain. The collagen-binding protein transcript sclB differed in the number of 5'-pentanucleotide repeats in the signal peptides of AP53 and Alab49 (9 versus 15), translating into different lengths of their signal peptides, which nonetheless maintained a full-length translatable coding frame. Furthermore, GAS strain AP53 acquired two phages that are absent in Alab49. One such phage (ΦAP53.2) contains the known virulence factor superantigen exotoxin gene tandem speK-slaA Overall, we conclude that this bacterium has evolved in multiple ways, including mutational variations of regulatory genes, short-tandem-repeat polymorphisms, large-scale genomic alterations, and acquisition of phages, all of which may be involved in shaping the adaptation of GAS in specific infectious environments and contribute to its enhanced virulence. IMPORTANCE Infectious strains of S. pyogenes (GAS) are classified by their serotypes, relating to the surface M protein, the emm-like subfamily pattern, and their tropicity toward the nasopharynx and/or skin. It is generally agreed that M proteins from pattern D strains, which also directly bind human host plasminogen, are skin tropic. We have sequenced and characterized the genome of an invasive pattern D GAS strain (AP53) in comparison to a very similar strain (Alab49) that is noninvasive and developed a genomic rationale as to possible reasons for the skin tropicity of these two strains and the greater invasiveness of AP53.
Collapse
|
18
|
Agrahari G, Liang Z, Glinton K, Lee SW, Ploplis VA, Castellino FJ. Streptococcus pyogenes Employs Strain-dependent Mechanisms of C3b Inactivation to Inhibit Phagocytosis and Killing of Bacteria. J Biol Chem 2016; 291:9181-9. [PMID: 26945067 PMCID: PMC4861484 DOI: 10.1074/jbc.m115.704221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/08/2016] [Indexed: 01/08/2023] Open
Abstract
Evasion of complement-mediated opsonophagocytosis enables group A Streptococcus pyogenes (GAS) to establish infection. Different strain-dependent mechanisms are employed by the host to accomplish this goal. In general, GAS inhibits the amplification of the complement cascade on its cell surface by facilitating the degradation of C3b, an opsonin, to an inactive product, inactivated C3b (iC3b), in a step catalyzed by factor I (FI) and its cofactor, factor H (FH), with or without the participation of human host plasmin (hPm). GAS recruits FH to its cell surface via FH receptors, which are transcriptionally controlled by the two-component cluster of virulence responder-sensor system. The manner in which FI-FH and hPm function together on GAS cells is unknown. Using GAS strain AP53, which strongly binds host human plasminogen/plasmin (hPg/hPm) directly via an hPg/hPm surface receptor (PAM), we show that both FI-FH and hPm sequentially cleave C3b. Whereas FI-FH proteolytically cleaves C3b into iC3b, PAM-bound hPm catalyzes cleavage of iC3b into multiple smaller peptides. Unlike AP53, GAS strain M23ND weakly binds FH and recruits hPg/hPm to its cell surface indirectly via fibrinogen bound to M-protein, M23. In this case, FH-FI cleaves C3b into iC3b, with negligible degradation of iC3b by hPm that is bound to fibrinogen on the cells. AP53 and M23ND display similar resistance to human neutrophil-mediated phagocytosis, which results in a corresponding high lethality in mice after injection of these cells. These results suggest that GAS utilizes diverse mechanisms to degrade C3b and thus to protect bacterial cells from the complement response of the host.
Collapse
Affiliation(s)
- Garima Agrahari
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Zhong Liang
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Kristofor Glinton
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Shaun W Lee
- From the W.M. Keck Center for Transgene Research and Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| | - Francis J Castellino
- From the W.M. Keck Center for Transgene Research and the Departments of Chemistry and Biochemistry and
| |
Collapse
|
19
|
Miller EW, Danger JL, Ramalinga AB, Horstmann N, Shelburne SA, Sumby P. Regulatory rewiring confers serotype-specific hyper-virulence in the human pathogen group A Streptococcus. Mol Microbiol 2015; 98:473-89. [PMID: 26192205 DOI: 10.1111/mmi.13136] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 12/18/2022]
Abstract
Phenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non-randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA. Through use of RNAseq analysis, we identified that the natural rocA mutation present within M3 isolates leads to the enhanced expression of more than a dozen immunomodulatory virulence factors, enhancing phenotypes such as hemolysis and NAD(+) hydrolysis. Consequently, an M3 GAS isolate survived human phagocytic killing at a level 13-fold higher than a rocA complemented derivative, and was significantly more virulent in a murine bacteremia model of infection. Finally, we identified that RocA functions through the CovR/S two-component system as levels of phosphorylated CovR increase in the presence of functional RocA, and RocA has no regulatory activity following covR or covS mutation. Our data are consistent with RocA interfacing with the CovR/S two-component system, and that the absence of this activity in M3 GAS potentiates the severity of invasive infections caused by isolates of this serotype.
Collapse
Affiliation(s)
- Eric W Miller
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Jessica L Danger
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Anupama B Ramalinga
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Nicola Horstmann
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
20
|
CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants. J Bacteriol 2015. [PMID: 26216843 DOI: 10.1128/jb.00511-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The two-component control of virulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence of Streptococcus pyogenes (group A Streptococcus [GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulent emm23 GAS strain (M23ND/CovS negative [M23ND/CovS(-)]) and a noninvasive isogenic strain (M23ND/CovS(+)), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼ 349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS(-) achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g., hasABC), by abrogating expression of toxin genes (e.g., speB), and by compromising gene products with dispensable functions (e.g., sfb1). Among these genes, several (e.g., parE and parC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence. IMPORTANCE The CovRS system modulates transcription of ∼ 18% of the genes in the Streptococcus pyogenes genome. Mutations that inactivate CovR or CovS enhance the virulence of this bacterium. We determined complete transcriptomes of a naturally CovS-inactivated invasive deep tissue isolate of an emm23 strain of S. pyogenes (M23ND) and its complemented avirulent variant (CovS(+)). We identified diverse virulence genes whose altered expression revealed a genetic switching of a nonvirulent form of M23ND to a highly virulent strain. Furthermore, we also systematically uncovered for the first time the comparative levels of expression of a broad spectrum of metabolic genes, which reflected different metabolic needs of the bacterium as it invaded deeper tissue of the human host.
Collapse
|
21
|
Chandrahas V, Glinton K, Liang Z, Donahue DL, Ploplis VA, Castellino FJ. Direct Host Plasminogen Binding to Bacterial Surface M-protein in Pattern D Strains of Streptococcus pyogenes Is Required for Activation by Its Natural Coinherited SK2b Protein. J Biol Chem 2015; 290:18833-42. [PMID: 26070561 DOI: 10.1074/jbc.m115.655365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK), secreted by Group A Streptococcus (GAS), is a single-chain ∼47-kDa protein containing three consecutive primary sequence regions that comprise its α, β, and γ modules. Phylogenetic analyses of the variable β-domain sequences from different GAS strains suggest that SKs can be arranged into two clusters, SK1 and SK2, with a subdivision of SK2 into SK2a and SK2b. SK2b is secreted by skin-tropic Pattern D M-protein strains that also express plasminogen (human Pg (hPg)) binding Group A streptococcal M-protein (PAM) as its major cell surface M-protein. SK2a-expressing strains are associated with nasopharynx tropicity, and many of these strains express human fibrinogen (hFg) binding Pattern A-C M-proteins, e.g. M1. PAM interacts with hPg directly, whereas M1 binds to hPg indirectly via M1-bound hFg. Subsequently, SK is secreted by GAS and activates hPg to plasmin (hPm), thus generating a proteolytic surface on GAS that enhances its dissemination. Due to these different modes of hPg/hPm recognition by GAS, full characterizations of the mechanisms of activation of hPg by SK2a and SK2b and their roles in GAS virulence are important topics. To more fully examine these subjects, isogenic chimeric SK- and M-protein-containing GAS strains were generated, and the virulence of these chimeric strains were analyzed in mice. We show that SK and M-protein alterations influenced the virulence of GAS and were associated with the different natures of hPg activation and hPm binding. These studies demonstrate that GAS virulence can be explained by disparate hPg activation by SK2a and SK2b coupled with the coinherited M-proteins of these strains.
Collapse
Affiliation(s)
- Vishwanatha Chandrahas
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kristofor Glinton
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Zhong Liang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Deborah L Donahue
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
22
|
In vitro manganese-dependent cross-talk between Streptococcus mutans VicK and GcrR: implications for overlapping stress response pathways. PLoS One 2014; 9:e115975. [PMID: 25536343 PMCID: PMC4275253 DOI: 10.1371/journal.pone.0115975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/03/2014] [Indexed: 11/19/2022] Open
Abstract
Streptococcus mutans, a major acidogenic component of the dental plaque biofilm, has a key role in caries etiology. Previously, we demonstrated that the VicRK two-component signal transduction system modulates biofilm formation, oxidative stress and acid tolerance responses in S. mutans. Using in vitro phosphorylation assays, here we demonstrate for the first time, that in addition to activating its cognate response regulator protein, the sensor kinase, VicK can transphosphorylate a non-cognate stress regulatory response regulator, GcrR, in the presence of manganese. Manganese is an important micronutrient that has been previously correlated with caries incidence, and which serves as an effector of SloR-mediated metalloregulation in S. mutans. Our findings supporting regulatory effects of manganese on the VicRK, GcrR and SloR, and the cross-regulatory networks formed by these components are more complex than previously appreciated. Using DNaseI footprinting we observed overlapping DNA binding specificities for VicR and GcrR in native promoters, consistent with these proteins being part of the same transcriptional regulon. Our results also support a role for SloR as a positive regulator of the vicRK two component signaling system, since its transcription was drastically reduced in a SloR-deficient mutant. These findings demonstrate the regulatory complexities observed with the S. mutans manganese-dependent response, which involves cross-talk between non-cognate signal transduction systems (VicRK and GcrR) to modulate stress response pathways.
Collapse
|
23
|
Unique genomic arrangements in an invasive serotype M23 strain of Streptococcus pyogenes identify genes that induce hypervirulence. J Bacteriol 2014; 196:4089-102. [PMID: 25225265 DOI: 10.1128/jb.02131-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF(-)) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors.
Collapse
|
24
|
Mayfield JA, Liang Z, Agrahari G, Lee SW, Donahue DL, Ploplis VA, Castellino FJ. Mutations in the control of virulence sensor gene from Streptococcus pyogenes after infection in mice lead to clonal bacterial variants with altered gene regulatory activity and virulence. PLoS One 2014; 9:e100698. [PMID: 24968349 PMCID: PMC4072638 DOI: 10.1371/journal.pone.0100698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/28/2014] [Indexed: 01/23/2023] Open
Abstract
The cluster of virulence sensor (CovS)/responder (CovR) two-component operon (CovRS) regulates ∼15% of the genes of the Group A Streptococcal pyogenes (GAS) genome. Bacterial clones containing inactivating mutations in the covS gene have been isolated from patients with virulent invasive diseases. We report herein an assessment of the nature and types of covS mutations that can occur in both virulent and nonvirulent GAS strains, and assess whether a nonvirulent GAS can attain enhanced virulence through this mechanism. A group of mice were infected with a globally-disseminated clonal M1T1 GAS (isolate 5448), containing wild-type (WT) CovRS (5448/CovR+S+), or less virulent engineered GAS strains, AP53/CovR+S+ and Manfredo M5/CovR+S+. SpeB negative GAS clones from wound sites and/or from bacteria disseminated to the spleen were isolated and the covS gene was subjected to DNA sequence analysis. Numerous examples of inactivating mutations were found in CovS in all regions of the gene. The mutations found included frame-shift insertions and deletions, and in-frame small and large deletions in the gene. Many of the mutations found resulted in early translation termination of CovS. Thus, the covS gene is a genomic mutagenic target that gives GAS enhanced virulence. In cases wherein CovS− was discovered, these clonal variants exhibited high lethality, further suggesting that randomly mutated covS genes occur during the course of infection, and lead to the development of a more invasive infection.
Collapse
Affiliation(s)
- Jeffrey A. Mayfield
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Garima Agrahari
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shaun W. Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bhattacharya S, Liang Z, Quek AJ, Ploplis VA, Law R, Castellino FJ. Dimerization is not a determining factor for functional high affinity human plasminogen binding by the group A streptococcal virulence factor PAM and is mediated by specific residues within the PAM a1a2 domain. J Biol Chem 2014; 289:21684-93. [PMID: 24962580 DOI: 10.1074/jbc.m114.570218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97-125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83-145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1-2 nm). However, addition of two PAM residues (Arg(126)-His(127)) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg(113), His(114), Glu(116), Arg(126), His(127)), mutation of which reduced PAM binding affinity for K2hPg by ∼ 1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence.
Collapse
Affiliation(s)
- Sarbani Bhattacharya
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Zhong Liang
- From the W. M. Keck Center for Transgene Research and
| | - Adam J Quek
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Victoria A Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Ruby Law
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Francis J Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| |
Collapse
|
26
|
Zhang Y, Mayfield JA, Ploplis VA, Castellino FJ. The β-domain of cluster 2b streptokinase is a major determinant for the regulation of its plasminogen activation activity by cellular plasminogen receptors. Biochem Biophys Res Commun 2014; 444:595-8. [PMID: 24486550 PMCID: PMC3984925 DOI: 10.1016/j.bbrc.2014.01.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Cluster 2b streptokinase (SK2b), secreted by invasive skin-trophic strains of Streptococcus pyogenes (GAS), is a human plasminogen (hPg) activator that optimally functions when human plasma hPg is bound, via its kringle-2 domain, to cognizant bacterial cells through the a1a2 domain of the major cellular hPg receptor, Plasminogen-binding group A streptococcal M-like protein (PAM). Another class of streptokinases (SK1), secreted primarily by GAS strains that possess affinity for pharyngeal infections, does not require PAM-bound hPg for optimal activity. We find herein that replacement of the central β-domain of SK2b with the same module from SK1 reduces the dependency of SK2b on PAM, and the converse is true when the β-domain of SK1 is replaced with this same region of SK2b. These data suggest that simple evolutionary shuttling of protein domains in GAS can be employed by GAS to rapidly generate strains that differ in tissue tropism and invasive capability and allow the bacteria to survive different challenges by the host.
Collapse
Affiliation(s)
- Yueling Zhang
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jeffrey A Mayfield
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
27
|
Agrahari G, Liang Z, Mayfield JA, Balsara RD, Ploplis VA, Castellino FJ. Complement-mediated opsonization of invasive group A Streptococcus pyogenes strain AP53 is regulated by the bacterial two-component cluster of virulence responder/sensor (CovRS) system. J Biol Chem 2013; 288:27494-27504. [PMID: 23928307 DOI: 10.1074/jbc.m113.494864] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively.
Collapse
Affiliation(s)
- Garima Agrahari
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | | | | | - Rashna D Balsara
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
28
|
Franklin L, Nobbs AH, Bricio-Moreno L, Wright CJ, Maddocks SE, Sahota JS, Ralph J, O’Connor M, Jenkinson HF, Kadioglu A. The AgI/II family adhesin AspA is required for respiratory infection by Streptococcus pyogenes. PLoS One 2013; 8:e62433. [PMID: 23638083 PMCID: PMC3640068 DOI: 10.1371/journal.pone.0062433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (GAS) is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.
Collapse
Affiliation(s)
- Linda Franklin
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Jaspreet Singh Sahota
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Joe Ralph
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Matthew O’Connor
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|