1
|
Venadan S, Das AK, Dixit S, Arora A, Kumar B, Hossain F, Saha S, Rakshit S. Characterization of Indian waxy and non-waxy maize germplasm for genetic differentiation through SNP genotyping. Mol Genet Genomics 2025; 300:27. [PMID: 40011230 DOI: 10.1007/s00438-024-02222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/21/2024] [Indexed: 02/28/2025]
Abstract
Waxy maize characterized by high amylopectin content resulting from a recessive wx1 gene, is important for both dietary and industrial applications, yet it suffers from low yields and limited breeding options. This study aims to develop a thorough understanding of the underlying genetics for successful hybridization experiments in waxy maize and the identification of potential cross combinations to derive high-yielding waxy maize hybrids in India. Here, we evaluated the kernel starch composition, yield-related traits, molecular diversity, kinship, LD, population structure, and selection signatures in a panel of 11 waxy and 37 non-waxy maize genotypes. The starch content in the panel ranged from 57.85 to 66.96%, while the amylopectin ranged from 70.65% to 96.32%. A significant positive correlation between kernel starch and amylopectin (0.39**) was identified suggesting the potential for simultaneous improvement of both these traits. The 48 maize lines were genotyped with 24,477 highly polymorphic single nucleotide polymorphisms (SNPs). Seventy-eight per cent of the pair-wise relative kinship values were less than or equal to 0, indicating minimal redundancy in the genomic composition of the inbred lines. The range of genetic distance among the pairs of waxy lines was 0.190 to 0.231 as compared to 0.076-0.264 in the non-waxy genotypes suggesting a greater genetic variation among the non-waxy genotypes. The mean LD value across the genome was 0.44. Two to four groups were identified using the model-based population structure, phylogenetic analysis and principal component analysis with no clear pattern of clustering based on the type of corn. Pairwise comparisons using the SNP dataset between waxy and non-waxy maize detected 27 loci under positive selection. The information generated in this study will be useful in the diversification of Indian waxy maize lines and the development of superior waxy maize hybrids.
Collapse
Affiliation(s)
- Sreya Venadan
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
- Punjab Agricultural University, Ludhiana, Punjab, India
| | | | - Shubhank Dixit
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Arushi Arora
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
- Punjab Agricultural University, Ludhiana, Punjab, India
| | - Bhupender Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Saurav Saha
- ICAR-Research Complex for NEH Region, Sikkim Centre, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Lamer T, Chen P, Venter MJ, van Belkum MJ, Wijewardane A, Wu C, Lemieux MJ, Vederas JC. Discovery, characterization, and structure of a cofactor-independent histidine racemase from the oral pathogen Fusobacterium nucleatum. J Biol Chem 2024; 300:107896. [PMID: 39424140 PMCID: PMC11602996 DOI: 10.1016/j.jbc.2024.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Fusobacterium nucleatum is an oral commensal bacterium that can act as an opportunistic pathogen and is implicated in diseases such as periodontitis, adverse pregnancy outcomes, colorectal cancer, and Alzheimer's disease. F. nucleatum synthesizes lanthionine for its peptidoglycan, rather than meso-2,6-diaminopimelic acid (DAP) used by most Gram-negative bacteria. Despite lacking the biosynthetic pathway for DAP, the genome of F. nucleatum ATCC 25586 encodes a predicted DAP epimerase. A recent study hypothesized that this enzyme may act as a lanthionine epimerase, but the authors found a very low turnover rate, suggesting that this enzyme likely has another more favored substrate. Here, we characterize this enzyme as a histidine racemase (HisR), and found that catalytic turnover is ∼10,000× faster with L-histidine than with L,L-lanthionine. Kinetic experiments suggest that HisR functions as a cofactor-independent racemase and that turnover is specific for histidine, while crystal structures of catalytic cysteine to serine mutants (C67S or C209S) reveal this enzyme in its substrate-unbound, open conformation. Currently, the only other reported cofactor-independent histidine racemase is CntK from Staphylococcus aureus, which is used in the biosynthesis of staphylopine, a broad-spectrum metallophore that increases virulence of S. aureus. However, CntK shares only 28% sequence identity with HisR, and their genes exist in different genomic contexts. Knockout of hisR in F. nucleatum results in a small but reproducible lag in growth compared to WT during exponential phase, suggesting that HisR may play a role in growth of this periodontal pathogen.
Collapse
Affiliation(s)
- Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Pu Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Marie J Venter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Mishra A, Chakraborty S, Jaiswal TP, Bhattacharjee S, Kesarwani S, Mishra AK, Singh SS. Untangling the adaptive strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1 under low temperature. Extremophiles 2024; 28:31. [PMID: 39020126 DOI: 10.1007/s00792-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.
Collapse
Affiliation(s)
- Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Shreya Kesarwani
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
4
|
Muduli S, Karmakar S, Mishra S. Conformational Dynamics in Corynebacterium glutamicum Diaminopimelate Epimerase: Insights from Ligand Parameterization, Atomistic Simulation, and Markov State Modeling. J Chem Inf Model 2024; 64:4250-4262. [PMID: 38701175 DOI: 10.1021/acs.jcim.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The microbial enzyme diaminopimelate epimerase (DapF), a vital enzyme in the lysine biosynthetic pathway, catalyzes the conversion of L, L-diaminopimelate (L, L-DAP) to D, L-diaminopimelate (D, L-DAP) using a catalytic cysteine dyad with one cysteine in thiol state and another in thiolate. Under oxidizing conditions, the catalytic cysteines of apo DapF form a disulfide bond that alters the structure and function of DapF. Given its potential as a target for antimicrobial resistance treatments, understanding DapF's functional dynamics is imperative. In the present work, we employ microsecond-scale all-atom molecular dynamics simulations of product-bound DapF and apo-DapF under oxidized and reduced conditions. We employ a polarized charge model for the ligand and the active site residues, which was necessary to preserve the electrostatic environment in the active site and retain the ligand in the active site. The product-bound DapF and apo-DapF in oxidized and reduced conditions exhibit a closed, semi-open, and open conformation, respectively, as identified using the internal coordinates of the dimeric enzyme and the principal component analysis. The conformational switch is guided by the dynamic catalytic (DC) loop, loop II, and loop III movements in the active site. The time scale of the close-to-open conformational transition is estimated to be 0.8 μs through Markov state modeling (MSM) and transition path theory (TPT). The present study explains the role of various active site residues and loops in ligand binding and protein dynamics in the DapF enzyme under different redox conditions. Such information will be helpful in future inhibitor design studies targeting the DapF enzyme.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Singh S, Praveen A, Khanna SM. Computational Modelling, Functional Characterization and Molecular Docking to Lead Compounds of Bordetella pertussis Diaminopimelate Epimerase. Appl Biochem Biotechnol 2023; 195:6675-6693. [PMID: 36913098 DOI: 10.1007/s12010-023-04413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Bordetella pertussis, the causative agent of whooping cough, is an opportunistic virulent bacterial pathogen that is resistant to a wide range of antibiotics due to a variety of resistance mechanisms. Looking at the increasing number of infections caused by B. pertussis and its resistance to diverse antibiotics, it is essential to develop alternative strategies to fight against B. pertussis. Diaminopimelate epimerase (DapF) is an important enzyme of the lysine biosynthesis pathway in B. pertussis that catalyzes the formation of meso-2, 6-diaminoheptanedioate (meso-DAP), which is an important step in lysine metabolism. Therefore, Bordetella pertussis diaminopimelate epimerase (DapF) becomes an ideal target for antimicrobial drug development. In the present study, computational modelling, functional characterization, binding studies, and docking studies of BpDapF with lead compounds were carried out using different in silico tools. In silico prediction results in the secondary structure, 3-D structure analysis, and protein-protein interaction analysis of BpDapF. Docking studies further showed the respective amino acid residues for ligands in the phosphate‑binding loop of BpDapF play a vital role in the formation of H‑bonds with these ligands. The site where the ligand was bound is a deep groove, which is regarded as the binding cavity of the protein. Biochemical studies indicated that Limonin (binding energy - 8.8 kcal/mol), Ajmalicine (binding energy - 8.7 kcal/mol), Clinafloxacin (binding energy - 8.3 kcal/mol), Dexamethasone (binding energy - 8.2 kcal/mol), and Tetracycline (binding energy - 8.1 kcal/mol) exhibited promising binding towards the drug target DapF of B. pertussis in comparison with the binding between other drugs and act as the potential inhibitors of BpDapF that eventually can reduce the catalytic activity of BpDapF.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P, 203201, India
| | - Afsana Praveen
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P, 203201, India
| | - Suruchi M Khanna
- Mangalmay Institute of Management and Technology, Greater Noida, U.P, 201310, India.
| |
Collapse
|
6
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
7
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
8
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365. [PMID: 36439792 PMCID: PMC9686282 DOI: 10.3389/fmicb.2022.975365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of genomic information into microbial systematics along with physiological and chemotaxonomic parameters provides for a reliable classification of prokaryotes. In silico analysis of chemotaxonomic traits is now being introduced to replace characteristics traditionally determined in the laboratory with the dual goal of both increasing the speed of the description of taxa and the accuracy and consistency of taxonomic reports. Genomics has already successfully been applied in the taxonomic rearrangement of Geodermatophilaceae (Actinomycetota) but in the light of new genomic data the taxonomy of the family needs to be revisited. In conjunction with the taxonomic characterisation of four strains phylogenetically located within the family, we conducted a phylogenetic analysis of the whole proteomes of the sequenced type strains and established genotype-phenotype correlations for traits related to chemotaxonomy, cell morphology and metabolism. Results indicated that the four isolates under study represent four novel species within the genus Blastococcus. Additionally, the genera Blastococcus, Geodermatophilus and Modestobacter were shown to be paraphyletic. Consequently, the new genera Trujillonella, Pleomorpha and Goekera were proposed within the Geodermatophilaceae and Blastococcus endophyticus was reclassified as Trujillonella endophytica comb. nov., Geodermatophilus daqingensis as Pleomorpha daqingensis comb. nov. and Modestobacter deserti as Goekera deserti comb. nov. Accordingly, we also proposed emended descriptions of Blastococcus aggregatus, Blastococcus jejuensis, Blastococcus saxobsidens and Blastococcus xanthilyniticus. In silico chemotaxonomic results were overall consistent with wet-lab results. Even though in silico discriminatory levels varied depending on the respective chemotaxonomic trait, this approach is promising for effectively replacing and/or complementing chemotaxonomic analyses at taxonomic ranks above the species level. Finally, interesting but previously overlooked insights regarding morphology and ecology were revealed by the presence of a repertoire of genes related to flagellum synthesis, chemotaxis, spore production and pilus assembly in all representatives of the family. A rich carbon metabolism including four different CO2 fixation pathways and a battery of enzymes able to degrade complex carbohydrates were also identified in Blastococcus genomes.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
9
|
Oda K, Sakaguchi T, Matoba Y. Crystal structure of O-ureidoserine racemase found in the d-cycloserine biosynthetic pathway. Proteins 2021; 90:912-918. [PMID: 34877716 DOI: 10.1002/prot.26290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
The O-ureidoserine racemase (DcsC) is an enzyme found from the biosynthetic gene cluster of antitubercular agent d-cycloserine. Although DcsC is homologous to diaminopimelate epimerase (DapF) that catalyzes the interconversion between ll- and dl-diaminopimelic acid, it specifically catalyzes the interconversion between O-ureido-l-serine and its enantiomer. Here we determined the crystal structure of DcsC at a resolution of 2.12 Å, implicating that the catalytic mechanism of DcsC shares similarity with that of DapF. Comparing the structure of the active center of DcsC to that of DapF, Thr72, Thr198, and Tyr219 of DcsC are likely to be involved in the substrate specificity.
Collapse
Affiliation(s)
- Kosuke Oda
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
10
|
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In silico prediction, molecular docking and binding studies of acetaminophen and dexamethasone to Enterococcus faecalis diaminopimelate epimerase. J Mol Recognit 2021; 34:e2894. [PMID: 33719110 DOI: 10.1002/jmr.2894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 11/11/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive coccoid, non-sporulating, facultative anaerobic, multidrug resistance bacterium responsible for almost 65% to 80% of all enterococcal nosocomial infections. It usually causes infective endocarditis, urinary tract and surgical wound infections. The increase in E. faecalis resistance to conventionally available antibiotic has rekindled intense interest in developing useful antibacterial drugs. In E. faecalis, diaminopimelate epimerase (DapF) is involved in the lysine biosynthetic pathway. The product of this pathway is precursors of peptidoglycan synthesis, which is a component of bacterial cell wall. Also, because mammals lack this enzyme, consequently E. faecalis diaminopimelate epimerase (EfDapF) represents a potential target for developing novel class of antibiotics. In this regard, we have successfully cloned, overexpressed the gene encoding DapF in BL-21(DE3) and purified with Ni-NTA Agarose resin. In addition to this, binding studies were performed using fluorescence spectroscopy in order to confirm the bindings of the identified lead compounds (acetaminophen and dexamethasone) with EfDapF. Docking studies revealed that acetaminophen found to make hydrogen bonds with Asn72 and Asn13 while dexamethasone interacted by forming hydrogen bonds with Asn205 and Glu223. Thus, biochemical studies indicated acetaminophen and dexamethasone, as potential inhibitors of EfDapF and eventually can reduce the catalytic activity of EfDapF.
Collapse
Affiliation(s)
- Harpreet Singh
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| |
Collapse
|
11
|
Targeting protein self-association in drug design. Drug Discov Today 2021; 26:1148-1163. [PMID: 33548462 DOI: 10.1016/j.drudis.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.
Collapse
|
12
|
Rodríguez-Alvarez CI, López-Vidriero I, Franco-Zorrilla JM, Nombela G. Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance gene Mi-1 and changes in these differences after infestation by the whitefly Bemisia tabaci. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:463-479. [PMID: 31813394 DOI: 10.1017/s0007485319000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tomato Mi-1 gene mediates plant resistance to whitefly Bemisia tabaci, nematodes, and aphids. Other genes are also required for this resistance, and a model of interaction between the proteins encoded by these genes was proposed. Microarray analyses were used previously to identify genes involved in plant resistance to pests or pathogens, but scarcely in resistance to insects. In the present work, the GeneChip™ Tomato Genome Array (Affymetrix®) was used to compare the transcriptional profiles of Motelle (bearing Mi-1) and Moneymaker (lacking Mi-1) cultivars, both before and after B. tabaci infestation. Ten transcripts were expressed at least twofold in uninfested Motelle than in Moneymaker, while other eight were expressed half or less. After whitefly infestation, differences between cultivars increased to 14 transcripts expressed more in Motelle than in Moneymaker and 14 transcripts less expressed. Half of these transcripts showed no differential expression before infestation. These results show the baseline differences in the tomato transcriptomic profile associated with the presence or absence of the Mi-1 gene and provide us with valuable information on candidate genes to intervene in either compatible or incompatible tomato-whitefly interactions.
Collapse
Affiliation(s)
- Clara I Rodríguez-Alvarez
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - Gloria Nombela
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| |
Collapse
|
13
|
Bearne SL. Through the Looking Glass: Chiral Recognition of Substrates and Products at the Active Sites of Racemases and Epimerases. Chemistry 2020; 26:10367-10390. [DOI: 10.1002/chem.201905826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/09/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry & Molecular BiologyDepartment of ChemistryDalhousie University Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
14
|
Fischer C, Ahn YC, Vederas JC. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity. Nat Prod Rep 2020; 36:1687-1705. [PMID: 30994146 DOI: 10.1039/c9np00017h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to March 2019 Amino acid racemases and epimerases are key enzymes that invert the configuration of common amino acids and supply many corresponding d-isomers in living organisms. Some d-amino acids are inherently bioactive, whereas others are building blocks for important biomolecules, for example lipid II, the bacterial cell wall precursor. Peptides containing them have enhanced proteolytic stability and can act as important recognition elements in mammalian systems. Selective inhibition of certain amino acid racemases (e.g. glutamate racemase) is believed to offer a promising target for new antibacterial drugs effective against pathogens resistant to current antibiotics. Many amino acid racemases employ imine formation with pyridoxal phosphate (PLP) as a cofactor to accelerate the abstraction of the alpha proton. However, the group reviewed herein achieves racemization of free amino acids without the use of cofactors or metals, and uses a thiol/thiolate pair for deprotonation and reprotonation. All bacteria and higher plants contain such enzymes, for example diaminopimelate epimerase, which is required for lysine biosynthesis in these organisms. This process cannot be accomplished without an enzyme catalyst as the acidities of a thiol and the substrate α-hydrogen are inherently mismatched by at least 10 orders of magnitude. This review describes the structural and mechanistic studies on PLP-independent racemases and the evolving view of key enzymatic machinery that accomplishes these remarkable transformations.
Collapse
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
| | | | | |
Collapse
|
15
|
Joshi C, Patel P, Godatwar P, Sharma S, Kothari V. Identifying the Molecular Targets of an Anti-pathogenic Hydroalcoholic Extract of Punica granatum Peel Against Multidrug-resistant Serratia marcescens. Curr Drug Discov Technol 2020; 18:391-404. [PMID: 32316896 DOI: 10.2174/1568009620666200421083120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antibiotic-resistant members of the family Enterobacteriaceae are among the serious threats to human health globally. This study reports the anti-pathogenic activity of Punica granatum peel extract (PGPE) against a multi-drug resistant, beta-lactamase producing member of this family i.e. Serratia marcescens. OBJECTIVE This study aimed at assessing the anti-pathogenic activity of PGPE against the gramnegative bacterial pathogen S. marcescens and identifying the molecular targets of this extract in the test bacterium. METHODS Effect of PGPE on S. marcescens growth and quorum sensing (QS)-regulated pigment production was assessed through broth dilution assay. In vivo anti-infective and prophylactic activity of PGPE was assessed employing the nematode worm Caenorhabditis elegans as a model host. Differential gene expression in PGPE-exposed S. marcescens was studied through a whole transcriptome approach. RESULTS PGPE was able to modulate QS-regulated pigment production in S. marcescens without exerting any heavy growth-inhibitory effect at concentrations as low as ≥2.5 μg/mL. It could attenuate the virulence of the test bacterium towards the worm host by 22-42% (p≤0.01) at even lower concentrations (≥0.5 μg/mL). PGPE also exerted a post-extract effect on S. marcescens. This extract was found to offer prophylactic benefit too, to the host worm, as PGPE-pre-fed worms scored better (34-51%; p≤0.001) survival in face of subsequent bacterial attack. Differential gene expression analysis revealed that PGPE affected the expression of a total of 66 genes in S. marcescens by ≥1.5 fold. CONCLUSION The anti-virulence effect of PGPE against S. marcescens is multifaceted, affecting stress-response machinery, efflux activity, iron homeostasis, and cellular energetics of this bacterium notably. Among the major molecular targets identified in this study are LPS export transporter permease (LptF), t-RNA pseudouridine synthase (TruB), etc.
Collapse
Affiliation(s)
- Chinmayi Joshi
- Institute of Science, Nirma University, Ahmedabad- 382481, India
| | - Pooja Patel
- Institute of Science, Nirma University, Ahmedabad- 382481, India
| | | | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad- 382481, India
| |
Collapse
|
16
|
Gao A, Vasilyev N, Kaushik A, Duan W, Serganov A. Principles of RNA and nucleotide discrimination by the RNA processing enzyme RppH. Nucleic Acids Res 2020; 48:3776-3788. [PMID: 31960065 PMCID: PMC7144940 DOI: 10.1093/nar/gkaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/06/2020] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
All enzymes face a challenge of discriminating cognate substrates from similar cellular compounds. Finding a correct substrate is especially difficult for the Escherichia coli Nudix hydrolase RppH, which triggers 5'-end-dependent RNA degradation by removing orthophosphate from the 5'-diphosphorylated transcripts. Here we show that RppH binds and slowly hydrolyzes NTPs, NDPs and (p)ppGpp, which each resemble the 5'-end of RNA. A series of X-ray crystal structures of RppH-nucleotide complexes, trapped in conformations either compatible or incompatible with hydrolysis, explain the low reaction rates of mononucleotides and suggest two distinct mechanisms for their hydrolysis. While RppH adopts the same catalytic arrangement with 5'-diphosphorylated nucleotides as with RNA, the enzyme hydrolyzes 5'-triphosphorylated nucleotides by extending the active site with an additional Mg2+ cation, which coordinates another reactive nucleophile. Although the average intracellular pH minimizes the hydrolysis of nucleotides by slowing their reaction with RppH, they nevertheless compete with RNA for binding and differentially inhibit the reactivity of RppH with triphosphorylated and diphosphorylated RNAs. Thus, E. coli RppH integrates various signals, such as competing non-cognate substrates and a stimulatory protein factor DapF, to achieve the differential degradation of transcripts involved in cellular processes important for the adaptation of bacteria to different growth conditions.
Collapse
Affiliation(s)
- Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Abhishek Kaushik
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Wenqian Duan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
17
|
Tillery LM, Barrett KF, Dranow DM, Craig J, Shek R, Chun I, Barrett LK, Phan IQ, Subramanian S, Abendroth J, Lorimer DD, Edwards TE, Van Voorhis WC. Toward a structome of Acinetobacter baumannii drug targets. Protein Sci 2020; 29:789-802. [PMID: 31930600 DOI: 10.1002/pro.3826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is well known for causing hospital-associated infections due in part to its intrinsic antibiotic resistance as well as its ability to remain viable on surfaces and resist cleaning agents. In a previous publication, A. baumannii strain AB5075 was studied by transposon mutagenesis and 438 essential gene candidates for growth on rich-medium were identified. The Seattle Structural Genomics Center for Infectious Disease entered 342 of these candidate essential genes into our pipeline for structure determination, in which 306 were successfully cloned into expression vectors, 192 were detectably expressed, 165 screened as soluble, 121 were purified, 52 crystalized, 30 provided diffraction data, and 29 structures were deposited in the Protein Data Bank. Here, we report these structures, compare them with human orthologs where applicable, and discuss their potential as drug targets for antibiotic development against A. baumannii.
Collapse
Affiliation(s)
- Logan M Tillery
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Kayleigh F Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Justin Craig
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Roger Shek
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Ian Chun
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| |
Collapse
|
18
|
Wang Q, Zhang D, Guan Z, Li D, Pei K, Liu J, Zou T, Yin P. DapF stabilizes the substrate-favoring conformation of RppH to stimulate its RNA-pyrophosphohydrolase activity in Escherichia coli. Nucleic Acids Res 2019; 46:6880-6892. [PMID: 29931175 PMCID: PMC6061791 DOI: 10.1093/nar/gky528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/28/2018] [Indexed: 11/30/2022] Open
Abstract
mRNA decay is an important strategy by which bacteria can rapidly adapt to their ever-changing surroundings. The 5′-terminus state of mRNA determines the velocity of decay of many types of RNA. In Escherichia coli, RNA pyrophosphohydrolase (RppH) is responsible for the removal of the 5′-terminal triphosphate from hundreds of mRNAs and triggers its rapid degradation by ribonucleases. A diaminopimelate epimerase, DapF, can directly interact with RppH and stimulate its hydrolysis activity in vivo and in vitro. However, the molecular mechanism remains to be elucidated. Here, we determined the complex structure of DapF–RppH as a heterotetramer in a 2:2 molar ratio. DapF-bound RppH exhibits an RNA-favorable conformation similar to the RNA-bound state, suggesting that association with DapF promotes and stabilizes RppH in a conformation that facilitates substrate RNA binding and thus stimulates the activity of RppH. To our knowledge, this is the first published structure of an RNA–pyrophosphohydrolysis complex in bacteria. Our study provides a framework for further investigation of the potential regulators involved in the RNA–pyrophosphohydrolysis process in prokaryotes.
Collapse
Affiliation(s)
- Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Pei
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Zou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Gao A, Vasilyev N, Luciano DJ, Levenson-Palmer R, Richards J, Marsiglia WM, Traaseth NJ, Belasco JG, Serganov A. Structural and kinetic insights into stimulation of RppH-dependent RNA degradation by the metabolic enzyme DapF. Nucleic Acids Res 2019; 46:6841-6856. [PMID: 29733359 PMCID: PMC6061855 DOI: 10.1093/nar/gky327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
Vitally important for controlling gene expression in eukaryotes and prokaryotes, the deprotection of mRNA 5′ termini is governed by enzymes whose activity is modulated by interactions with ancillary factors. In Escherichia coli, 5′-end-dependent mRNA degradation begins with the generation of monophosphorylated 5′ termini by the RNA pyrophosphohydrolase RppH, which can be stimulated by DapF, a diaminopimelate epimerase involved in amino acid and cell wall biosynthesis. We have determined crystal structures of RppH–DapF complexes and measured rates of RNA deprotection. These studies show that DapF potentiates RppH activity in two ways, depending on the nature of the substrate. Its stimulatory effect on the reactivity of diphosphorylated RNAs, the predominant natural substrates of RppH, requires a substrate long enough to reach DapF in the complex, while the enhanced reactivity of triphosphorylated RNAs appears to involve DapF-induced changes in RppH itself and likewise increases with substrate length. This study provides a basis for understanding the intricate relationship between cellular metabolism and mRNA decay and reveals striking parallels with the stimulation of decapping activity in eukaryotes.
Collapse
Affiliation(s)
- Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Rose Levenson-Palmer
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - William M Marsiglia
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Nathaniel J Traaseth
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
20
|
Luo S, Ju Y, Zhou J, Gu Q, Xu J, Zhou H. Crystal structure of CntK, the cofactor-independent histidine racemase in staphylopine-mediated metal acquisition of Staphylococcus aureus. Int J Biol Macromol 2019; 135:725-733. [DOI: 10.1016/j.ijbiomac.2019.05.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
|
21
|
Gao S, Gold SE, Wisecaver JH, Zhang Y, Guo L, Ma LJ, Rokas A, Glenn AE. Genome-wide analysis of Fusarium verticillioides reveals inter-kingdom contribution of horizontal gene transfer to the expansion of metabolism. Fungal Genet Biol 2019; 128:60-73. [DOI: 10.1016/j.fgb.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/02/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
|
22
|
Miyamoto T, Katane M, Saitoh Y, Sekine M, Homma H. Elucidation of the d-lysine biosynthetic pathway in the hyperthermophile Thermotoga maritima. FEBS J 2018; 286:601-614. [PMID: 30548096 DOI: 10.1111/febs.14720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
Various d-amino acids are involved in peptidoglycan and biofilm metabolism in bacteria, suggesting that these compounds are necessary for successful adaptation to environmental changes. In addition to the conventional d-alanine (d-Ala) and d-glutamate, the peptidoglycan of the hyperthermophilic bacterium Thermotoga maritima contains both l-lysine (l-Lys) and d-Lys, but not meso-diaminopimelate (meso-Dpm). d-Lys is an uncommon component of peptidoglycan, and its biosynthetic pathway remains unclear. In this study, we identified and characterized a novel Lys racemase (TM1597) and Dpm epimerase (TM1522) associated with the d-Lys biosynthetic pathway in T. maritima. The Lys racemase had a dimeric structure containing pyridoxal 5'-phosphate as a cofactor. Among the amino acids, it exhibited the highest racemase activity toward d- and l-Lys, and also had relatively high activity toward d- and l-enantiomers of ornithine and Ala. The Dpm epimerase had the highest epimerization activity toward ll- and meso-Dpm, and also measurably racemized certain amino acids, including Lys. These results suggest that Lys racemase contributes to production of d-Lys and d-Ala for use as peptidoglycan components, and that Dpm epimerase converts ll-Dpm to meso-Dpm, a precursor in the l-Lys biosynthetic pathway.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
23
|
Adachi M, Shimizu R, Kato S, Oikawa T. The first identification and characterization of a histidine-specific amino acid racemase, histidine racemase from a lactic acid bacterium, Leuconostoc mesenteroides subsp. sake NBRC 102480. Amino Acids 2018; 51:331-343. [PMID: 30377839 DOI: 10.1007/s00726-018-2671-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
We expressed a histidine racemase from Leuconostoc mesenteroides subsp. sake NBRC 102480 (Lm-HisR) successively in a soluble fraction of Escherichia coli BL21 (DE3) and then highly purified it from the cell-free extract. Lm-HisR showed amino acid racemase activity on histidine specifically. This is the first example of an amino acid racemase specifically acting on histidine. Phylogenetic analysis of Lm-HisR showed that Lm-HisR was located far from the cluster of alanine racemases reported thus far and only in lactic acid bacteria of the genus Leuconostoc. Alignment of the primary structure of Lm-HisR with those of lysine and alanine racemases and alanine racemase homologs previously reported revealed that the PLP-binding lysine and catalytic tyrosine were completely conserved, and some residues that are unique to the phylogenetic branch of Lm-HisR, Phe44, Ser45, Thr174, Thr206, His286, Ser287, Phe292, Gly312, Val357, and Ala358 were identified. We determined the crystal structure of Lm-HisR complexed with PLP at a 2.1-Å resolution. The crystal structure contained four molecules (two dimers) in the asymmetric unit. When comparing the 3D structure of Lm-HisR with those of racemases from Geobacillus stearothermophilus and Oenococcus oeni, Met315 was completely conserved, but Val357 was not. In addition, two significant differences were observed between Lm-HisR and G. stearothermophilus alanine racemase. Phe44 and His286 in Lm-HisR corresponded to Tyr43 and Tyr284 in G. stearothermophilus alanine racemase, respectively. Based on the structural analysis, comparison with alanine racemase, and docking simulation, three significant residues, Phe44, His286, and Val357, were identified that may control the substrate specificity of Lm-HisR.
Collapse
Affiliation(s)
- Motoyasu Adachi
- Tokai Quantum Beam Science Center, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Rumi Shimizu
- Tokai Quantum Beam Science Center, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Shiro Kato
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Tadao Oikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan.
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
24
|
Gupta R, Hogan CJ, Perugini MA, Soares da Costa TP. Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum. PLANTA 2018; 248:381-391. [PMID: 29744651 DOI: 10.1007/s00425-018-2894-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering. Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a KM (pyruvate) of 0.45 mM, KM (l-aspartate-4-semialdehyde) of 0.07 mM, kcat of 56 s-1, and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a Rg of 33 Å and Dmax of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Campbell J Hogan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
25
|
Atkinson SC, Dogovski C, Wood K, Griffin MDW, Gorman MA, Hor L, Reboul CF, Buckle AM, Wuttke J, Parker MW, Dobson RCJ, Perugini MA. Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure 2018; 26:948-959.e5. [PMID: 29804823 DOI: 10.1016/j.str.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022]
Abstract
Protein dynamics manifested through structural flexibility play a central role in the function of biological molecules. Here we explore the substrate-mediated change in protein flexibility of an antibiotic target enzyme, Clostridium botulinum dihydrodipicolinate synthase. We demonstrate that the substrate, pyruvate, stabilizes the more active dimer-of-dimers or tetrameric form. Surprisingly, there is little difference between the crystal structures of apo and substrate-bound enzyme, suggesting protein dynamics may be important. Neutron and small-angle X-ray scattering experiments were used to probe substrate-induced dynamics on the sub-second timescale, but no significant changes were observed. We therefore developed a simple technique, coined protein dynamics-mass spectrometry (ProD-MS), which enables measurement of time-dependent alkylation of cysteine residues. ProD-MS together with X-ray crystallography and analytical ultracentrifugation analyses indicates that pyruvate locks the conformation of the dimer that promotes docking to the more active tetrameric form, offering insight into ligand-mediated stabilization of multimeric enzymes.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Lilian Hor
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joachim Wuttke
- Juelich Centre for Neutron Science (JCNS), at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenstrasse 1, Garching 85 747, Germany
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag, Christchurch 4800, New Zealand
| | - Matthew A Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
26
|
Wytock TP, Fiebig A, Willett JW, Herrou J, Fergin A, Motter AE, Crosson S. Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet 2018; 14:e1007284. [PMID: 29584733 PMCID: PMC5892946 DOI: 10.1371/journal.pgen.1007284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/10/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cell growth is determined by substrate availability and the cell’s metabolic capacity to assimilate substrates into building blocks. Metabolic genes that determine growth rate may interact synergistically or antagonistically, and can accelerate or slow growth, depending on genetic background and environmental conditions. We evolved a diverse set of Escherichia coli single-gene deletion mutants with a spectrum of growth rates and identified mutations that generally increase growth rate. Despite the metabolic differences between parent strains, mutations that enhanced growth largely mapped to core transcription machinery, including the β and β’ subunits of RNA polymerase (RNAP) and the transcription elongation factor, NusA. The structural segments of RNAP that determine enhanced growth have been previously implicated in antibiotic resistance and in the control of transcription elongation and pausing. We further developed a computational framework to characterize how the transcriptional changes that occur upon acquisition of these mutations affect growth rate across strains. Our experimental and computational results provide evidence for cases in which RNAP mutations shift the competitive balance between active transcription and gene silencing. This study demonstrates that mutations in specific regions of RNAP are a convergent adaptive solution that can enhance the growth rate of cells from distinct metabolic states. The loss of a metabolic function caused by gene deletion can be compensated, in certain cases, by the concurrent mutation of a second gene. Whether such gene pairs share a local chemical or regulatory relationship or interact via a non-local mechanism has implications for the co-evolution of genetic changes, development of alternatives to gene therapy, and the design of combination antimicrobial therapies that select against resistance. Yet, we lack a comprehensive knowledge of adaptive responses to metabolic mutations, and our understanding of the mechanisms underlying genetic rescue remains limited. We present results of a laboratory evolution approach that has the potential to address both challenges, showing that mutations in specific regions of RNA polymerase enhance growth rates of distinct mutant strains of Escherichia coli with a spectrum of growth defects. Several of these adaptive mutations are deleterious when engineered directly into the original wild-type strain under alternative cultivation conditions, and thus have epistatic rescue properties when paired with the corresponding primary metabolic gene deletions. Our combination of adaptive evolution, directed genetic engineering, and mathematical analysis of transcription and growth rate distinguishes between rescue interactions that are specific or non-specific to a particular deletion. Our study further supports a model for RNA polymerase as a locus of convergent adaptive evolution from different sub-optimal metabolic starting points.
Collapse
Affiliation(s)
- Thomas P. Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan W. Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Aleksandra Fergin
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Adilson E. Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (AEM); (SC)
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AEM); (SC)
| |
Collapse
|
27
|
Huang J, Casas Garcia GP, Perugini MA, Fox AH, Bond CS, Lee M. Crystal structure of a SFPQ/PSPC1 heterodimer provides insights into preferential heterodimerization of human DBHS family proteins. J Biol Chem 2018. [PMID: 29530979 DOI: 10.1074/jbc.ra117.001451] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Members of the Drosophila behavior human splicing (DBHS) protein family are nuclear proteins implicated in many layers of nuclear functions, including RNA biogenesis as well as DNA repair. Definitive of the DBHS protein family, the conserved DBHS domain provides a dimerization platform that is critical for the structural integrity and function of these proteins. The three human DBHS proteins, splicing factor proline- and glutamine-rich (SFPQ), paraspeckle component 1 (PSPC1), and non-POU domain-containing octamer-binding protein (NONO), form either homo- or heterodimers; however, the relative affinity and mechanistic details of preferential heterodimerization are yet to be deciphered. Here we report the crystal structure of a SFPQ/PSPC1 heterodimer to 2.3-Å resolution and analyzed the subtle structural differences between the SFPQ/PSPC1 heterodimer and the previously characterized SFPQ homodimer. Analytical ultracentrifugation to estimate the dimerization equilibrium of the SFPQ-containing dimers revealed that the SFPQ-containing dimers dissociate at low micromolar concentrations and that the heterodimers have higher affinities than the homodimer. Moreover, we observed that the apparent dissociation constant for the SFPQ/PSPC1 heterodimer was over 6-fold lower than that of the SFPQ/NONO heterodimer. We propose that these differences in dimerization affinity may represent a potential mechanism by which PSPC1 at a lower relative cellular abundance can outcompete NONO to heterodimerize with SFPQ.
Collapse
Affiliation(s)
- Jie Huang
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 and
| | - G Patricia Casas Garcia
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 and
| | - Matthew A Perugini
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 and
| | | | - Charles S Bond
- the School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Mihwa Lee
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 and
| |
Collapse
|
28
|
Gupta R, Soares da Costa TP, Faou P, Dogovski C, Perugini MA. Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae. Protein Expr Purif 2018; 145:85-93. [PMID: 29337198 DOI: 10.1016/j.pep.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
29
|
Ahn YC, Fischer C, van Belkum MJ, Vederas JC. PLP-independent racemization: mechanistic and mutational studies ofO-ureidoserine racemase (DcsC). Org Biomol Chem 2018; 16:1126-1133. [DOI: 10.1039/c7ob03013d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Site-specific mutagenesis and inhibition ofO-ureidoserine racemase reveals mechanistic insights in the unique PLP-independent bioenzymatic racemization of amino acids.
Collapse
Affiliation(s)
- Yeong-Chan Ahn
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Conrad Fischer
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | |
Collapse
|
30
|
Cephem Potentiation by Inactivation of Nonessential Genes Involved in Cell Wall Biogenesis of β-Lactamase-Producing Escherichia coli. Antimicrob Agents Chemother 2017; 61:AAC.01773-16. [PMID: 27956425 DOI: 10.1128/aac.01773-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022] Open
Abstract
Reversal of antimicrobial resistance is an appealing and largely unexplored strategy in drug discovery. The objective of this study was to identify potential targets for "helper" drugs reversing cephem resistance in Escherichia coli strains producing β-lactamases. A CMY-2-encoding plasmid was transferred by conjugation to seven isogenic deletion mutants exhibiting cephem hypersusceptibility. The effect of each mutation was evaluated by comparing the MICs in the wild type and the mutant harboring the same plasmid. Mutation of two genes encoding proteins involved in cell wall biosynthesis, dapF and mrcB, restored susceptibility to cefoxitin (FOX) and reduced the MICs of cefotaxime and ceftazidime, respectively, from the resistant to the intermediate category according to clinical breakpoints. The same mutants harboring a CTX-M-1-encoding plasmid fell into the intermediate or susceptible category for all three drugs. Individual deletion of dapF and mrcB in a clinical isolate of CTX-M-15-producing E. coli sequence type 131 (ST131) resulted in partial reversal of ceftazidime and cefepime resistance but did not reduce MICs below susceptibility breakpoints. Growth curve analysis indicated no fitness cost in a ΔmrcB mutant, whereas a ΔdapF mutant had a 3-fold longer lag phase than the wild type, suggesting that drugs targeting DapF may display antimicrobial activity, in addition to synergizing with selected cephems. DapF appeared to be a potential FOX helper drug target candidate, since dapF inactivation resulted in synergistic potentiation of FOX in the genetic backgrounds tested. The study showed that individual inactivation of two nonessential genes involved in cell wall biogenesis potentiates cephem activity according to drug- and strain-specific patterns.
Collapse
|
31
|
Sagong HY, Kim KJ. Structural basis for redox sensitivity in Corynebacterium glutamicum diaminopimelate epimerase: an enzyme involved in l-lysine biosynthesis. Sci Rep 2017; 7:42318. [PMID: 28176858 PMCID: PMC5296763 DOI: 10.1038/srep42318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/07/2023] Open
Abstract
Diaminopimelate epimerase (DapF) is one of the crucial enzymes involved in l-lysine biosynthesis, where it converts l,l-diaminopimelate (l,l-DAP) into d,l-DAP. DapF is also considered as an attractive target for the development of antibacterial drugs. Here, we report the crystal structure of DapF from Corynebacterium glutamicum (CgDapF). Structures of CgDapF obtained under both oxidized and reduced conditions reveal that the function of CgDapF is regulated by redox-switch modulation via reversible disulfide bond formation between two catalytic cysteine residues. Under oxidized condition, two catalytic cysteine residues form a disulfide bond; these same cysteine residues exist in reduced form under reduced condition. Disulfide bond formation also induces a subsequent structural change in the dynamic catalytic loop at the active site, which results in open/closed conformational change at the active site. We also determined the crystal structure of CgDapF in complex with its product d,l-DAP, and elucidated how the enzyme recognizes its substrate l,l-DAP as a substrate. Moreover, the structure in complex with the d,l-DAP product reveals that CgDapF undergoes a large open/closed domain movement upon substrate binding, resulting in a completely buried active site with the substrate bound.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Korea,
| |
Collapse
|
32
|
Rajasekaran S, Tangavel C, Aiyer SN, Nayagam SM, Raveendran M, Demonte NL, Subbaiah P, Kanna R, Shetty AP, Dharmalingam K. ISSLS PRIZE IN CLINICAL SCIENCE 2017: Is infection the possible initiator of disc disease? An insight from proteomic analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:1384-1400. [PMID: 28168343 DOI: 10.1007/s00586-017-4972-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
STUDY DESIGN Proteomic and 16S rDNA analysis of disc tissues obtained in vivo. OBJECTIVE To address the controversy of infection as an aetiology for disc disorders through protein profiling. There is raging controversy over the presence of bacteria in human lumbar discs in vivo, and if they represent contamination or infection. Proteomics can provide valuable insight by identifying proteins signifying bacterial presence and, also host defence response proteins (HDRPs), which will confirm infection. METHODS 22 discs (15-disc herniations (DH), 5-degenerate (DD), 2-normal in MRI (NM) were harvested intraoperatively and immediately snap frozen. Samples were pooled into three groups and proteins extracted were analysed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Post identification, data analysis was performed using Uniprotdb, Pantherdb, Proteome discoverer and STRING network. Authentication for bacterial presence was performed by PCR amplification of 16S rDNA. RESULTS LC-MS/MS analysis using Orbitrap showed 1103 proteins in DH group, compared to 394 in NM and 564 in DD. 73 bacterial specific proteins were identified (56 specific for Propionibacterium acnes; 17 for Staphylococcus epidermidis). In addition, 67 infection-specific HDRPs, unique or upregulated, such as Defensin, Lysozyme, Dermcidin, Cathepsin-G, Prolactin-Induced Protein, and Phospholipase-A2, were identified confirming presence of infection. Species-specific primers for P. acnes exhibited amplicons at 946 bp (16S rDNA) and 515 bp (Lipase) confirming presence of P. acnes in both NM discs, 11 of 15 DH discs, and all five DD discs. Bioinformatic search for protein-protein interactions (STRING) documented 169 proteins with close interactions (protein clustering co-efficient 0.7) between host response and degenerative proteins implying that infection may initiate degradation through Ubiquitin C. CONCLUSION Our study demonstrates bacterial specific proteins and host defence proteins to infection which strengthen the hypothesis of infection as a possible initiator of disc disease. These results can lead to a paradigm shift in our understanding and management of disc disorders.
Collapse
Affiliation(s)
- S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettuppalayam Road, Coimbatore, 641043, India.
| | - Chitraa Tangavel
- Ganga Research Centre, No 91, Mettuppalayam Road, Coimbatore, 641030, India
| | - Siddharth N Aiyer
- Department of Spine Surgery, Ganga Hospital, 313, Mettuppalayam Road, Coimbatore, 641043, India
| | | | - M Raveendran
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Pramela Subbaiah
- Department of Spine Surgery, Ganga Hospital, 313, Mettuppalayam Road, Coimbatore, 641043, India
| | - Rishi Kanna
- Department of Spine Surgery, Ganga Hospital, 313, Mettuppalayam Road, Coimbatore, 641043, India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Hospital, 313, Mettuppalayam Road, Coimbatore, 641043, India
| | - K Dharmalingam
- Aravind Medical Research Foundation, Madurai, 625020, India
| |
Collapse
|
33
|
Gordon SE, Weber DK, Downton MT, Wagner J, Perugini MA. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation. PLoS Comput Biol 2016; 12:e1004811. [PMID: 26967332 PMCID: PMC4788353 DOI: 10.1371/journal.pcbi.1004811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/12/2016] [Indexed: 11/29/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions. Interactions between proteins and ligands underpin many important biological processes, such as binding of substrates to their cognate enzymes in the process of catalysis. These interactions are complex, often requiring several intermediate steps to fully transition into the bound state. Here, we have used computational simulation to study binding of pyruvate to Dihydrodipicolinate synthase (DHDPS), an enzyme in the bacterial diaminopimelate pathway. In bacteria, such as the human pathogen S. aureus, DHDPS functions to make building blocks necessary for protein and bacterial cell wall biosyntheses. As the enzyme is absent in humans, yet essential for bacterial growth, DHDPS is a valid target for broad-range antibiotics. However, known DHDPS inhibitors show poor potency. One avenue that has not yet been taken into consideration for inhibitor design is the dynamics of DHDPS’s interaction with its reaction substrates (e.g. pyruvate). Using molecular dynamics simulation, we find that pyruvate binding to DHDPS must pass through a transition intermediate ‘hotspot’ in which the substrate is held in place by a dense network of noncovalent bonds. Given that many of the protein residues involved in this interaction are also shared by DHDPS from many pathogenic bacteria, this binding intermediate ‘hotspot’ may help in development of better broad-range DHDPS inhibitors.
Collapse
Affiliation(s)
- Shane E. Gordon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Daniel K. Weber
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew T. Downton
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - John Wagner
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
34
|
Peverelli MG, Soares da Costa TP, Kirby N, Perugini MA. Dimerization of Bacterial Diaminopimelate Decarboxylase Is Essential for Catalysis. J Biol Chem 2016; 291:9785-95. [PMID: 26921318 DOI: 10.1074/jbc.m115.696591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Diaminopimelate decarboxylase (DAPDC) catalyzes the final step in the diaminopimelate biosynthesis pathway of bacteria. The product of the reaction is the essential amino acid l-lysine, which is an important precursor for the synthesis of the peptidoglycan cell wall, housekeeping proteins, and virulence factors of bacteria. Accordingly, the enzyme is a promising antibacterial target. Previous structural studies demonstrate that DAPDC exists as monomers, dimers, and tetramers in the crystal state. However, the active oligomeric form has not yet been determined. We show using analytical ultracentrifugation, small angle x-ray scattering, and enzyme kinetic analyses in solution that the active form of DAPDC from Bacillus anthracis, Escherichia coli, Mycobacterium tuberculosis, and Vibrio cholerae is a dimer. The importance of dimerization was probed further by generating dimerization interface mutants (N381A and R385A) of V. cholerae DAPDC. Our studies indicate that N381A and R385A are significantly attenuated in catalytic activity, thus confirming that dimerization of DAPDC is essential for function. These findings provide scope for the development of new antibacterial agents that prevent DAPDC dimerization.
Collapse
Affiliation(s)
- Martin G Peverelli
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, and
| | - Tatiana P Soares da Costa
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Nigel Kirby
- the The Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Matthew A Perugini
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, and
| |
Collapse
|
35
|
Peverelli MG, Perugini MA. An optimized coupled assay for quantifying diaminopimelate decarboxylase activity. Biochimie 2015; 115:78-85. [PMID: 25986217 DOI: 10.1016/j.biochi.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Diaminopimelate decarboxylase (DAPDC) catalyzes the conversion of meso-DAP to lysine and carbon dioxide in the final step of the diaminopimelate (DAP) pathway in plants and bacteria. Given its absence in humans, DAPDC is a promising antibacterial target, particularly considering the rise in drug-resistant strains from pathogens such as Escherichia coli and Mycobacterium tuberculosis. Here, we report the optimization of a simple quantitative assay for measuring DAPDC catalytic activity using saccharopine dehydrogenase (SDH) as the coupling enzyme. Our results show that SDH has optimal activity at 37 °C, pH 8.0, and in Tris buffer. These conditions were subsequently employed to quantitate the enzyme kinetic properties of DAPDC from three bacterial species. We show that DAPDC from E. coli and M. tuberculosis have [Formula: see text] of 0.97 mM and 1.62 mM and a kcat of 55 s(-1) and 28 s(-1), respectively, which agree well with previous studies using more labor-intensive assays. We subsequently employed the optimized coupled assay to show for the first time that DAPDC from Bacillus anthracis possesses a [Formula: see text] of 0.68 mM and a kcat of 58 s(-1). This optimized coupled assay offers excellent scope to be employed in high throughput drug discovery screens targeting DAPDC from bacterial pathogens.
Collapse
Affiliation(s)
- Martin G Peverelli
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew A Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
36
|
Liu T, Huang C, Shen C, Shi J. Isolation and Analysis of Cell Wall Proteome in Elsholtzia splendens Roots Using ITRAQ with LC-ESI-MS/MS. Appl Biochem Biotechnol 2015; 176:1174-94. [PMID: 25926012 DOI: 10.1007/s12010-015-1638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
Cell wall proteins (CWPs) are a prime site for signal perception and defense responses to environmental stresses. To gain further insights into CWPs and their molecular function, traditional techniques (e.g., two-dimensional gel electrophoresis) may be ineffective for special proteins. Elsholtzia splendens is a copper-tolerant plant species that grow on copper deposits. In this study, a fourplex isobaric tag was used for relative and absolute quantitation with liquid chromatography-tandem mass spectrometry approach to analyze the root CWPs of E. splendens. A total of 479 unique proteins were identified, including 121 novel proteins. Approximately 80.79 % of the proteins were extracted in the CaCl2 fraction, 16.08 % were detected in the NaCl fraction, and 3.13 % were identified in both fractions. The identified proteins have been involved in various processes, including cell wall remodeling, signal transduction, defense, and carbohydrate metabolism, thereby indicating a complex regulatory network in the apoplast of E. splendens roots. This study presents the first large-scale analysis of CWPs in metal-tolerant plants, which may be of paramount importance to understand the molecular functions and metabolic pathways in the root cell wall of copper-tolerant plants.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of Environmental Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Lee CR, Kim M, Park YH, Kim YR, Seok YJ. RppH-dependent pyrophosphohydrolysis of mRNAs is regulated by direct interaction with DapF in Escherichia coli. Nucleic Acids Res 2014; 42:12746-57. [PMID: 25313159 PMCID: PMC4227774 DOI: 10.1093/nar/gku926] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Similar to decapping of eukaryotic mRNAs, the RppH-catalyzed conversion of 5′-terminal triphosphate to monophosphate has recently been identified as the rate-limiting step for the degradation of a subset of mRNAs in Escherichia coli. However, the regulation of RppH pyrophosphohydrolase activity is not well understood. Because the overexpression of RppH alone does not affect the decay rate of most target mRNAs, the existence of a mechanism regulating its activity has been suggested. In this study, we identified DapF, a diaminopimelate (DAP) epimerase catalyzing the stereoinversion of L,L-DAP to meso-DAP, as a regulator of RppH. DapF showed a high affinity interaction with RppH and increased its RNA pyrophosphohydrolase activity. The simultaneous overexpression of both DapF and RppH increased the decay rates of RppH target RNAs by about a factor of two. Together, our data suggest that the cellular level of DapF is a critical factor regulating the RppH-catalyzed pyrophosphate removal and the subsequent degradation of target mRNAs.
Collapse
Affiliation(s)
- Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Miri Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Young-Ha Park
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
38
|
Joseph PRB, Poluri KM, Gangavarapu P, Rajagopalan L, Raghuwanshi S, Richardson RM, Garofalo RP, Rajarathnam K. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins. Biophys J 2014; 105:1491-501. [PMID: 24048001 DOI: 10.1016/j.bpj.2013.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
Abstract
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins.
Collapse
Affiliation(s)
- Prem Raj B Joseph
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Huo L, Davis I, Chen L, Liu A. The power of two: arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in α-amino-β-carboxymuconate-epsilon-semialdehyde decarboxylase. J Biol Chem 2013; 288:30862-71. [PMID: 24019523 DOI: 10.1074/jbc.m113.496869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the crystal structure of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase from Pseudomonas fluorescens was solved as a dimer, this enzyme is a mixture of monomer, dimer, and higher order structures in solution. In this work, we found that the dimeric state, not the monomeric state, is the functionally active form. Two conserved arginine residues are present in the active site: Arg-51 and an intruding Arg-239* from the neighboring subunit. In this study, they were each mutated to alanine and lysine, and all four mutants were catalytically inactive. The mutants were also incapable of accommodating pyridine-2,6-dicarboxylic acid, a competitive inhibitor of the native enzyme, suggesting that the two Arg residues are involved in substrate binding. It was also observed that the decarboxylase activity was partially recovered in a heterodimer hybridization experiment when inactive R51(A/K) and R239(A/K) mutants were mixed together. Of the 20 crystal structures obtained from mixing inactive R51A and R239A homodimers that diffracted to a resolution lower than 3.00 Å, two structures are clearly R51A/R239A heterodimers and belong to the C2 space group. They were refined to 1.80 and 2.00 Å resolutions, respectively. Four of the remaining crystals are apparently single mutants and belong to the P42212 space group. In the heterodimer structures, one active site is shown to contain dual mutation of Ala-51 and Ala-239*, whereas the other contains the native Arg-51 and Arg-239* residues, identical to the wild-type structure. Thus, these observations provide the foundation for a molecular mechanism by which the oligomerization state of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase could regulate the enzyme activity.
Collapse
Affiliation(s)
- Lu Huo
- From the Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | | | | | | |
Collapse
|
40
|
Hor L, Peverelli MG, Perugini MA, Hutton CA. A new robust kinetic assay for DAP epimerase activity. Biochimie 2013; 95:1949-53. [PMID: 23838343 DOI: 10.1016/j.biochi.2013.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/28/2013] [Indexed: 11/30/2022]
Abstract
DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase-DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP(+) to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics.
Collapse
Affiliation(s)
- Lilian Hor
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|