1
|
Ryzhakov G, Almuttaqi H, Corbin AL, Berthold DL, Khoyratty T, Eames HL, Bullers S, Pearson C, Ai Z, Zec K, Bonham S, Fischer R, Jostins-Dean L, Travis SPL, Kessler BM, Udalova IA. Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. Nat Commun 2021; 12:6702. [PMID: 34795257 PMCID: PMC8602323 DOI: 10.1038/s41467-021-27038-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Hannah Almuttaqi
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Alastair L Corbin
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Dorothée L Berthold
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Tariq Khoyratty
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Hayley L Eames
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Samuel Bullers
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Claire Pearson
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Zhichao Ai
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Kristina Zec
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins-Dean
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Simon P L Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom.
| |
Collapse
|
4
|
Williams LM, Inge MM, Mansfield KM, Rasmussen A, Afghani J, Agrba M, Albert C, Andersson C, Babaei M, Babaei M, Bagdasaryants A, Bonilla A, Browne A, Carpenter S, Chen T, Christie B, Cyr A, Dam K, Dulock N, Erdene G, Esau L, Esonwune S, Hanchate A, Huang X, Jennings T, Kasabwala A, Kehoe L, Kobayashi R, Lee M, LeVan A, Liu Y, Murphy E, Nambiar A, Olive M, Patel D, Pavesi F, Petty CA, Samofalova Y, Sanchez S, Stejskal C, Tang Y, Yapo A, Cleary JP, Yunes SA, Siggers T, Gilmore TD. Transcription factor NF-κB in a basal metazoan, the sponge, has conserved and unique sequences, activities, and regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103559. [PMID: 31751628 DOI: 10.1016/j.dci.2019.103559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Herein, we characterize transcription factor NF-κB from the demosponge Amphimedon queenslandica (Aq). Aq-NF-κB is most similar to NF-κB p100/p105 among vertebrate proteins, with an N-terminal DNA-binding domain, a C-terminal Ankyrin (ANK) repeat domain, and a DNA binding-site profile akin to human NF-κB proteins. Like mammalian NF-κB p100, C-terminal truncation allows nuclear translocation of Aq-NF-κB and increases its transcriptional activation activity. Expression of IκB kinases (IKKs) induces proteasome-dependent C-terminal processing of Aq-NF-κB in human cells, and processing requires C-terminal serines in Aq-NF-κB. Unlike NF-κB p100, C-terminal sequences of Aq-NF-κB do not inhibit its DNA-binding activity. Tissue of a black encrusting demosponge contains NF-κB site DNA-binding activity, as well as nuclear and processed NF-κB. Treatment of sponge tissue with LPS increases both DNA-binding activity and processing of NF-κB. A. queenslandica transcriptomes contain homologs to upstream NF-κB pathway components. This is first functional characterization of NF-κB in sponge, the most basal multicellular animal.
Collapse
Affiliation(s)
- Leah M Williams
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Melissa M Inge
- Department of Biology, Boston University, Boston, MA, 02215, USA; Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | | | - Anna Rasmussen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Jamie Afghani
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Mikhail Agrba
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Colleen Albert
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Cecilia Andersson
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Milad Babaei
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Mohammad Babaei
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Abigail Bagdasaryants
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Arianna Bonilla
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Amanda Browne
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Sheldon Carpenter
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Tiffany Chen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Blake Christie
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Andrew Cyr
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Katie Dam
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Nicholas Dulock
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Galbadrakh Erdene
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Lindsie Esau
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Stephanie Esonwune
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Anvita Hanchate
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Xinli Huang
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Timothy Jennings
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Aarti Kasabwala
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Leanne Kehoe
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Ryan Kobayashi
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Migi Lee
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Andre LeVan
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Yuekun Liu
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Emily Murphy
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Avanti Nambiar
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Meagan Olive
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Devansh Patel
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Flaminio Pavesi
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Christopher A Petty
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Yelena Samofalova
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Selma Sanchez
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Camilla Stejskal
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Yinian Tang
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Alia Yapo
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - John P Cleary
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Sarah A Yunes
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Mita P, Lhakhang T, Li D, Eichinger DJ, Fenyo D, Boeke JD. Fluorescence ImmunoPrecipitation (FLIP): a Novel Assay for High-Throughput IP. Biol Proced Online 2016; 18:16. [PMID: 27528826 PMCID: PMC4983793 DOI: 10.1186/s12575-016-0046-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
Abstract
Background The immunoprecipitation (IP) assay is a valuable molecular biology tool applied across a breadth of fields. The standard assay couples IP to immunoblotting (IP/IB), a procedure severely limited as it is not easily scaled for high-throughput analysis. Results Here we describe and characterize a new methodology for fast and reliable evaluation of an immunoprecipitation reaction. FLIP (FLuorescence IP) relies on the expression of the target protein as a chromophore-tagged protein and couples IP with the measurement of fluorescent signal coating agarose beads. We show here that FLIP displays similar sensitivity to the standard IP/IB procedure but is amenable to high-throughput analysis. We applied FLIP to the screening of mouse monoclonal antibodies of unknown behavior in IP procedures. The parallel analysis of the considered antibodies using FLIP and IP/western shows good correlation between the two procedures. We also show application of FLIP using unpurified antibodies (hybridoma supernatant) and we developed a publicly available tool for the easy analysis and quantification of FLIP signals. Conclusions Altogether, our characterizations of this new methodology show that FLIP is an appealing and reliable tool for any application of high-throughput IP. Electronic supplementary material The online version of this article (doi:10.1186/s12575-016-0046-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paolo Mita
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, ACLSW Room 560, 430 East 29th Street, New York, NY 10016 USA ; High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tenzin Lhakhang
- Center for Health Informatics and Bioinformatics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY USA
| | - Donghui Li
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, ACLSW Room 560, 430 East 29th Street, New York, NY 10016 USA ; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | | | - David Fenyo
- Center for Health Informatics and Bioinformatics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY USA
| | - Jef D Boeke
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, ACLSW Room 560, 430 East 29th Street, New York, NY 10016 USA ; High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|