1
|
Hao Q, Zhao W, Li Z, Lai Y, Wang Y, Yang Q, Zhang L. Combination therapy and dual-target inhibitors based on cyclin-dependent kinases (CDKs): Emerging strategies for cancer therapy. Eur J Med Chem 2025; 289:117465. [PMID: 40037064 DOI: 10.1016/j.ejmech.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Cyclin-dependent kinases (CDKs) are pivotal regulators of the cell cycle and transcriptional machinery, making them attractive targets for cancer therapy. While CDK inhibitors have demonstrated promising clinical outcomes, they also face challenges in enhancing efficacy, particularly in overcoming drug resistance. Combination therapies have emerged as a key strategy to augment the effectiveness of CDK inhibitors when used alongside other kinase inhibitors or non-kinase-targeted agents. Dual-target inhibitors that simultaneously inhibit CDKs and other oncogenic drivers are gaining attention, offering novel avenues to optimize cancer therapy. Based on the structural characterization and biological functions of CDKs, this review comprehensively examines the structure-activity relationship (SAR) of existing dual-target CDK inhibitors from a drug design perspective. We also thoroughly investigate the preclinical studies and clinical translational potential of combination therapies and dual-target inhibitors. Tailoring CDK inhibitors to specific cancer subtypes and therapeutic settings will inspire innovative approaches for the next generation of CDK-related therapies, ultimately improving patient survival.
Collapse
Affiliation(s)
- Qi Hao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenzhe Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qianqian Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci 2022; 308:120986. [PMID: 36152679 DOI: 10.1016/j.lfs.2022.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Despite the fact that the small atypical serine/threonine cyclin-dependent kinase 5 (Cdk5) is expressed in a number of tissues, its activity is restricted to the central nervous system due to the neuron-only localization of its activators p35 and p39. Although its importance for the proper development and function of the brain and its role as a switch between neuronal survival and death are unmistakable and unquestionable, Cdk5 is nevertheless increasingly emerging, as supported by a large number of publications on the subject, as a therapeutic target of choice in the fight against Alzheimer's disease. Thus, its aberrant over activation via the calpain-dependent conversion of p35 into p25 is observed during the pathogenesis of the disease where it leads to the hyperphosphorylation of the β-amyloid precursor protein and tau. The present review highlights the pivotal roles of the hyperactive Cdk5-p25 complex activity in contributing to the development of Alzheimer's disease pathogenesis, with a particular emphasis on the linking function between Aβ and tau that this kinase fulfils and on the fact that Cdk5-p25 is part of a deleterious feed forward loop giving rise to a molecular machinery runaway leading to AD pathogenesis. Additionally, we discuss the advances and challenges related to the possible strategies aimed at specifically inhibiting Cdk5-p25 activity and which could lead to promising anti-AD therapeutics.
Collapse
|
3
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Luo F, Zhang J, Burke K, Romito-DiGiacomo RR, Miller RH, Yang Y. Oligodendrocyte-specific loss of Cdk5 disrupts the architecture of nodes of Ranvier as well as learning and memory. Exp Neurol 2018; 306:92-104. [PMID: 29729246 DOI: 10.1016/j.expneurol.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
Myelination of the central nervous system is important for normal motor and sensory neuronal function and recent studies also link it to efficient learning and memory. Cyclin-dependent kinase 5 (Cdk5) is required for normal oligodendrocyte development, myelination and myelin repair. Here we show that conditional deletion of Cdk5 by targeting with CNP (CNP;Cdk5 CKO) results in hypomyelination and disruption of the structural integrity of Nodes of Ranvier. In addition, CNP;Cdk5 CKO mice exhibited a severe impairment of learning and memory compared to controls that may reflect perturbed neuron-glial interactions. Co-culture of cortical neurons with CNP;Cdk5 CKO oligodendrocyte lineage cells resulted in a significant reduction in the density of neuronal dendritic spines. In short term fear-conditioning studies, CNP;Cdk5 CKO mice had decreased hippocampal levels of immediate early genes such as Arc and Fos, and lower levels of p-CREB and p-cofilin suggested these pathways are affected by the levels of myelination. The novel roles of Cdk5 in oligodendrocyte lineage cells may provide insights for helping understand the cognitive changes sometimes seen in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Jessie Zhang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Kathryn Burke
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Rita R Romito-DiGiacomo
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Robert H Miller
- Department of Anatomy and Regenerative Biology, George Washington University, Washington DC 20037, United States.
| | - Yan Yang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States; Center for Translational Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
5
|
Yang L, Guo Y, Huang M, Wu X, Li X, Chen G, Li Y, Bai J. Thioredoxin-1 Protects Spinal Cord from Demyelination Induced by Methamphetamine through Suppressing Endoplasmic Reticulum Stress and Inflammation. Front Neurol 2018; 9:49. [PMID: 29467717 PMCID: PMC5808126 DOI: 10.3389/fneur.2018.00049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 01/19/2023] Open
Abstract
Methamphetamine (METH) is a psychostimulant abused around the world. Emerging evidence indicates that METH causes brain damage. However, there are very few reports on METH-induced demyelination. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays the roles in protecting neurons from various stresses. However, whether Trx-1 resists demyelination induced by METH has not been reported. In this study, we found that METH-induced thin myelin sheaths in spinal cord, whereas Trx-1 overexpression transgenic (TG) mice restored the myelin sheaths thickness. The expressions of myelin-associated glycoprotein, myelin basic protein, and cyclin-dependent kinase 5 were decreased by METH, whereas these alterations were blocked in Trx-1 TG mice. The expressions of procaspase-12 and procaspase-3 were decreased by METH, the expression of calpain1 was increased by METH, whereas the alterations were suppressed in Trx-1 TG mice. As same as, the expressions of the extracellular signal-regulated kinase, nuclear factor κB, tumor necrosis factor-alpha, and interleukin-1beta were induced by METH, which were suppressed in Trx-1 TG mice. These data suggest that Trx-1 may play a critical role in resisting the METH-mediated demyelination in spinal cord through regulating endoplasmic reticulum stress and inflammation pathways.
Collapse
Affiliation(s)
- Lihua Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Medical School, Kunming University of Science and Technology, Kunming, China.,Narcotics Control School, Yunnan Police College, Kunming, China
| | - Yinli Guo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Mengbin Huang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Wu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiang Li
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Guobing Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ye Li
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Hu Y, Pan S, Zhang HT. Interaction of Cdk5 and cAMP/PKA Signaling in the Mediation of Neuropsychiatric and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 17:45-61. [PMID: 28956329 DOI: 10.1007/978-3-319-58811-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Both cyclin-dependent kinase 5 (Cdk5) and cyclic AMP (cAMP)/protein kinase A (PKA) regulate fundamental central nervous system (CNS) functions including neuronal survival, neurite and axonal outgrowth, neuron development and cognition. Cdk5, a serine/threonine kinase, is activated by p35 or p39 and phosphorylates multiple signaling components of various pathways, including cAMP/PKA signaling. Here, we review the recent literature on the interaction between Cdk5 and cAMP/PKA signaling and their role in the mediation of CNS functions and neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China
| |
Collapse
|
7
|
Prochazkova M, Hall B, Hu M, Okine T, Reukauf J, Binukumar BK, Amin ND, Roque E, Pant HC, Kulkarni A. Peripheral and orofacial pain sensation is unaffected by the loss of p39. Mol Pain 2017; 13:1744806917737205. [PMID: 28969475 PMCID: PMC5656108 DOI: 10.1177/1744806917737205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box. Our previous examination of the nociceptive role of the well-characterized Cdk5 activator p35 using mice that either lack or overexpress this regulatory subunit demonstrated that Cdk5/p35 activity affects mechanical, chemical, and thermal nociception. In contrast, the nociceptive role of Cdk5’s other less-studied activator p39 is unknown. Here, we report that the knockout of p39 in mice did not affect orofacial and peripheral nociception. The lack of any algesic response to nociceptive stimuli in the p39 knockout mice contrasts with the hypoalgesic effects that result from the deletion of p35. Our data demonstrate different and nonoverlapping roles of Cdk5 activators in the regulation of orofacial as well as peripheral nociception with a crucial role for Cdk5/p35 in pain signaling.
Collapse
Affiliation(s)
- Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Minghan Hu
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Tracy Okine
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Jennifer Reukauf
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - B K Binukumar
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D Amin
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Eva Roque
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | | |
Collapse
|
8
|
p39 Is Responsible for Increasing Cdk5 Activity during Postnatal Neuron Differentiation and Governs Neuronal Network Formation and Epileptic Responses. J Neurosci 2017; 36:11283-11294. [PMID: 27807169 DOI: 10.1523/jneurosci.1155-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022] Open
Abstract
Two distinct protein cofactors, p35 and p39, independently activate Cyclin-dependent kinase 5 (Cdk5), which plays diverse roles in normal brain function and the pathogenesis of many neurological diseases. The initial discovery that loss of p35 impairs neuronal migration in the embryonic brain prompted intensive research exploring the function of p35-dependent Cdk5 activity. In contrast, p39 expression is restricted to the postnatal brain and its function remains poorly understood. Despite the robustly increased Cdk5 activity during neuronal differentiation, which activator is responsible for enhancing Cdk5 activation and how the two distinct activators direct Cdk5 signaling to govern neuronal network formation and function still remains elusive. Here we report that p39, but not p35, is selectively upregulated by histone acetylation-mediated transcription, which underlies the robust increase of Cdk5 activity during rat and mouse neuronal differentiation. The loss of p39 attenuates overall Cdk5 activity in neurons and preferentially affects phosphorylation of specific Cdk5 targets, leading to aberrant axonal growth and impaired dendritic spine and synapse formation. In adult mouse brains, p39 deficiency results in dysregulation of p35 and Cdk5 targets in synapses. Moreover, in contrast to the proepileptic phenotype caused by the lack of p35, p39 loss leads to deficits in maintaining seizure activity and induction of immediate early genes that control hippocampal excitability. Together, our studies demonstrate essential roles of p39 in neuronal network development and function. Furthermore, our data support a model in which Cdk5 activators play nonoverlapping and even opposing roles to govern balanced Cdk5 signaling in the postnatal brain. SIGNIFICANCE STATEMENT Neuronal network development requires tightly regulated activation of Cyclin-dependent kinase 5 (Cdk5) by two distinct cofactors, p35 and p39. Despite the well-known p35-dependent Cdk5 function, why postnatal neurons express abundant p39 in addition to p35 remained unknown for decades. In this study, we discovered that selective upregulation of p39 is the underlying mechanism that accommodates the increased functional requirement of Cdk5 activation during neuronal differentiation. In addition, we demonstrated that p39 selectively directs Cdk5 to phosphorylate protein substrates essential for axonal development, dendritic spine formation, and synaptogenesis. Moreover, our studies suggest opposing roles of p39 and p35 in synaptic Cdk5 function and epileptic responses, arguing that cooperation between Cdk5 activators maintains balanced Cdk5 signing, which is crucial for postnatal brain function.
Collapse
|
9
|
Liu JT, Zhang S, Gu B, Li HN, Wang SY, Zhang SY. Methotrexate combined with methylprednisolone for the recovery of motor function and differential gene expression in rats with spinal cord injury. Neural Regen Res 2017; 12:1507-1518. [PMID: 29089998 PMCID: PMC5649473 DOI: 10.4103/1673-5374.215263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methylprednisolone is a commonly used drug for the treatment of spinal cord injury, but high doses of methylprednisolone can increase the incidence of infectious diseases. Methotrexate has anti-inflammatory activity and immunosuppressive effects, and can reduce inflammation after spinal cord injury. To analyze gene expression changes and the molecular mechanism of methotrexate combined with methylprednisolone in the treatment of spinal cord injury, a rat model of spinal cord contusion was prepared using the PinPoint™ precision cortical impactor technique. Rats were injected with methylprednisolone 30 mg/kg 30 minutes after injury, and then subcutaneously injected with 0.3 mg/kg methotrexate 1 day after injury, once a day, for 2 weeks. TreadScan gait analysis found that at 4 and 8 weeks after injury, methotrexate combined with methylprednisolone significantly improved hind limb swing time, stride time, minimum longitudinal deviation, instant speed, footprint area and regularity index. Solexa high-throughput sequencing was used to analyze differential gene expression. Compared with methylprednisolone alone, differential expression of 316 genes was detected in injured spinal cord treated with methotrexate and methylprednisolone. The 275 up-regulated genes were mainly related to nerve recovery, anti-oxidative, anti-inflammatory and anti-apoptotic functions, while 41 down-regulated genes were mainly related to proinflammatory and pro-apoptotic functions. These results indicate that methotrexate combined with methylprednisolone exhibited better effects on inhibiting the activity of inflammatory cytokines and enhancing antioxidant and anti-apoptotic effects and thereby produced stronger neuroprotective effects than methotrexate alone. The 316 differentially expressed genes play an important role in the above processes.
Collapse
Affiliation(s)
- Jian-Tao Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Si Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Bing Gu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Hua-Nan Li
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shuo-Yu Wang
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shui-Yin Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| |
Collapse
|
10
|
Abstract
Cdk5 activity is regulated by the amounts of two activator proteins, p35 and p39 (Tsai et al., 1994; Zheng et al., 1998; Humbert et al., 2000). The p35-Cdk5 and p39-Cdk5 complexes have differing sensitivity to salt and detergent concentrations (Hisanaga and Saito, 2003; Sato et al., 2007; Yamada et al., 2007; Asada et al., 2008). Cdk5 activation can be directly measured by immunoprecipitation of Cdk5 with its bound activator, followed by a Cdk5 kinase assay. In this protocol, buffers for cell lysis and immunoprecipitation are intended to preserve both p35- and p39-Cdk5 complexes to assess total Cdk5 activity. Cells are lysed and protein concentration is determined in the post-nuclear supernatant. Cdk5 is immunoprecipitated from equal amounts of total protein between experimental groups. Washes are then performed to remove extraneous proteins and equilibrate the Cdk5-activator complexes in the kinase buffer. Cdk5 is then incubated with histone H1, a well-established in vitro target of Cdk5, and [γ-32P]ATP. Reactions are resolved by SDS-PAGE and transferred to membranes for visualization of H1 phosphorylation and immunoblot of immunoprecipitated Cdk5 levels. We have used this assay to establish p39 as the primary activator for Cdk5 in the oligodendroglial lineage. However, this assay is amenable to other cell lineages or tissues with appropriate adjustments made to lysis conditions.
Collapse
Affiliation(s)
- Andrew N Bankston
- Department of Pharmacology, Emory University, Atlanta, GA.,Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Li Ku
- Department of Pharmacology, Emory University, Atlanta, GA
| | - Yue Feng
- Department of Pharmacology, Emory University, Atlanta, GA
| |
Collapse
|
11
|
The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination. J Neurosci 2016; 36:3024-37. [PMID: 26961956 DOI: 10.1523/jneurosci.2250-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35(-/-) mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation.
Collapse
|
12
|
Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling. J Neurosci 2014; 34:10415-29. [PMID: 25080600 DOI: 10.1523/jneurosci.0710-14.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Failure of remyelination in diseases, such as multiple sclerosis (MS), leads to permanent axonal damage and irreversible functional loss. The mechanisms controlling remyelination are currently poorly understood. Recent studies implicate the cyclin-dependent kinase 5 (Cdk5) in regulating oligodendrocyte (OL) development and myelination in CNS. In this study, we show that Cdk5 is also an important regulator of remyelination. Pharmacological inhibition of Cdk5 inhibits repair of lysolecithin lesions. This inhibition is a consequence of Cdk5 disruption in neural cells because remyelination in slice cultures is blocked by Cdk5 inhibitors, whereas specific deletion of Cdk5 in OLs inhibits myelin repair. In CNP-Cre;Cdk5(fl/fl) conditional knock-out mouse (Cdk5 cKO), myelin repair was delayed significantly in response to focal demyelinating lesions compared with wild-type animals. The lack of myelin repair was reflected in decreased expression of MBP and proteolipid protein and a reduction in the total number of myelinated axons in the lesion. The number of CC1(+) cells in the lesion sites was significantly reduced in Cdk5 cKO compared with wild-type animals although the total number of oligodendrocyte lineage cells (Olig2(+) cells) was increased, suggesting that Cdk5 loss perturbs the transition of early OL lineage cell into mature OL and subsequent remyelination. The failure of remyelination in Cdk5 cKO animals was associated with a reduction in signaling through the Akt pathway and an enhancement of Gsk-3β signaling pathways. Together, these data suggest that Cdk5 is critical in regulating the transition of adult oligodendrocyte precursor cells to mature OLs that is essential for myelin repair in adult CNS.
Collapse
|
13
|
Tripathi BK, Lowy DR, Zelenka PS. The Cdk5 activator P39 specifically links muskelin to myosin II and regulates stress fiber formation and actin organization in lens. Exp Cell Res 2014; 330:186-98. [PMID: 25128817 DOI: 10.1016/j.yexcr.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
Cyclin dependent kinase 5 (Cdk5), a proline-directed serine/threonine kinase, requires p39 for its enzymatic activity, and is implicated in cytoskeletal organization and contraction in numerous cell types. The C-terminus of p39 binds muskelin, a multi-domain scaffolding protein known to affect cytoskeletal organization, but the mechanisms by which muskelin affects cytoskeletal organization remain unclear. The present study sought to determine whether p39 might serve as an adaptor protein that links muskelin to stress fibers and to investigate the possible biological relevance of such an interaction. Double immunoprecipitation showed that muskelin, p39, and myosin II are components of a single intracellular complex, and suppressing p39 abrogated the interaction between muskelin and the myosin subunits, demonstrating that p39 is required to link muskelin to myosin II. Muskelin is colocalized with myosin regulatory light chain (MRLC) and on stress fibers. The suppression of muskelin reduced Rho-GTP, MRLC phosphorylation, disrupted stress fiber organization, and promoted cell migration, all of which closely mimic the effect of Cdk5 inhibition. Moreover, suppressing muskelin and inhibiting Cdk5 together have no additional effect, indicating that muskelin plays an important role in Cdk5-dependent signaling. p39 is necessary and sufficient for Cdk5-dependent regulation of MRLC phosphorylation, as suppression of p39, but not p35, reduces MRLC phosphorylation. Together, these results demonstrate that p39 specifically links muskelin to myosin II and consequently, to stress fibers and reveal a novel role for muskelin in regulating myosin phosphorylation and cytoskeletal organization.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA; Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA
| | - Peggy S Zelenka
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Utreras E, Hamada R, Prochazkova M, Terse A, Takahashi S, Ohshima T, Kulkarni AB. Suppression of neuroinflammation in forebrain-specific Cdk5 conditional knockout mice by PPARγ agonist improves neuronal loss and early lethality. J Neuroinflammation 2014; 11:28. [PMID: 24495352 PMCID: PMC3931315 DOI: 10.1186/1742-2094-11-28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/21/2014] [Indexed: 01/04/2023] Open
Abstract
Background Cyclin-dependent kinase 5 (Cdk5) is essential for brain development and function, and its deregulated expression is implicated in some of neurodegenerative diseases. We reported earlier that the forebrain-specific Cdk5 conditional knockout (cKO) mice displayed an early lethality associated with neuroinflammation, increased expression of the neuronal tissue-type plasminogen activator (tPA), and neuronal migration defects. Methods In order to suppress neuroinflammation in the cKO mice, we first treated these mice with pioglitazone, a PPARγ agonist, and analyzed its effects on neuronal loss and longevity. In a second approach, to delineate the precise role of tPA in neuroinflammation in these mice, we generated Cdk5 cKO; tPA double knockout (dKO) mice. Results We found that pioglitazone treatment significantly reduced astrogliosis, microgliosis, neuronal loss and behavioral deficit in Cdk5 cKO mice. Interestingly, the dKO mice displayed a partial reversal in astrogliosis, but they still died at early age, suggesting that the increased expression of tPA in the cKO mice does not contribute significantly to the pathological process leading to neuroinflammation, neuronal loss and early lethality. Conclusion The suppression of neuroinflammation in Cdk5 cKO mice ameliorates gliosis and neuronal loss, thus suggesting the potential beneficial effects of the PPARγ agonist pioglitazone for the treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshio Ohshima
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
15
|
Petrik D, Yun S, Latchney SE, Kamrudin S, LeBlanc JA, Bibb JA, Eisch AJ. Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires cdk5. PLoS One 2013; 8:e72819. [PMID: 23991155 PMCID: PMC3753242 DOI: 10.1371/journal.pone.0072819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
The early postnatal period is a unique time of brain development, as diminishing amounts of neurogenesis coexist with waves of gliogenesis. Understanding the molecular regulation of early postnatal gliogenesis may provide clues to normal and pathological embryonic brain ontogeny, particularly in regards to the development of astrocytes and oligodendrocytes. Cyclin dependent kinase 5 (Cdk5) contributes to neuronal migration and cell cycle control during embryogenesis, and to the differentiation of neurons and oligodendrocytes during adulthood. However, Cdk5's function in the postnatal period and within discrete progenitor lineages is unknown. Therefore, we selectively removed Cdk5 from nestin-expressing cells and their progeny by giving transgenic mice (nestin-CreERT2/R26R-YFP/CDK5(flox/flox) [iCdk5] and nestin-CreERT2/R26R-YFP/CDK5(wt/wt) [WT]) tamoxifen during postnatal (P) days P2-P 4 or P7-P 9, and quantified and phenotyped recombined (YFP+) cells at P14 and P21. When Cdk5 gene deletion was induced in nestin-expressing cells and their progeny during the wave of cortical and hippocampal gliogenesis (P2-P4), significantly fewer YFP+ cells were evident in the cortex, corpus callosum, and hippocampus. Phenotypic analysis revealed the cortical decrease was due to fewer YFP+ astrocytes and oligodendrocytes, with a slightly earlier influence seen in oligodendrocytes vs. astrocytes. This effect on cortical gliogenesis was accompanied by a decrease in YFP+ proliferative cells, but not increased cell death. The role of Cdk5 in gliogenesis appeared specific to the early postnatal period, as induction of recombination at a later postnatal period (P7-P9) resulted in no change YFP+ cell number in the cortex or hippocampus. Thus, glial cells that originate from nestin-expressing cells and their progeny require Cdk5 for proper development during the early postnatal period.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|