1
|
Uda T, Kato R, Shigeta Y, Hirota S, Kobayashi J, Yoshida H, Tsuyuguchi M, Hengphasatporn K, Tsujita M, Taguchi H, Hifumi E. Structural and biochemical differences between non-catalytic and catalytic antibodies. MAbs 2025; 17:2503978. [PMID: 40356286 PMCID: PMC12077472 DOI: 10.1080/19420862.2025.2503978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
A conventional antibody can be converted into its catalytic counterparts by deleting Pro95 in the CDR-3 of human and mice antibody light chains, as previously reported. T99wt is a naturally occurring human antibody light chain that we transformed into its catalytic antibody using Pro95 deletion. In peptidase activity tests, T99wt exhibited a low catalytic activity against a synthetic peptide Arg-pNA and hardly cleaved amyloid-β peptide. In contrast, the engineered variant (T99-Pro95(-)) demonstrated significant catalytic activity, effectively cleaving both Arg-pNA substrate and amyloid-β peptides. In this study, the structural basis for the acquisition of enzymatic function through Pro95 deletion in the CDR-3 region of the light chain was elucidated using X-ray crystallography and molecular dynamics (MD) simulations. X-ray crystallography revealed that Pro95 deletion substantially reduces the distance between Asp1 and His93-key residues for catalytic activity - from 9.56 Å in T99wt to 3.84 Å in T99-Pro95(-). The observed decrease in distance indicates a strong interaction between Asp1(Oδ1) and His93(Nε2), contributing to the formation of an active site in T99-Pro95(-). MD simulations revealed that the entire structure exhibits slight fluctuations and adopts various configurations upon the removal of Pro95. In particular, when His residues in the catalytic region are fully deprotonated, Asp1, His93, and Ser27a transiently come into close proximity, enabling the formation of a functional catalytic triad. Catalytic antibodies can be made starting from just the amino acid sequence of a desired mAb, which may be available in databases such as OAS or IMGT. Therefore, our finding represents a significant technological advancement.
Collapse
Affiliation(s)
- Taizo Uda
- Research Center for GLOBAL/LOCAL Infectious Diseases, Oita University, Oita-shi, Oita, Japan
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Jun Kobayashi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Hisashi Yoshida
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Masato Tsuyuguchi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Moe Tsujita
- Graduate School of Engineering, Oita University, Oita-shi, Oita, Japan
- Institute for Research Management, Oita University, Oita-shi, Oita, Japan
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Emi Hifumi
- Research Center for GLOBAL/LOCAL Infectious Diseases, Oita University, Oita-shi, Oita, Japan
- Institute for Research Management, Oita University, Oita-shi, Oita, Japan
| |
Collapse
|
2
|
Hifumi E, Ito Y, Tsujita M, Taguchi H, Uda T. Enzymatization of mouse monoclonal antibodies to the corresponding catalytic antibodies. Sci Rep 2024; 14:12184. [PMID: 38806597 PMCID: PMC11133420 DOI: 10.1038/s41598-024-63116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Catalytic antibodies possess a dual function that enables both antigen recognition and degradation. However, their time-consuming preparation is a significant drawback. This study developed a new method for quickly converting mice monoclonal antibodies into catalytic antibodies using site-directed mutagenesis. Three mice type monoclonal antibodies targeting hemagglutinin molecule of influenza A virus could be transformed into the catalytic antibodies by deleting Pro95 in CDR-3 of the light chain. No catalytic activity was observed for monoclonal antibodies and light chains. In contrast, the Pro95-deleted light chains exhibited a catalytic activity to cleave the antigenic peptide including the portion of conserved region of hemagglutinin molecule. The affinity of the Pro95-deleted light chains to the antigen increased approximately 100-fold compared to the wild-type light chains. In the mutants, three residues (Asp1, Ser92, and His93) come closer to the appropriate position to create the catalytic site and contributing to the enhancement of both catalytic function and immunoreactivity. Notably, the Pro95-deleted catalytic light chains could suppress influenza virus infection in vitro assay, whereas the parent antibody and the light chain did not. This strategy offers a rapid and efficient way to create catalytic antibodies from existing antibodies, accelerating the development for various applications in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan.
- Research Center for GLOBAL/LOCAL Infectious Diseases, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan.
| | - Yuina Ito
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
| | - Moe Tsujita
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, 510-0293, Japan
| | - Taizo Uda
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Materials Open Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), Fukuoka, 819-0388, Japan
| |
Collapse
|
3
|
Catalytic Antibodies: Design, Expression, and Their Applications in Medicine. Appl Biochem Biotechnol 2023; 195:1514-1540. [PMID: 36222989 PMCID: PMC9554387 DOI: 10.1007/s12010-022-04183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
Catalytic antibodies made it feasible to develop new catalysts, which had previously been the subject of research. Scientists have discovered natural antibodies that can hydrolyze substrates such as nucleic acids, proteins, and polysaccharides during decades of research, as well as several ways of producing antibodies with specialized characteristics and catalytic functions. These antibodies are widely used in chemistry, biology, and medicine. Catalytic antibodies can continue to play a role and even fully prevent the emergence of autoimmune disorders, especially in the field of infection and immunity, where the process of its occurrence and development often takes a long time. In this work, the development, design and evolution methodologies, and the expression systems and applications of catalytic antibodies, are discussed. Trial registration: not applicable.
Collapse
|
4
|
Obtaining Highly Active Catalytic Antibodies Capable of Enzymatically Cleaving Antigens. Int J Mol Sci 2022; 23:ijms232214351. [PMID: 36430828 PMCID: PMC9697424 DOI: 10.3390/ijms232214351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A catalytic antibody has multiple functions compared with a monoclonal antibody because it possesses unique features to digest antigens enzymatically. Therefore, many catalytic antibodies, including their subunits, have been produced since 1989. The catalytic activities often depend on the preparation methods and conditions. In order to elicit the high catalytic activity of the antibodies, the most preferable methods and conditions, which can be generally applicable, must be explored. Based on this view, systematic experiments using two catalytic antibody light chains, #7TR and H34, were performed by varying the purification methods, pH, and chemical reagents. The experimental results obtained by peptidase activity tests and kinetic analysis, revealed that the light chain's high catalytic activity was observed when it was prepared under a basic condition. These data imply that a small structural modulation of the catalytic antibody occurs during the purification process to increase the catalytic activity while the antigen recognition ability is kept constant. The presence of NaCl enhanced the catalytic activity. When the catalytic light chain was prepared with these preferable conditions, #7TR and H34 hugely enhanced the degradation ability of Amyloid-beta and PD-1 peptide, respectively.
Collapse
|
5
|
A new catalytic site functioning in antigen cleavage by H34 catalytic antibody light chain. Sci Rep 2022; 12:19185. [PMID: 36357546 PMCID: PMC9649737 DOI: 10.1038/s41598-022-23689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
The cleavage reactions of catalytic antibodies are mediated by a serine protease mechanism involving a catalytic triad composed of His, Ser, and Asp residues, which reside in the variable region. Recently, we discovered a catalytic antibody, H34 wild type (H34wt), that is capable of enzymatically cleaving an immune-check point PD-1 peptide and recombinant PD-1; however, H34wt does not contain His residues in the variable region. To clarify the reason behind the catalytic features of H34wt and the amino acid residues involved in the catalytic reaction, we performed site-directed mutagenesis focusing on the amino acid residues involved in the cleavage reaction, followed by catalytic activity tests, immunological reactivity evaluation, and molecular modeling. The results revealed that the cleavage reaction by H34wt proceeds through the action of a new catalytic site composed of Arg, Thr, and Gln. This new scheme differs from that of the serine protease mechanism of catalytic antibodies.
Collapse
|
6
|
Hifumi E, Taguchi H, Nonaka T, Harada T, Uda T. Finding and characterizing a catalytic antibody light chain, H34, capable of degrading the PD-1 molecule. RSC Chem Biol 2021; 2:220-229. [PMID: 34458785 PMCID: PMC8341958 DOI: 10.1039/d0cb00155d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Programmed cell death 1 (PD-1) is an immune checkpoint molecule regulating T-cell function. Preventing PD-1 binding to its ligand PD-L1 has emerged as an important tool in immunotherapy. Here, we describe a unique human catalytic antibody light chain, H34, which mediates enzymatic degradation of human PD-1 peptides and recombinant human PD-1 protein and thus functions to prevent the binding of PD-1 with PD-L1. H34 degraded one half of the PD-1 molecules within about 6 h under the experimental conditions. Investigating the acquisition of the catalytic function by H34, which belongs to subgroup I and lacks a Pro95 residue in CDR-3, revealed the importance of this sequence, as a Pro95-reconstituted mutant (H34-Pro95(+)) exhibited very little catalytic activity to cleave PD-1. Interestingly, EDTA inhibited the catalytic activity of H34, which could work as a metallo-protease. Zn2+ or Co2+ ions may work as a cofactor. It is meaningfull that H34 was obtained from the human antibody gene taken from a healthy volunteer, suggesting that we potentially have such unique molecules in our body.
Collapse
Affiliation(s)
- Emi Hifumi
- Oita University, Research Promotion Institute 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Hiroaki Taguchi
- Suzuka University of Medical Science, Faculty of Pharmaceutical Sciences 3500-3 Minamitamagaki-cho Suzuka 510-0293 Japan
| | - Tamami Nonaka
- Oita University, Research Promotion Institute 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Takunori Harada
- Oita University, Faculty of Science & Technology, Division of Applied Chemistry 700 Dannoharu Oita-shi Oita 870-1192 Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT) 4-1 Kyudai-shinmachi Fukuoka 879-5593 Japan
| |
Collapse
|
7
|
Ermakov EA, Nevinsky GA, Buneva VN. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int J Mol Sci 2020; 21:ijms21155392. [PMID: 32751323 PMCID: PMC7432551 DOI: 10.3390/ijms21155392] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Antibodies, Catalytic/chemistry
- Antibodies, Catalytic/genetics
- Antibodies, Catalytic/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- Humans
- Immunity, Innate
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin Isotypes/chemistry
- Immunoglobulin Isotypes/classification
- Immunoglobulin Isotypes/genetics
- Immunoglobulin Isotypes/metabolism
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Tests
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/therapy
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-27; Fax: +7-(383)-363-51-53
| |
Collapse
|
8
|
Hifumi E, Taguchi H, Tsuda H, Minagawa T, Nonaka T, Uda T. A new algorithm to convert a normal antibody into the corresponding catalytic antibody. SCIENCE ADVANCES 2020; 6:eaay6441. [PMID: 32232151 PMCID: PMC7096177 DOI: 10.1126/sciadv.aay6441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Over thousands of monoclonal antibodies (mAbs) have been produced so far, and it would be valuable if these mAbs could be directly converted into catalytic antibodies. We have designed a system to realize the above concept by deleting Pro95, a highly conserved residue in CDR-3 of the antibody light chain. The deletion of Pro95 is a key contributor to catalytic function of the light chain. The S35 and S38 light chains have identical amino acid sequences except for Pro95. The former, with Pro95 did not show any catalytic activity, whereas the latter, without Pro95, exhibited peptidase activity. To verify the generality of this finding, we tested another light chain, T99wt, which had Pro95 and showed little catalytic activity. In contrast, a Pro95-deleted mutant enzymatically degraded the peptide substrate and amyloid-beta molecule. These two cases demonstrate the potential for a new method of creating catalytic antibodies from the corresponding mAbs.
Collapse
Affiliation(s)
- Emi Hifumi
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Hiroaki Taguchi
- Suzuka University of Medical Science, Faculty of Pharmaceutical Sciences, 3500-3 Minamitamagaki-cho, Suzuka 510-0293, Japan
| | - Haruna Tsuda
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Oita University, Department of Applied Chemistry, Faculty of Engineering, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Tetsuro Minagawa
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Oita University, Department of Applied Chemistry, Faculty of Engineering, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Tamami Nonaka
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
| | - Taizo Uda
- Oita University, Research Promotion Institute, 700 Dannoharu, Oita-shi, Oita 870-1192, Japan
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudai-shinmachi, Fukuoka 879-5593, Japan
| |
Collapse
|
9
|
Hifumi E, Taguchi H, Toorisaka E, Uda T. New technologies to introduce a catalytic function into antibodies: A unique human catalytic antibody light chain showing degradation of β-amyloid molecule along with the peptidase activity. FASEB Bioadv 2019; 1:93-104. [PMID: 32123823 PMCID: PMC6996398 DOI: 10.1096/fba.1025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/04/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of a natural catalytic antibody in 1989, many catalytic antibodies targeting peptides, nucleotides, virus and bacterial proteins, and many molecules have been prepared. Although catalytic antibodies should have features superior to non-catalytic monoclonal antibodies, the reports on catalytic antibodies are far fewer than those on normal (non-catalytic) antibodies. Nowadays, we can obtain any monoclonal antibody we want, which is not the case for catalytic antibodies. To overcome this drawback of catalytic antibodies, much basic research must be done. As one way to attain this purpose, we have been making a protein bank of human antibody light chains, in which the light chains were expressed, purified, and stored for use in screening against many kinds of antigen, to then get clues to introducing a catalytic function in normal antibodies. As the number of stored light chains in the above protein bank has reached the hundreds, in this study, we screened them against amyloid-beta (Aβ), which is well-known as one of the molecules causing Alzheimer's disease. We found two interesting light chains, #7TR and #7GY. The former could degrade both a fluorescence resonance energy transfer-Aβ substrate and Aβ1-40 full peptide. In contrast, #7GY, whose sequence is identical to that of #7TR except for the amino acids at the 29th and 30th positions, did not degrade the FRET-Aβ substrate at all. By using a synthetic substrate, Arg-pNA, the difference between the chemical features of the two light chains was investigated in detail. In addition, we found that the presence of Zn(II) ion hugely influenced the catalytic activity of the #7TR light chain but not #7GY. Through these facts and the discussion, we propose one of the clues to how to put a catalytic function in a normal (non-catalytic) antibody.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Promotion Institute, Oita UniversityOitaJapan
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical SciencesSuzuka University of Medical ScienceSuzukaJapan
| | - Eiichi Toorisaka
- Faculty of Engineering, Department of Sustainable EngineeringYamaguchi UniversityYamaguchiJapan
| | - Taizo Uda
- Faculty of Engineering, Department of Applied ChemistryOita UniversityOitaJapan
- Nanotechnology LaboratoryInstitute of Systems, Information Technologies and Nanotechnologies (ISIT)FukuokaJapan
| |
Collapse
|
10
|
Pradhan V, Pandit P, Surve P, Lecerf M, Rajadhyaksha A, Nadkar M, Khadilkar PV, Chougule DA, Naigaonkar AA, Lacroix-Desmazes S, Bayry J, Ghosh K, Kaveri SV. Catalytic antibodies in patients with systemic lupus erythematosus. Eur J Rheumatol 2018; 5:173-178. [PMID: 30185370 DOI: 10.5152/eurjrheum.2018.17194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/17/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Antibodies with catalytic (hydrolytic) properties to DNA or RNA have been reported in systemic lupus erythematosus (SLE). However, it is well known that ethnicity plays an important role in the presentation of SLE and severity of the disease; hence, these data may not truly represent a general feature of all SLE patients. Therefore, we have analyzed the hydrolyzing activity of immunoglobulin G (IgG) of SLE patients from the Indian population with an aim to decode whether the catalytic antibody response represents part of an active disease process. METHODS IgGs were isolated from the sera of 72 consecutive patients diagnosed with SLE. As a control, IgGs from healthy donors were used. The catalytic activity of IgG was measured by PFR-MCA and affinity-linked oligonucleotide nuclease assay. RESULTS IgGs from patients with SLE from the Indian subcontinent displayed significantly higher hydrolysis rates of both the surrogate substrate, PFR-MCA, and the DNA than IgG from healthy individuals. Intergroup comparisons of the IgG-PFR-MCA interactions with clinical manifestations of the disease demonstrated a significantly increased level of hydrolysis among the patients with renal involvement who tested positive for anti-dsDNA antibodies. The PFR-MCA hydrolysis also appears to be associated with the active disease (p=0.0988, vs. inactive group). CONCLUSION The prevalence of catalytic antibodies represents a general feature of SLE patients, irrespective of their origin.
Collapse
Affiliation(s)
- Vandana Pradhan
- Department of Clinical & Experimental Immunology, National Institute of Immunohaematology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Pallavi Pandit
- Department of Clinical & Experimental Immunology, National Institute of Immunohaematology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Prathamesh Surve
- Department of Clinical & Experimental Immunology, National Institute of Immunohaematology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Maxime Lecerf
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France.,Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Sorbonne Université, UMR S 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| | | | - Milind Nadkar
- Department of Medicine, King Edward Memorial Hospital, Mumbai, India
| | - Prasad V Khadilkar
- Department of Clinical & Experimental Immunology, National Institute of Immunohaematology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Durga A Chougule
- Department of Clinical & Experimental Immunology, National Institute of Immunohaematology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Aalaap A Naigaonkar
- Department of Clinical & Experimental Immunology, National Institute of Immunohaematology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Sébastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France.,Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Sorbonne Université, UMR S 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France.,Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Sorbonne Université, UMR S 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| | - Kanjaksha Ghosh
- Department of Clinical & Experimental Immunology, National Institute of Immunohaematology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France.,Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Sorbonne Université, UMR S 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| |
Collapse
|
11
|
Abstract
The existence of catalytic antibodies has been known for decades. Natural antibodies capable of cleaving nucleic acid, protein, and polysaccharide substrates have been described. Although the discovery of catalytic antibodies initially aroused great interest because of their promise for the development of new catalysts, their enzymatic performance has been disappointing due to low reaction rates. However, in the areas of infection and immunity, where processes often occur over much longer times and involve high antibody concentrations, even low catalytic rates have the potential to influence biological outcomes. In this regard, the presence of catalytic antibodies recognizing host antigens has been associated with several autoimmune diseases. Furthermore, naturally occurring catalytic antibodies to microbial determinants have been correlated with resistance to infection. Recently, there has been substantial interest in harnessing the power of antibody-mediated catalysis against microbial antigens for host defense. Additional work is needed, however, to better understand the prevalence, function, and structural basis of catalytic activity in antibodies. Here we review the available information and suggest that antibody-mediated catalysis is a fertile area for study with broad applications in infection and immunity.
Collapse
|
12
|
Hifumi E, Taguchi H, Kato R, Uda T. Role of the constant region domain in the structural diversity of human antibody light chains. FASEB J 2017; 31:1668-1677. [PMID: 28096233 DOI: 10.1096/fj.201600819r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
Abstract
Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM-1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Promotion Institute, Oita University, Oita, Japan;
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Ryuichi Kato
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Taizo Uda
- Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; and.,Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies, Fukuoka, Japan
| |
Collapse
|
13
|
Hifumi E, Matsumoto S, Nakashima H, Itonaga S, Arakawa M, Katayama Y, Kato R, Uda T. A novel method of preparing the monoform structure of catalytic antibody light chain. FASEB J 2015; 30:895-908. [PMID: 26527062 DOI: 10.1096/fj.15-276394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Abstract
Along with the development of antibody drugs and catalytic antibodies, the structural diversity (heterogeneity) of antibodies has been given attention. For >20 yr, detailed studies on the subject have not been conducted, because the phenomenon presents many difficult and complex problems. Structural diversity provides some (or many) isoforms of an antibody distinguished by different charges, different molecular sizes, and modifications of amino acid residues. For practical use, the antibody and the subunits must have a defined structure. In recent work, we have found that the copper (Cu) ion plays a substantial role in solving the diversity problem. In the current study, we used several catalytic antibody light chains to examine the effect of the Cu ion. In all cases, the different electrical charges of the molecule converged to a single charge, giving 1 peak in cation-exchange chromatography, as well as a single spot in 2-dimensional gel electrophoresis. The Cu-binding site was investigated by using mutagenesis, ultraviolet-visible spectroscopy, atomic force microscope analysis, and molecular modeling, which suggested that histidine and cysteine residues close to the C-terminus are involved with the binding site. The constant region domain of the antibody light chain played an important role in the heterogeneity of the light chain. Our findings may be a significant tool for preparing a single defined, not multiple, isoform structure.
Collapse
Affiliation(s)
- Emi Hifumi
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Shingo Matsumoto
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Hiroki Nakashima
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Shogo Itonaga
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Mitsue Arakawa
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Yoshiki Katayama
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Ryuichi Kato
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Taizo Uda
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| |
Collapse
|
14
|
Hifumi E, Arakawa M, Matsumoto S, Yamamoto T, Katayama Y, Uda T. Biochemical features and antiviral activity of a monomeric catalytic antibody light-chain 23D4 against influenza A virus. FASEB J 2015; 29:2347-58. [PMID: 25713031 DOI: 10.1096/fj.14-264275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/26/2015] [Indexed: 02/02/2023]
Abstract
Catalytic antibodies have exhibited interesting functions against some infectious viruses such as HIV, rabies virus, and influenza virus in vitro as well as in vivo. In some cases, a catalytic antibody light chain takes on several structures from the standpoint of molecular size (monomer, dimer, etc.) and/or isoelectronic point. In this study, we prepared a monomeric 23D4 light chain by mutating the C-terminal Cys to Ala of the wild-type. The mutated 23D4 molecule took a simple monomeric form, which could hydrolyze synthetic 4-methyl-coumaryl-7-amide substrates and a plasmid DNA. Because the monomeric 23D4 light chain suppressed the infection of influenza virus A/Hiroshima/37/2001 in an in vitro assay, the corresponding experiments were conducted in vivo, after the virus strain (which was taken from a human patient) was successfully adapted into BALB/cN Sea mice. In the experiments, a mixture of the monomeric 23D4 and the virus was nasally administered 1) with preincubation and 2) without preincubation. As a result, the monomeric 23D4 clearly exhibited the ability to suppress the influenza virus infection in both cases, indicating a potential drug for preventing infection of the influenza A virus.
Collapse
Affiliation(s)
- Emi Hifumi
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Mitsue Arakawa
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Shingo Matsumoto
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Tatsuhiro Yamamoto
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Yoshiki Katayama
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Taizo Uda
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| |
Collapse
|
15
|
Hoang PM, Cho S, Kim KE, Byun SJ, Lee TK, Lee S. Development of Lactobacillus paracasei harboring nucleic acid-hydrolyzing 3D8 scFv as a preventive probiotic against murine norovirus infection. Appl Microbiol Biotechnol 2014; 99:2793-803. [PMID: 25487889 DOI: 10.1007/s00253-014-6257-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 01/15/2023]
Abstract
The protein 3D8 single-chain variable fragment (3D8 scFv) has potential anti-viral activity due to its ability to penetrate into cells and hydrolyze nucleic acids. Probiotic Lactobacillus paracasei engineered to secrete 3D8 scFv for oral administration was used to test the anti-viral effects of 3D8 scFv against gastrointestinal virus infections. We found that injection of 3D8 scFv into the intestinal lumen resulted in the penetration of 3D8 scFv into the intestinal villi and lamina propria. 3D8 scFv secreted from engineered L. paracasei retained its cell-penetrating and nucleic acid-hydrolyzing activities, which were previously shown with 3D8 scFv expressed in Escherichia coli. Pretreatment of RAW264.7 cells with 3D8 scFv purified from L. paracasei prevented apoptosis induction by murine norovirus infection and decreased messenger RNA (mRNA) expression of the viral capsid protein VP1. In a mouse model, oral administration of the engineered L. paracasei prior to murine norovirus infection reduced the expression level of mRNA encoding viral polymerase. Taken together, these results suggest that L. paracasei secreting 3D8 scFv provides a basis for the development of ingestible anti-viral probiotics active against gastrointestinal viral infection.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Korea
| | | | | | | | | | | |
Collapse
|