1
|
Rabenow M, Haar E, Schmidt K, Hänsch R, Mendel RR, Oliphant KD. Convergent evolution links molybdenum insertase domains with organism-specific sequences. Commun Biol 2024; 7:1352. [PMID: 39424966 PMCID: PMC11489736 DOI: 10.1038/s42003-024-07073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
In all domains of life, the biosynthesis of the pterin-based Molybdenum cofactor (Moco) is crucial. Molybdenum (Mo) becomes biologically active by integrating into a unique pyranopterin scaffold, forming Moco. The final two steps of Moco biosynthesis are catalyzed by the two-domain enzyme Mo insertase, linked by gene fusion in higher organisms. Despite well-understood Moco biosynthesis, the evolutionary significance of Mo insertase fusion remains unclear. Here, we present findings from Neurospora crassa that shed light on the critical role of Mo insertase fusion in eukaryotes. Substituting the linkage region with sequences from other species resulted in Moco deficiency, and separate expression of domains, as seen in lower organisms, failed to rescue deficient strains. Stepwise truncation and structural modeling revealed a crucial 20-amino acid sequence within the linkage region essential for fungal growth. Our findings highlight the evolutionary importance of gene fusion and specific sequence composition in eukaryotic Mo insertases.
Collapse
Affiliation(s)
- Miriam Rabenow
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Eduard Haar
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katharina Schmidt
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Hänsch
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kevin D Oliphant
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
2
|
Satkanov M, Tazhibay D, Zhumabekova B, Assylbekova G, Abdukarimov N, Nurbekova Z, Kulatayeva M, Aubakirova K, Alikulov Z. Method for assessing the content of molybdenum enzymes in the internal organs of fish. MethodsX 2024; 12:102576. [PMID: 38304395 PMCID: PMC10832488 DOI: 10.1016/j.mex.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Molybdenum enzymes (Mo-enzymes) contain a molybdenum cofactor (MoCo) in the active site. These enzymes are potentially interesting for studying the survival mechanism of fish under hypoxic water conditions. This is because Mo-enzymes can synthesize nitric oxide from nitrates and nitrites, which are present in high concentrations under hypoxic water conditions. However, there is currently no method for assessing the Mo-enzymes content in the fish internal organs. Methods capable of determining Mo-enzymes content in the fish are of major importance. For this purpose, a method for quantitative determination of MoCo from plant tissues was modified. We demonstrated the Mo-enzyme content assessment by isolated MoCo from the fish's internal organs and the Neurospora crassa nit-1 extract containing inactive NADPH nitrate reductase. The Mo enzyme content was calculated using a calibration curve in nM of nitrites as a product of restored NADPH reductase activity after complementation with MoCo. Here we present a robust laboratory method which can be used to assess the content of Mo-enzymes in the internal organs of fish.•Mo-enzymes play a crucial role in detoxifying toxic compounds. Therefore, it is important to develop a method to accurately determine the amount of Mo-enzymes present. Notably, the method demonstrated the efficiency and accuracy as detected high content of Mo-enzymes in the liver and intestines (P < 0.0001). The obtained data on the distribution of Mo-enzymes in the internal organs of this species correspond to that of other vertebrates. Here, we present a rapid, sensitive, accurate and accessible method.•The developed method is simple and easy to use. Importantly, the protocol does not require complex manipulations, and the equipment used is available in most laboratories. The article provides step-by-step instructions for reproducing the method.
Collapse
Affiliation(s)
- Mereke Satkanov
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
- Immanuel Kant Baltic Federal University, Higher School of Living Systems, Kaliningrad, 236041, Russia
| | - Diana Tazhibay
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Bibigul Zhumabekova
- Pavlodar Pedagogical University, Higher School of Natural Science, Pavlodar, 140002, Kazakhstan
| | - Gulmira Assylbekova
- Pavlodar Pedagogical University, Higher School of Natural Science, Pavlodar, 140002, Kazakhstan
| | | | - Zhadyrassyn Nurbekova
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Maral Kulatayeva
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Karlygash Aubakirova
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Zerekbai Alikulov
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| |
Collapse
|
3
|
Hassan AH, Ihling C, Iacobucci C, Kastritis PL, Sinz A, Kruse T. The structural principles underlying molybdenum insertase complex assembly. Protein Sci 2023; 32:e4753. [PMID: 37572332 PMCID: PMC10461460 DOI: 10.1002/pro.4753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.
Collapse
Affiliation(s)
- Ahmed H. Hassan
- TU BraunschweigInstitute of Plant BiologyBraunschweigGermany
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
- Department of Physical and Chemical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Panagiotis L. Kastritis
- ZIK HALOmem and Institute of Biochemistry and BiotechnologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & BioanalyticsInstitute of PharmacyHalle (Saale)Germany
- Center for Structural Mass SpectrometryHalle (Saale)Germany
| | - Tobias Kruse
- TU BraunschweigInstitute of Plant BiologyBraunschweigGermany
| |
Collapse
|
4
|
Oliphant KD, Rabenow M, Hohtanz L, Mendel RR. The Neurospora crassa molybdate transporter: Characterizing a novel transporter homologous to the plant MOT1 family. Fungal Genet Biol 2022; 163:103745. [PMID: 36240974 DOI: 10.1016/j.fgb.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023]
Abstract
Molybdenum (Mo) is an essential element for animals, plants, and fungi. To achieve biological activity in eukaryotes, Mo must be complexed into the molybdenum cofactor (Moco). Cells are known to take up Mo in the form of the oxyanion molybdate. However, molybdate transporters are scarcely characterized in the fungal kingdom. In plants and algae, molybdate is imported into the cell via two families of molybdate transporters (MOT), MOT1 and MOT2. For the filamentous fungus Neurospora crassa, a sequence homologous to the MOT1 family was previously annotated. Here we report a characterization of this molybdate-related transporter, encoded by the ncmot-1 gene. We found that the deletion of ncmot-1 leads to an accumulation of total Mo within the mycelium and a roughly 51 % higher tolerance against high molybdate levels when grown on ammonium medium. The localization of a GFP tagged NcMOT-1 was identified among the vacuolar membrane. Thereby, we propose NcMOT-1 as an exporter, transporting molybdate out of the vacuole into the cytoplasm. Lastly, the heterologous expression of NcMOT-1 in Saccharomyces cerevisiae verifies the functionality of this protein as a MOT. Our results open the way towards understanding molybdate transport as part of Mo homeostasis and Moco-biosynthesis in fungi.
Collapse
Affiliation(s)
- Kevin D Oliphant
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Miriam Rabenow
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Lena Hohtanz
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany.
| |
Collapse
|
5
|
Moco Carrier and Binding Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196571. [PMID: 36235107 PMCID: PMC9571131 DOI: 10.3390/molecules27196571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
The molybdenum cofactor (Moco) is the active site prosthetic group found in numerous vitally important enzymes (Mo-enzymes), which predominantly catalyze 2 electron transfer reactions. Moco is synthesized by an evolutionary old and highly conserved multi-step pathway, whereby the metal insertion reaction is the ultimate reaction step here. Moco and its intermediates are highly sensitive towards oxidative damage and considering this, they are believed to be permanently protein bound during synthesis and also after Moco maturation. In plants, a cellular Moco transfer and storage system was identified, which comprises proteins that are capable of Moco binding and release but do not possess a Moco-dependent enzymatic activity. The first protein described that exhibited these properties was the Moco carrier protein (MCP) from the green alga Chlamydomonas reinhardtii. However, MCPs and similar proteins have meanwhile been described in various plant species. This review will summarize the current knowledge of the cellular Moco distribution system.
Collapse
|
6
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Catalytic electrochemistry of the bacterial Molybdoenzyme YcbX. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148579. [PMID: 35640667 DOI: 10.1016/j.bbabio.2022.148579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Molybdenum-dependent enzymes that can reduce N-hydroxylated substrates (e.g. N-hydroxyl-purines, amidoximes) are found in bacteria, plants and vertebrates. They are involved in the conversion of a wide range of N-hydroxylated organic compounds into their corresponding amines, and utilize various redox proteins (cytochrome b5, cyt b5 reductase, flavin reductase) to deliver reducing equivalents to the catalytic centre. Here we present catalytic electrochemistry of the bacterial enzyme YcbX from Escherichia coli utilizing the synthetic electron transfer mediator methyl viologen (MV2+). The electrochemically reduced form (MV+.) acts as an effective electron donor for YcbX. To immobilize YcbX on a glassy carbon electrode, a facile protein crosslinking approach was used with the crosslinker glutaraldehyde (GTA). The YcbX-modified electrode showed a catalytic response for the reduction of a broad range of N-hydroxylated substrates. The catalytic activity of YcbX was examined at different pH values exhibiting an optimum at pH 7.5 and a bell-shaped pH profile with deactivation through deprotonation (pKa1 9.1) or protonation (pKa2 6.1). Electrochemical simulation was employed to obtain new biochemical data for YcbX, in its reaction with methyl viologen and the organic substrates 6-N-hydroxylaminopurine (6-HAP) and benzamidoxime (BA).
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
7
|
Mendel RR. The History of the Molybdenum Cofactor-A Personal View. Molecules 2022; 27:4934. [PMID: 35956883 PMCID: PMC9370521 DOI: 10.3390/molecules27154934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transition element molybdenum (Mo) is an essential micronutrient for plants, animals, and microorganisms, where it forms part of the active center of Mo enzymes. To gain biological activity in the cell, Mo has to be complexed by a pterin scaffold to form the molybdenum cofactor (Moco). Mo enzymes and Moco are found in all kingdoms of life, where they perform vital transformations in the metabolism of nitrogen, sulfur, and carbon compounds. In this review, I recall the history of Moco in a personal view, starting with the genetics of Moco in the 1960s and 1970s, followed by Moco biochemistry and the description of its chemical structure in the 1980s. When I review the elucidation of Moco biosynthesis in the 1990s and the early 2000s, I do it mainly for eukaryotes, as I worked with plants, human cells, and filamentous fungi. Finally, I briefly touch upon human Moco deficiency and whether there is life without Moco.
Collapse
Affiliation(s)
- Ralf R Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Probst C, Yang J, Krausze J, Hercher TW, Richers CP, Spatzal T, Kc K, Giles LJ, Rees DC, Mendel RR, Kirk ML, Kruse T. Mechanism of molybdate insertion into pterin-based molybdenum cofactors. Nat Chem 2021; 13:758-765. [PMID: 34183818 PMCID: PMC8325642 DOI: 10.1038/s41557-021-00714-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The molybdenum cofactor (Moco) is found in the active site of numerous important enzymes that are critical to biological processes. The bidentate ligand that chelates molybdenum in Moco is the pyranopterin dithiolene (molybdopterin, MPT). However, neither the mechanism of molybdate insertion into MPT nor the structure of Moco prior to its insertion into pyranopterin molybdenum enzymes is known. Here, we report this final maturation step, where adenylated MPT (MPT-AMP) and molybdate are the substrates. X-ray crystallography of the Arabidopsis thaliana Mo-insertase variant Cnx1E S269D D274S identified adenylated Moco (Moco-AMP) as an unexpected intermediate in this reaction sequence. X-ray absorption spectroscopy revealed the first coordination sphere geometry of Moco trapped in the Cnx1E active site. We have used this structural information to deduce a mechanism for molybdate insertion into MPT-AMP. Given their high degree of structural and sequence similarity, we suggest that this mechanism is employed by all eukaryotic Mo-insertases.
Collapse
Affiliation(s)
- Corinna Probst
- Institute of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Joern Krausze
- Institute of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas W Hercher
- Institute of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Casseday P Richers
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Thomas Spatzal
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Khadanand Kc
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Logan J Giles
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Ralf R Mendel
- Institute of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA.
| | - Tobias Kruse
- Institute of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
9
|
Kalimuthu P, Kruse T, Bernhardt PV. A highly sensitive and stable electrochemical nitrate biosensor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Kalimuthu P, Kruse T, Bernhardt PV. Deconstructing the electron transfer chain in a complex molybdoenzyme: Assimilatory nitrate reductase from Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148358. [PMID: 33359308 DOI: 10.1016/j.bbabio.2020.148358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Nitrate reductase (NR) from the fungus Neurospora crassa is a complex homodimeric metallo-flavoenzyme, where each protomer contains three distinct domains; the catalytically active terminal molybdopterin cofactor, a central heme-containing domain, and an FAD domain which binds with the natural electron donor NADPH. Here, we demonstrate the catalytic voltammetry of variants of N. crassa NRs on a modified Au electrode with the electrochemically reduced forms of benzyl viologen (BV2+) and anthraquinone sulfonate (AQS-) acting as artificial electron donors. The biopolymer chitosan used to entrap NR on the electrode non-covalently and the enzyme film was both stable and highly active. Electrochemistry was conducted on two distinct forms; one lacking the FAD cofactor and the other lacking both the FAD and heme cofactors. While both enzymes showed catalytic nitrate reductase activity, removal of the heme cofactor resulted in a more significant effect on the rate of nitrate reduction. Electrochemical simulation was carried out to enable kinetic characterisation of both the NR:nitrate and NR:mediator reactions.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
11
|
Hercher T, Krausze J, Yang J, Kirk M, Kruse T. Identification and characterisation of the Volvox carteri Moco carrier protein. Biosci Rep 2020; 40:BSR20202351. [PMID: 33084886 PMCID: PMC7687042 DOI: 10.1042/bsr20202351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022] Open
Abstract
The molybdenum cofactor (Moco) is a redox active prosthetic group found in the active site of Moco-dependent enzymes (Mo-enzymes). As Moco and its intermediates are highly sensitive towards oxidative damage, these are believed to be permanently protein bound during synthesis and upon maturation. As a major component of the plant Moco transfer and storage system, proteins have been identified that are capable of Moco binding and release but do not possess Moco-dependent enzymatic activities. The first protein found to possess these properties was the Moco carrier protein (MCP) from the green alga Chlamydomonas reinhardtii. Here, we describe the identification and biochemical characterisation of the Volvox carteri (V. carteri) MCP and, for the first time, employ a comparative analysis to elucidate the principles behind MCP Moco binding. Doing so identified a sequence region of low homology amongst the existing MCPs, which we showed to be essential for Moco binding to V. carteri MCP.
Collapse
Affiliation(s)
- Thomas W. Hercher
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Joern Krausze
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, U.S.A
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, U.S.A
| | - Tobias Kruse
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Krausze J, Hercher TW, Archna A, Kruse T. The structure of the Moco carrier protein from Rippkaea orientalis. Acta Crystallogr F Struct Biol Commun 2020; 76:453-463. [PMID: 32880594 PMCID: PMC7470044 DOI: 10.1107/s2053230x20011073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
The molybdenum cofactor (Moco) is the prosthetic group of all molybdenum-dependent enzymes except for nitrogenase. The multistep biosynthesis pathway of Moco and its function in molybdenum-dependent enzymes are already well understood. The mechanisms of Moco transfer, storage and insertion, on the other hand, are not. In the cell, Moco is usually not found in its free form and remains bound to proteins because of its sensitivity to oxidation. The green alga Chlamydomonas reinhardtii harbors a Moco carrier protein (MCP) that binds and protects Moco but is devoid of enzymatic function. It has been speculated that this MCP acts as a means of Moco storage and transport. Here, the search for potential MCPs has been extended to the prokaryotes, and many MCPs were found in cyanobacteria. A putative MCP from Rippkaea orientalis (RoMCP) was selected for recombinant production, crystallization and structure determination. RoMCP has a Rossmann-fold topology that is characteristic of nucleotide-binding proteins and a homotetrameric quaternary structure similar to that of the MCP from C. reinhardtii. In each protomer, a positively charged crevice was identified that accommodates up to three chloride ions, hinting at a potential Moco-binding site. Computational docking experiments supported this notion and gave an impression of the RoMCP-Moco complex.
Collapse
Affiliation(s)
- Joern Krausze
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany
| | - Thomas W. Hercher
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany
| | - Archna Archna
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
13
|
Wajmann S, Hercher TW, Buchmeier S, Hänsch R, Mendel RR, Kruse T. The First Step of Neurospora crassa Molybdenum Cofactor Biosynthesis: Regulatory Aspects under N-Derepressing and Nitrate-Inducing Conditions. Microorganisms 2020; 8:microorganisms8040534. [PMID: 32272807 PMCID: PMC7232280 DOI: 10.3390/microorganisms8040534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 01/23/2023] Open
Abstract
Molybdenum cofactor (Moco) is the active site prosthetic group found in all Moco dependent enzymes, except for nitrogenase. Mo-enzymes are crucial for viability throughout all kingdoms of life as they catalyze a diverse set of two electron transfer reactions. The highly conserved Moco biosynthesis pathway consists of four different steps in which guanosine triphosphate is converted into cyclic pyranopterin monophosphate, molybdopterin (MPT), and subsequently adenylated MPT and Moco. Although the enzymes and mechanisms involved in these steps are well characterized, the regulation of eukaryotic Moco biosynthesis is not. Within this work, we described the regulation of Moco biosynthesis in the filamentous fungus Neurospora crassa, which revealed the first step of the multi-step pathway to be under transcriptional control. We found, that upon the induction of high cellular Moco demand a single transcript variant of the nit-7 gene is increasingly formed pointing towards, that essentially the encoded enzyme NIT7-A is the key player for Moco biosynthesis activity in Neurospora.
Collapse
Affiliation(s)
- Simon Wajmann
- TU Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany; (S.W.); (T.W.H.); (R.H.); (R.R.M.)
| | - Thomas W. Hercher
- TU Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany; (S.W.); (T.W.H.); (R.H.); (R.R.M.)
| | - Sabine Buchmeier
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Antibody Facility, 38106 Braunschweig, Germany;
| | - Robert Hänsch
- TU Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany; (S.W.); (T.W.H.); (R.H.); (R.R.M.)
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Ralf R. Mendel
- TU Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany; (S.W.); (T.W.H.); (R.H.); (R.R.M.)
| | - Tobias Kruse
- TU Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany; (S.W.); (T.W.H.); (R.H.); (R.R.M.)
- Correspondence: ; Tel.: +49-531-3915873; Fax: +49-531-3918128
| |
Collapse
|
14
|
Wang CH, Zhang C, Xing XH. Metabolic engineering of Escherichia coli cell factory for highly active xanthine dehydrogenase production. BIORESOURCE TECHNOLOGY 2017; 245:1782-1789. [PMID: 28610971 DOI: 10.1016/j.biortech.2017.05.144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to demonstrate the first proof-of-concept for the use of ab initio-aided assembly strategy intensifying in vivo biosynthesis process to construct Escherichia coli cell factory overproducing highly active xanthine dehydrogenase (XDH). Three global regulator (IscS, TusA and NarJ) and four chaperone proteins (DsbA, DsbB, NifS and XdhC) were overexpressed to aid the formation and ordered assembly of three redox center cofactors of Rhodobacter capsulatus XDH in E. coli. The NifS, IscS and DsbB enhanced the specific activity of RcXDH by 30%, 94% and 49%, respectively. The combinatorial expression of NarJ and IscS synergistically increased the specific activity by 129% and enhanced the total enzyme activity by a remarkable 3.9-fold. The crude enzyme showed nearly the same coupling efficiency of electron transfer and product formation as previously purified XDHs, indicating an integrity and efficient assembly of highly active XDH.
Collapse
Affiliation(s)
- Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China; Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
15
|
Klewe A, Kruse T, Lindel T. Aminopyrazine Pathway to the Moco Metabolite Dephospho Form A. Chemistry 2017; 23:11230-11233. [PMID: 28688127 DOI: 10.1002/chem.201702274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 11/08/2022]
Abstract
An efficient synthesis of the molybdopterin/molybdenum cofactor (Moco) oxidation product dephospho Form A is described that assembles the pteridinone system starting from an iodinated aminopyrazine. The sodium salt of dephospho Form A could be purified by precipitation from methanol, which paved the way to the title compound in the 100 mg range. By HPLC, the synthetic material was compared with a sample isolated from a recombinant Moco containing protein. Analysis of dephospho Form A is the only method that allows the quantification of the Moco content of crude cell extracts and recombinant protein preparations.
Collapse
Affiliation(s)
- Anne Klewe
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Tobias Kruse
- Institute of Plant Biology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Lindel
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
16
|
Dimerization of the plant molybdenum insertase Cnx1E is required for synthesis of the molybdenum cofactor. Biochem J 2016; 474:163-178. [PMID: 27803248 DOI: 10.1042/bcj20160846] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 11/17/2022]
Abstract
The molybdenum cofactor (Moco) is a redox active prosthetic group, essentially required for numerous enzyme-catalyzed two electron transfer reactions. Moco is synthesized by an evolutionarily old and highly conserved multistep pathway. In the last step of Moco biosynthesis, the molybdenum center is inserted into the final Moco precursor adenylated molybdopterin (MPT-AMP). This unique and yet poorly characterized maturation reaction finally yields physiologically active Moco. In the model plant Arabidopsis, the two domain enzyme, Cnx1, is required for Moco formation. Recently, a genetic screen identified novel Arabidopsis cnx1 mutant plant lines each harboring a single amino acid exchange in the N-terminal Cnx1E domain. Biochemical characterization of the respective recombinant Cnx1E variants revealed two different amino acid exchanges (S197F and G175D) that impair Cnx1E dimerization, thus linking Cnx1E oligomerization to Cnx1 functionality. Analysis of the Cnx1E structure identified Cnx1E active site-bound molybdate and magnesium ions, which allowed to fine-map the Cnx1E MPT-AMP-binding site.
Collapse
|
17
|
Kalimuthu P, Ringel P, Kruse T, Bernhardt PV. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1506-1513. [DOI: 10.1016/j.bbabio.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
|
18
|
Ringel P, Probst C, Dammeyer T, Buchmeier S, Jänsch L, Wissing J, Tinnefeld P, Mendel RR, Jockusch BM, Kruse T. Enzymatic characterization of recombinant nitrate reductase expressed and purified from Neurospora crassa. Fungal Genet Biol 2015; 80:10-8. [PMID: 25914160 DOI: 10.1016/j.fgb.2015.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/13/2015] [Indexed: 01/14/2023]
Abstract
We established an expression and purification procedure for recombinant protein production in Neurospora crassa (N. crassa). This Strep-tag® based system was successfully used for purifying recombinant N. crassa nitrate reductase (NR), whose enzymatic activity was compared to recombinant N. crassa NR purified from Escherichia coli. The purity of the two different NR preparations was similar but NR purified from N. crassa showed a significantly higher nitrate turnover rate. Two phosphorylation sites were identified for NR purified from the endogenous expression system. We conclude that homologous expression of N. crassa NR yields a higher active enzyme and propose that NR phosphorylation causes enhanced enzymatic activity.
Collapse
Affiliation(s)
- Phillip Ringel
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Corinna Probst
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Thorben Dammeyer
- Department of Physical and Theoretical Chemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Sabine Buchmeier
- Department of Physical and Theoretical Chemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Josef Wissing
- Cellular Proteomics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philip Tinnefeld
- Department of Physical and Theoretical Chemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Brigitte M Jockusch
- Zoological Institute, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| |
Collapse
|
19
|
Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis. Fungal Genet Biol 2014; 66:69-78. [DOI: 10.1016/j.fgb.2014.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/18/2022]
|
20
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|