1
|
Shiimura Y, Im D, Tany R, Asada H, Kise R, Kurumiya E, Wakasugi-Masuho H, Yasuda S, Matsui K, Kishikawa JI, Kato T, Murata T, Kojima M, Iwata S, Masuho I. The structure and function of the ghrelin receptor coding for drug actions. Nat Struct Mol Biol 2025; 32:531-542. [PMID: 39833471 DOI: 10.1038/s41594-024-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Drugs targeting the ghrelin receptor hold therapeutic potential in anorexia, obesity and diabetes. However, developing effective drugs is challenging. To tackle this common issue across a broad drug target, this study aims to understand how anamorelin, the only approved drug targeting the ghrelin receptor, operates compared to other synthetic drugs. Our research elucidated the receptor's structure with anamorelin and miniGq, unveiling anamorelin's superagonistic activity. We demonstrated that ligands with distinct chemical structures uniquely bind to the receptor, resulting in diverse conformations and biasing signal transduction. Moreover, our study showcased the utility of structural information in effectively identifying natural genetic variations altering drug action and causing severe functional deficiencies, offering a basis for selecting the right medication on the basis of the individual's genomic sequence. Thus, by building on structural analysis, this study enhances the foundational framework for selecting therapeutic agents targeting the ghrelin receptor, by effectively leveraging signaling bias and genetic variations.
Collapse
Affiliation(s)
- Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan.
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Tany
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoji Kise
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Eon Kurumiya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Kazuma Matsui
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, Osaka, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Ikuo Masuho
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
2
|
Luo H, Anderson A, Masuho I, Marron Fernandez de Velasco E, Birnbaumer L, Martemyanov KA, Wickman K. Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics. Prog Neurobiol 2024; 243:102686. [PMID: 39542413 PMCID: PMC11923652 DOI: 10.1016/j.pneurobio.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Most neurons are influenced by multiple neuromodulatory inputs that converge on common effectors. Mechanisms that route these signals are key to selective neuromodulation but are poorly understood. G protein-gated inwardly rectifying K+ (GIRK or Kir3) channels mediate postsynaptic inhibition evoked by G protein-coupled receptors (GPCRs) that signal via inhibitory G proteins. GIRK-dependent signaling is modulated by Regulator of G protein Signaling proteins RGS6 and RGS7, but their selectivity for distinct GPCR-GIRK signaling pathways in defined neurons is unclear. We compared how RGS6 and RGS7 impact GIRK channel regulation by the GABAB receptor (GABABR), 5HT1A receptor (5HT1AR), and A1 adenosine receptor (A1R) in hippocampal neurons. Our data show that RGS6 and RGS7 make non-redundant contributions to GABABR- and 5HT1AR-GIRK signaling and compartmentalization and suggest that GPCR-G protein preferences and the substrate bias of RGS proteins, as well as receptor-dependent differences in Gαo engagement and effector access, shape GPCR-GIRK signaling dynamics in hippocampal neurons.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ikuo Masuho
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | | | - Lutz Birnbaumer
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States; Biomedical Research Institute, Catholic University of Argentina, Buenos Aires C1107AAZ, Argentina
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
3
|
Masuho I, Kise R, Gainza P, Von Moo E, Li X, Tany R, Wakasugi-Masuho H, Correia BE, Martemyanov KA. Rules and mechanisms governing G protein coupling selectivity of GPCRs. Cell Rep 2023; 42:113173. [PMID: 37742189 PMCID: PMC10842385 DOI: 10.1016/j.celrep.2023.113173] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Ryoji Kise
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Pablo Gainza
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ee Von Moo
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Xiaona Li
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ryosuke Tany
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hideko Wakasugi-Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kirill A Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
4
|
Park JC, Luebbers A, Dao M, Semeano A, Nguyen AM, Papakonstantinou MP, Broselid S, Yano H, Martemyanov KA, Garcia-Marcos M. Fine-tuning GPCR-mediated neuromodulation by biasing signaling through different G protein subunits. Mol Cell 2023; 83:2540-2558.e12. [PMID: 37390816 PMCID: PMC10527995 DOI: 10.1016/j.molcel.2023.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαβγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gβγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gβγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gβγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gβγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Maria Dao
- U.F. Scripps Biomedical Research, University of Florida, Jupiter, FL 33458, USA
| | - Ana Semeano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Anh Minh Nguyen
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Maria P Papakonstantinou
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Stefan Broselid
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Pandey M, Zhang JH, Adikaram PR, Kittock C, Lue N, Awe A, Degner K, Jacob N, Staples J, Thomas R, Kohnen AB, Ganesan S, Kabat J, Chen CK, Simonds WF. Specific regulation of mechanical nociception by Gβ5 involves GABA-B receptors. JCI Insight 2023; 8:e134685. [PMID: 37219953 PMCID: PMC10371342 DOI: 10.1172/jci.insight.134685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mechanical, thermal, and chemical pain sensation is conveyed by primary nociceptors, a subset of sensory afferent neurons. The intracellular regulation of the primary nociceptive signal is an area of active study. We report here the discovery of a Gβ5-dependent regulatory pathway within mechanical nociceptors that restrains antinociceptive input from metabotropic GABA-B receptors. In mice with conditional knockout (cKO) of the gene that encodes Gβ5 (Gnb5) targeted to peripheral sensory neurons, we demonstrate the impairment of mechanical, thermal, and chemical nociception. We further report the specific loss of mechanical nociception in Rgs7-Cre+/- Gnb5fl/fl mice but not in Rgs9-Cre+/- Gnb5fl/fl mice, suggesting that Gβ5 might specifically regulate mechanical pain in regulator of G protein signaling 7-positive (Rgs7+) cells. Additionally, Gβ5-dependent and Rgs7-associated mechanical nociception is dependent upon GABA-B receptor signaling since both were abolished by treatment with a GABA-B receptor antagonist and since cKO of Gβ5 from sensory cells or from Rgs7+ cells potentiated the analgesic effects of GABA-B agonists. Following activation by the G protein-coupled receptor Mrgprd agonist β-alanine, enhanced sensitivity to inhibition by baclofen was observed in primary cultures of Rgs7+ sensory neurons harvested from Rgs7-Cre+/- Gnb5fl/fl mice. Taken together, these results suggest that the targeted inhibition of Gβ5 function in Rgs7+ sensory neurons might provide specific relief for mechanical allodynia, including that contributing to chronic neuropathic pain, without reliance on exogenous opioids.
Collapse
Affiliation(s)
- Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Poorni R. Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claire Kittock
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nicole Lue
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adam Awe
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Katherine Degner
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jenna Staples
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Allison B. Kohnen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sundar Ganesan
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Ching-Kang Chen
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
6
|
Laboute T, Zucca S, Holcomb M, Patil DN, Garza C, Wheatley BA, Roy RN, Forli S, Martemyanov KA. Orphan receptor GPR158 serves as a metabotropic glycine receptor: mGlyR. Science 2023; 379:1352-1358. [PMID: 36996198 PMCID: PMC10751545 DOI: 10.1126/science.add7150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Glycine is a major neurotransmitter involved in several fundamental neuronal processes. The identity of the metabotropic receptor mediating slow neuromodulatory effects of glycine is unknown. We identified an orphan G protein-coupled receptor, GPR158, as a metabotropic glycine receptor (mGlyR). Glycine and a related modulator, taurine, directly bind to a Cache domain of GPR158, and this event inhibits the activity of the intracellular signaling complex regulator of G protein signaling 7-G protein β5 (RGS7-Gβ5), which is associated with the receptor. Glycine signals through mGlyR to inhibit production of the second messenger adenosine 3',5'-monophosphate. We further show that glycine, but not taurine, acts through mGlyR to regulate neuronal excitability in cortical neurons. These results identify a major neuromodulatory system involved in mediating metabotropic effects of glycine, with implications for understanding cognition and affective states.
Collapse
Affiliation(s)
- Thibaut Laboute
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dipak N. Patil
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Christina Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Brittany A. Wheatley
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Raktim N. Roy
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Korlatowicz A, Kolasa M, Pabian P, Solich J, Latocha K, Dziedzicka-Wasylewska M, Faron-Górecka A. Altered Intracellular Signaling Associated with Dopamine D2 Receptor in the Prefrontal Cortex in Wistar Kyoto Rats. Int J Mol Sci 2023; 24:ijms24065941. [PMID: 36983013 PMCID: PMC10056486 DOI: 10.3390/ijms24065941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid antidepressant effects in WKY rats, we focused our study on the prefrontal cortex. Using quantitative autoradiography, we observed a decrease in the binding of [3H] methylspiperone to the dopamine D2 receptor, specifically in that brain region-but not in the striatum, nor the nucleus accumbens-in WKY rats. Further, we focused our studies on the expression level of several components associated with canonical (G proteins), as well as non-canonical, D2-receptor-associated intracellular pathways (e.g., βarrestin2, glycogen synthase kinase 3 beta-Gsk-3β, and β-catenin). As a result, we observed an increase in the expression of mRNA encoding the regulator of G protein signaling 2-RGS2 protein, which is responsible, among other things, for internalizing the D2 dopamine receptor. The increase in RGS2 expression may therefore account for the decreased binding of the radioligand to the D2 receptor. In addition, WKY rats are characterized by the altered signaling of genes associated with the dopamine D2 receptor and the βarrestin2/AKT/Gsk-3β/β-catenin pathway, which may account for certain behavioral traits of this strain and for the treatment-resistant phenotype.
Collapse
Affiliation(s)
- Agata Korlatowicz
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Paulina Pabian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Latocha
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
8
|
Darira SV, Sutton LP. The interaction, mechanism and function of GPR158-RGS7 cross-talk. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:167-176. [PMID: 36357076 DOI: 10.1016/bs.pmbts.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GPR158 is an orphan G protein-coupled receptor (GPCR) that is broadly expressed in the brain and displays unique structural characteristics and signaling mechanisms. GPR158 is a binding partner for the regulator of G protein signaling 7 (RGS7) and augments its expression, subcellular localization, and catalytic activity. Recent cryo-electron microscopy (cryo-EM) studies have revealed the structure of GPR158 alone and in complex with RGS7. The GPR158-RGS7 complex is shown to be regulated by chronic stress exposure and is a modulator of stress-induced depression. This review highlights the signaling mechanism and function of GPR158-RGS7 and provides a context for the unique formation of GPCR-RGS complexes.
Collapse
Affiliation(s)
- Shradha V Darira
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Laurie P Sutton
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
9
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Keen AC, Pedersen MH, Lemel L, Scott DJ, Canals M, Littler DR, Beddoe T, Ono Y, Shi L, Inoue A, Javitch JA, Lane JR. OZITX, a pertussis toxin-like protein for occluding inhibitory G protein signalling including Gα z. Commun Biol 2022; 5:256. [PMID: 35322196 PMCID: PMC8943041 DOI: 10.1038/s42003-022-03191-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are the main signalling effectors for G protein-coupled receptors. Understanding the distinct functions of different G proteins is key to understanding how their signalling modulates physiological responses. Pertussis toxin, a bacterial AB5 toxin, inhibits Gαi/o G proteins and has proven useful for interrogating inhibitory G protein signalling. Pertussis toxin, however, does not inhibit one member of the inhibitory G protein family, Gαz. The role of Gαz signalling has been neglected largely due to a lack of inhibitors. Recently, the identification of another Pertussis-like AB5 toxin was described. Here we show that this toxin, that we call OZITX, specifically inhibits Gαi/o and Gαz G proteins and that expression of the catalytic S1 subunit is sufficient for this inhibition. We identify mutations that render Gα subunits insensitive to the toxin that, in combination with the toxin, can be used to interrogate the signalling of each inhibitory Gα G protein.
Collapse
Affiliation(s)
- Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Maria Hauge Pedersen
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Daniel J Scott
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, 3052, Australia
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3052, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yuki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Jeong E, Kim Y, Jeong J, Cho Y. Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5. Nat Commun 2021; 12:6805. [PMID: 34815401 PMCID: PMC8611064 DOI: 10.1038/s41467-021-27147-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
GPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gβ5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gβ5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.
Collapse
Affiliation(s)
- Eunyoung Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihong Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
12
|
Asli A, Higazy-Mreih S, Avital-Shacham M, Kosloff M. Residue-level determinants of RGS R4 subfamily GAP activity and specificity towards the G i subfamily. Cell Mol Life Sci 2021; 78:6305-6318. [PMID: 34292354 PMCID: PMC11072900 DOI: 10.1007/s00018-021-03898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
The structural basis for the GTPase-accelerating activity of regulators of G protein signaling (RGS) proteins, as well as the mechanistic basis for their specificity in interacting with the heterotrimeric (αβγ) G proteins they inactivate, is not sufficiently understood at the family level. Here, we used biochemical assays to compare RGS domains across the RGS family and map those individual residues that favorably contribute to GTPase-accelerating activity, and those residues responsible for attenuating RGS domain interactions with Gα subunits. We show that conserved interactions of RGS residues with both the Gα switch I and II regions are crucial for RGS activity, while the reciprocal effects of "modulatory" and "disruptor" residues selectively modulate RGS activity. Our results quantify how specific interactions between RGS domains and Gα subunits are set by a balance between favorable RGS residue interactions with particular Gα switch regions, and unfavorable interactions with the Gα helical domain.
Collapse
Affiliation(s)
- Ali Asli
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Sabreen Higazy-Mreih
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Meirav Avital-Shacham
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
13
|
Stoveken HM, Fernandez-Vega V, Muntean BS, Patil DN, Shumate J, Bannister TD, Scampavia L, Spicer TP, Martemyanov KA. Identification of Potential Modulators of the RGS7/Gβ5/R7BP Complex. SLAS DISCOVERY 2021; 26:1177-1188. [PMID: 34112017 DOI: 10.1177/24725552211020679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulators of G protein signaling (RGS) proteins serve as critical regulatory nodes to limit the lifetime and extent of signaling via G protein-coupled receptors (GPCRs). Previously, approaches to pharmacologically inhibit RGS activity have mostly focused on the inhibition of GTPase activity by interrupting the interaction of RGS proteins with the G proteins they regulate. However, several RGS proteins are also regulated by association with binding partners. A notable example is the mammalian RGS7 protein, which has prominent roles in metabolic control, vision, reward, and actions of opioid analgesics. In vivo, RGS7 exists in complex with the binding partners type 5 G protein β subunit (Gβ5) and R7 binding protein (R7BP), which control its stability and activity, respectively. Targeting the whole RGS7/Gβ5/R7BP protein complex affords the opportunity to allosterically tune opioid receptor signaling following opioid engagement while potentially bypassing undesirable side effects. Hence, we implemented a novel strategy to pharmacologically target the interaction between RGS7/Gβ5 and R7BP. To do so, we searched for protein complex inhibitors using a time-resolved fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) assay that measures compound-mediated alterations in the FRET signal between RGS7/Gβ5 and R7BP. We performed two HTS campaigns, each screening ~100,000 compounds from the Scripps Drug Discovery Library (SDDL). Each screen yielded more than 100 inhibitors, which will be described herein.
Collapse
Affiliation(s)
- Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Dipak N Patil
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Justin Shumate
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Thomas D Bannister
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Louis Scampavia
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Timothy P Spicer
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
14
|
Striatal RGS7 Regulates Depression-Related Behaviors and Stress-Induced Reinstatement of Cocaine Conditioned Place Preference. eNeuro 2021; 8:ENEURO.0365-20.2020. [PMID: 33402347 PMCID: PMC7986533 DOI: 10.1523/eneuro.0365-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The striatum plays a key role in both reward-related and affective behaviors and disruptions to this circuit contributes to depression and drug addiction. However, our understanding of the molecular factors that facilitate and modify these processes are incomplete. Striatal function is modulated by G-protein-coupled receptors (GPCRs) that process vast neuromodulatory inputs. GPCR signaling is negatively regulated by regulator of G-protein signaling (Rgs) proteins. In this study, we examine the role of striatal Rgs proteins in depressive-like and reward-related behaviors in male mice. Using a genetic mouse model with specific elimination of Rgs7 in striatal neurons we found that these mice exhibit an anxiolytic-like and antidepressant-like phenotype. In contrast, knock-out of Rgs9, an abundant Rgs protein in the same neuronal population did not affect the behavioral outcome in the depressive-like tests. Mice lacking striatal Rgs7 did not show significant differences in cocaine-induced psychomotor activation, sensitization or conditional place preference (CPP). Interestingly, loss of Rgs7 in the striatum made mice resilient to stress-induced but not drug-induced reinstatement of cocaine CPP. Analysis of striatal proteome revealed that loss of Rgs7 selectively affected expression of several networks, most prominently including proteins involved in translation and vesicular exocytosis. Together, these findings begin to demonstrate the specific contribution of Rgs7 acting in the striatum toward depression as it relates to stress-induced reinstatement of drug use.
Collapse
|
15
|
Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst 2021; 12:324-337.e5. [PMID: 33667409 DOI: 10.1016/j.cels.2021.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
The signal transduction by G-protein-coupled receptors (GPCRs) is mediated by heterotrimeric G proteins composed from one of the 16 Gα subunits and the inseparable Gβγ complex assembled from a repertoire of 5 Gβ and 12 Gγ subunits. However, the functional role of compositional diversity in Gβγ complexes has been elusive. Using optical biosensors, we examined the function of all Gβγ combinations in living cells and uncovered two major roles of Gβγ diversity. First, we demonstrate that the identity of Gβγ subunits greatly influences the kinetics and efficacy of GPCR responses at the plasma membrane. Second, we show that different Gβγ combinations are selectively dispatched from the plasma membrane to various cellular organelles on a timescale from milliseconds to minutes. We describe the mechanisms regulating these processes and document their implications for GPCR signaling via various Gα subunits, thereby illustrating a role for the compositional diversity of G protein heterotrimers.
Collapse
|
16
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 PMCID: PMC7662521 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Masuho I, Balaji S, Muntean BS, Skamangas NK, Chavali S, Tesmer JJG, Babu MM, Martemyanov KA. A Global Map of G Protein Signaling Regulation by RGS Proteins. Cell 2020; 183:503-521.e19. [PMID: 33007266 PMCID: PMC7572916 DOI: 10.1016/j.cell.2020.08.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 07/03/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles. Systematic analysis reveals G protein selectivity of all canonical RGS proteins RGS proteins rely on selectivity bar codes for selective G protein recognition Transplantation of bar codes across RGS proteins switches their G protein preferences Natural variants, mutations, and evolution shape RGS selectivity
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Nickolas K Skamangas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati 517 507, India
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
18
|
Anderson A, Masuho I, Marron Fernandez de Velasco E, Nakano A, Birnbaumer L, Martemyanov KA, Wickman K. GPCR-dependent biasing of GIRK channel signaling dynamics by RGS6 in mouse sinoatrial nodal cells. Proc Natl Acad Sci U S A 2020; 117:14522-14531. [PMID: 32513692 PMCID: PMC7322085 DOI: 10.1073/pnas.2001270117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How G protein-coupled receptors (GPCRs) evoke specific biological outcomes while utilizing a limited array of G proteins and effectors is poorly understood, particularly in native cell systems. Here, we examined signaling evoked by muscarinic (M2R) and adenosine (A1R) receptor activation in the mouse sinoatrial node (SAN), the cardiac pacemaker. M2R and A1R activate a shared pool of cardiac G protein-gated inwardly rectifying K+ (GIRK) channels in SAN cells from adult mice, but A1R-GIRK responses are smaller and slower than M2R-GIRK responses. Recordings from mice lacking Regulator of G protein Signaling 6 (RGS6) revealed that RGS6 exerts a GPCR-dependent influence on GIRK-dependent signaling in SAN cells, suppressing M2R-GIRK coupling efficiency and kinetics and A1R-GIRK signaling amplitude. Fast kinetic bioluminescence resonance energy transfer assays in transfected HEK cells showed that RGS6 prefers Gαo over Gαi as a substrate for its catalytic activity and that M2R signals preferentially via Gαo, while A1R does not discriminate between inhibitory G protein isoforms. The impact of atrial/SAN-selective ablation of Gαo or Gαi2 was consistent with these findings. Gαi2 ablation had minimal impact on M2R-GIRK and A1R-GIRK signaling in SAN cells. In contrast, Gαo ablation decreased the amplitude and slowed the kinetics of M2R-GIRK responses, while enhancing the sensitivity and prolonging the deactivation rate of A1R-GIRK signaling. Collectively, our data show that differences in GPCR-G protein coupling preferences, and the Gαo substrate preference of RGS6, shape A1R- and M2R-GIRK signaling dynamics in mouse SAN cells.
Collapse
Affiliation(s)
- Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | | | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
- Biomedical Research Institute, Catholic University of Argentina, C1107AAZ Buenos Aires, Argentina
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455;
| |
Collapse
|
19
|
DiGiacomo V, Maziarz M, Luebbers A, Norris JM, Laksono P, Garcia-Marcos M. Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Sci Signal 2020; 13:13/617/eaax8620. [PMID: 32019900 DOI: 10.1126/scisignal.aax8620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of deep-sequencing techniques has revealed that mutations in G protein-coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the "RGS-box." Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein-binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jillian M Norris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pandu Laksono
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
20
|
Muntean BS, Patil DN, Madoux F, Fossetta J, Scampavia L, Spicer TP, Martemyanov KA. A High-Throughput Time-Resolved Fluorescence Energy Transfer Assay to Screen for Modulators of RGS7/Gβ5/R7BP Complex. Assay Drug Dev Technol 2019; 16:150-161. [PMID: 29658790 DOI: 10.1089/adt.2017.839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are excellent drug targets exploited by majority of the Food and Drug Administration-approved medications, but when modulated, are often accompanied by significant adverse effects. Targeting of other elements in GPCR pathways for improved safety and efficacy is thus an unmet need. The strength of GPCR signaling is tightly regulated by regulators of G protein signaling (RGS) proteins, making them attractive drug targets. We focused on a prominent RGS complex in the brain consisting of RGS7 and its binding partners Gβ5 and R7BP. These complexes play critical roles in regulating multiple GPCRs and essential physiological processes, yet no small molecule modulators are currently available to modify its function. In this study, we report a novel high-throughput approach to screen for small molecule modulators of the intramolecular transitions in the RGS7/Gβ5/R7BP complex known to be involved in its allosteric regulation. We developed a time-resolved fluorescence energy transfer-based in vitro assay that utilizes full-length recombinant proteins and shows consistency, excellent assay statistics, and high level of sensitivity. We demonstrated the potential of this approach by screening two compound libraries (LOPAC 1280 and MicroSource Spectrum). This study confirms the feasibility of the chosen strategy for identifying small molecule modulators of RGS7/Gβ5/R7BP complex for impacting signaling downstream of the GPCRs.
Collapse
Affiliation(s)
- Brian S Muntean
- 1 Department of Neuroscience, The Scripps Research Institute , Jupiter, Florida
| | - Dipak N Patil
- 1 Department of Neuroscience, The Scripps Research Institute , Jupiter, Florida
| | - Franck Madoux
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | | - Louis Scampavia
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Timothy P Spicer
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | |
Collapse
|
21
|
The in vivo specificity of synaptic Gβ and Gγ subunits to the α 2a adrenergic receptor at CNS synapses. Sci Rep 2019; 9:1718. [PMID: 30737458 PMCID: PMC6368627 DOI: 10.1038/s41598-018-37222-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
G proteins are major transducers of signals from G-protein coupled receptors (GPCRs). They are made up of α, β, and γ subunits, with 16 Gα, 5 Gβ and 12 Gγ subunits. Though much is known about the specificity of Gα subunits, the specificity of Gβγs activated by a given GPCR and that activate each effector in vivo is not known. Here, we examined the in vivo Gβγ specificity of presynaptic α2a-adrenergic receptors (α2aARs) in both adrenergic (auto-α2aARs) and non-adrenergic neurons (hetero-α2aARs) for the first time. With a quantitative MRM proteomic analysis of neuronal Gβ and Gγ subunits, and co-immunoprecipitation of tagged α2aARs from mouse models including transgenic FLAG-α2aARs and knock-in HA-α2aARs, we investigated the in vivo specificity of Gβ and Gγ subunits to auto-α2aARs and hetero-α2aARs activated with epinephrine to understand the role of Gβγ specificity in diverse physiological functions such as anesthetic sparing, and working memory enhancement. We detected Gβ2, Gγ2, Gγ3, and Gγ4 with activated auto α2aARs, whereas we found Gβ4 and Gγ12 preferentially interacted with activated hetero-α2aARs. Further understanding of in vivo Gβγ specificity to various GPCRs offers new insights into the multiplicity of genes for Gβ and Gγ, and the mechanisms underlying GPCR signaling through Gβγ subunits.
Collapse
|
22
|
Patil DN, Rangarajan ES, Novick SJ, Pascal BD, Kojetin DJ, Griffin PR, Izard T, Martemyanov KA. Structural organization of a major neuronal G protein regulator, the RGS7-Gβ5-R7BP complex. eLife 2018; 7:e42150. [PMID: 30540250 PMCID: PMC6310461 DOI: 10.7554/elife.42150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 01/03/2023] Open
Abstract
Signaling by the G-protein-coupled receptors (GPCRs) plays fundamental role in a vast number of essential physiological functions. Precise control of GPCR signaling requires action of regulators of G protein signaling (RGS) proteins that deactivate heterotrimeric G proteins. RGS proteins are elaborately regulated and comprise multiple domains and subunits, yet structural organization of these assemblies is poorly understood. Here, we report a crystal structure and dynamics analyses of the multisubunit complex of RGS7, a major regulator of neuronal signaling with key roles in controlling a number of drug target GPCRs and links to neuropsychiatric disease, metabolism, and cancer. The crystal structure in combination with molecular dynamics and mass spectrometry analyses reveals unique organizational features of the complex and long-range conformational changes imposed by its constituent subunits during allosteric modulation. Notably, several intermolecular interfaces in the complex work in synergy to provide coordinated modulation of this key GPCR regulator.
Collapse
Affiliation(s)
- Dipak N Patil
- Department of NeuroscienceThe Scripps Research InstituteJupiterUnited States
| | - Erumbi S Rangarajan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
| | - Scott J Novick
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Bruce D Pascal
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
| | - Patrick R Griffin
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Tina Izard
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
| | | |
Collapse
|
23
|
Inhibitory Signaling to Ion Channels in Hippocampal Neurons Is Differentially Regulated by Alternative Macromolecular Complexes of RGS7. J Neurosci 2018; 38:10002-10015. [PMID: 30315127 DOI: 10.1523/jneurosci.1378-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/01/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
The neuromodulatory effects of GABA on pyramidal neurons are mediated by GABAB receptors (GABABRs) that signal via a conserved G-protein-coupled pathway. Two prominent effectors regulated by GABABRs include G-protein inwardly rectifying K+ (GIRK) and P/Q/N type voltage-gated Ca2+ (CaV2) ion channels that control excitability and synaptic output of these neurons, respectively. Regulator of G-protein signaling 7 (RGS7) has been shown to control GABAB effects, yet the specificity of its impacts on effector channels and underlying molecular mechanisms is poorly understood. In this study, we show that hippocampal RGS7 forms two distinct complexes with alternative subunit configuration bound to either membrane protein R7BP (RGS7 binding protein) or orphan receptor GPR158. Quantitative biochemical experiments show that both complexes account for targeting nearly the entire pool of RGS7 to the plasma membrane. We analyzed the effect of genetic elimination in mice of both sexes and overexpression of various components of RGS7 complex by patch-clamp electrophysiology in cultured neurons and brain slices. We report that RGS7 prominently regulates GABABR signaling to CaV2, in addition to its known involvement in modulating GIRK. Strikingly, only complexes containing R7BP, but not GPR158, accelerated the kinetics of both GIRK and CaV2 modulation by GABABRs. In contrast, GPR158 overexpression exerted the opposite effect and inhibited RGS7-assisted temporal modulation of GIRK and CaV2 by GABA. Collectively, our data reveal mechanisms by which distinctly composed macromolecular complexes modulate the activity of key ion channels that mediate the inhibitory effects of GABA on hippocampal CA1 pyramidal neurons.SIGNIFICANCE STATEMENT This study identifies the contributions of distinct macromolecular complexes containing a major G-protein regulator to controlling key ion channel function in hippocampal neurons with implications for understanding molecular mechanisms underlying synaptic plasticity, learning, and memory.
Collapse
|
24
|
Regulators of G-Protein Signaling (RGS) Proteins Promote Receptor Coupling to G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels. J Neurosci 2018; 38:8737-8744. [PMID: 30150362 DOI: 10.1523/jneurosci.0516-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Regulators of G-protein signaling (RGS) proteins negatively modulate presynaptic μ-opioid receptor inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). Paradoxically, we find that G-protein-coupled receptor (GPCR) activation of G-protein-gated inwardly rectifying K+ channels (GIRKs) in the vlPAG is reduced in an agonist- and receptor-dependent manner in transgenic knock-in mice of either sex expressing mutant RGS-insensitive Gαo proteins. μ-Opioid receptor agonist activation of GIRK currents was reduced for DAMGO and fentanyl but not for [Met5]-enkephalin acetate salt hydrate (ME) in the RGS-insensitive heterozygous (Het) mice compared with wild-type mice. The GABAB agonist baclofen-induced GIRK currents were also reduced in the Het mice. We confirmed the role of Gαo proteins in μ-opioid receptor and GABAB receptor signaling pathways in wild-type mice using myristoylated peptide inhibitors of Gαo1 and Gαi1-3 The results using these inhibitors indicate that receptor activation of GIRK channels is dependent on the preference of the agonist-stimulated receptor for Gαo versus that for Gαi. DAMGO and fentanyl-mediated GIRK currents were reduced in the presence of the Gαo1 inhibitor, but not the Gαi1-3 inhibitors. In contrast, the Gαo1 peptide inhibitor did not affect ME activation of GIRK currents, which is consistent with results in the Het mice, but the Gαi1-3 inhibitors significantly reduced ME-mediated GIRK currents. Finally, the reduction in GIRK activation in the Het mice plays a role in opioid- and baclofen-mediated spinal antinociception, but not supraspinal antinociception. Thus, our studies indicate that RGS proteins have multiple mechanisms of modulating GPCR signaling that produce negative and positive regulation of signaling depending on the effector.SIGNIFICANCE STATEMENT Regulators of G-protein signaling (RGS) proteins positively modulate GPCR coupling to GIRKs, and this coupling is critical for opioid- and baclofen-mediated spinal antinociception, whereas μ-opioid receptor-mediated supraspinal antinociception depends on presynaptic inhibition that is negatively regulated by RGS proteins. The identification of these opposite roles for RGS proteins has implications for signaling via other GPCRs.
Collapse
|
25
|
Selective Role of RGS9-2 in Regulating Retrograde Synaptic Signaling of Indirect Pathway Medium Spiny Neurons in Dorsal Striatum. J Neurosci 2018; 38:7120-7131. [PMID: 30006367 DOI: 10.1523/jneurosci.0493-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/21/2022] Open
Abstract
In the striatum, medium spiny neurons (MSNs) are heavily involved in controlling movement and reward. MSNs form two distinct populations expressing either dopamine receptor 1 (D1-MSN) or dopamine receptor 2 (D2-MSN), which differ in their projection targets and neurochemical composition. The activity of both types of MSNs is shaped by multiple neuromodulatory inputs processed by GPCRs that fundamentally impact their synaptic properties biasing behavioral outcomes. How these GPCR signaling cascades are regulated and what downstream targets they recruit in D1-MSN and D2-MSN populations are incompletely understood. In this study, we examined the cellular and molecular mechanisms underlying the action of RGS9-2, a key GPCR regulator in MSNs implicated in both movement control and actions of addictive drugs. Imaging cultured striatal neurons, we found that ablation of RGS9-2 significantly reduced calcium influx through NMDARs. Electrophysiological recordings in slices confirmed inhibition of NMDAR function in MSNs, resulting in enhanced AMPAR/NMDAR ratio. Accordingly, male mice lacking RGS9-2 displayed behavioral hypersensitivity to NMDAR blockade by MK-801 or ketamine. Recordings from genetically identified populations of striatal neurons revealed that these changes were selective to D2-MSNs. Surprisingly, we found that these postsynaptic effects resulted in remodeling of presynaptic inputs to D2-MSNs increasing the frequency of mEPSC and inhibiting paired-pulse ratio. Pharmacological dissection revealed that these adaptations were mediated by the NMDAR-dependent inhibition of retrograde endocannabinoid signaling from D2-MSNs to CB1 receptor on presynaptic terminals. Together, these data demonstrate a novel mechanism for pathway selective regulation of synaptic plasticity in MSNs controlled by GPCR signaling.SIGNIFICANCE STATEMENT This study identifies a role for a major G-protein regulator in controlling synaptic properties of striatal neurons in a pathway selective fashion.
Collapse
|
26
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
27
|
Qutob N, Masuho I, Alon M, Emmanuel R, Cohen I, Di Pizio A, Madore J, Elkahloun A, Ziv T, Levy R, Gartner JJ, Hill VK, Lin JC, Hevroni Y, Greenberg P, Brodezki A, Rosenberg SA, Kosloff M, Hayward NK, Admon A, Niv MY, Scolyer RA, Martemyanov KA, Samuels Y. RGS7 is recurrently mutated in melanoma and promotes migration and invasion of human cancer cells. Sci Rep 2018; 8:653. [PMID: 29330521 PMCID: PMC5766496 DOI: 10.1038/s41598-017-18851-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/19/2017] [Indexed: 11/14/2022] Open
Abstract
Analysis of 501 melanoma exomes revealed RGS7, which encodes a GTPase-accelerating protein (GAP), to be a tumor-suppressor gene. RGS7 was mutated in 11% of melanomas and was found to harbor three recurrent mutations (p.R44C, p.E383K and p.R416Q). Structural modeling of the most common recurrent mutation of the three (p.R44C) predicted that it destabilizes the protein due to the loss of an H-bond and salt bridge network between the mutated position and the serine and aspartic acid residues at positions 58 as 61, respectively. We experimentally confirmed this prediction showing that the p.R44C mutant protein is indeed destabilized. We further show RGS7 p.R44C has weaker catalytic activity for its substrate Gαo, thus providing a dual mechanism for its loss of function. Both of these effects are expected to contribute to loss of function of RGS7 resulting in increased anchorage-independent growth, migration and invasion of melanoma cells. By mutating position 56 in the R44C mutant from valine to cysteine, thereby enabling the formation of a disulfide bridge between the two mutated positions, we slightly increased the catalytic activity and reinstated protein stability, leading to the rescue of RGS7′s function as a tumor suppressor. Our findings identify RGS7 as a novel melanoma driver and point to the clinical relevance of using strategies to stabilize the protein and, thereby, restore its function.
Collapse
Affiliation(s)
- Nouar Qutob
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, FL, 33458, USA
| | - Michal Alon
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Rafi Emmanuel
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Isadora Cohen
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Antonella Di Pizio
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot, Israel
| | - Jason Madore
- Melanoma Institute Australia, University of Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW, Australia
| | - Abdel Elkahloun
- National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Tamar Ziv
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Levy
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Jared J Gartner
- National Cancer Institute, Surgery Branch, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Victoria K Hill
- National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Jimmy C Lin
- National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Yael Hevroni
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Polina Greenberg
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandra Brodezki
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Steven A Rosenberg
- National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nicholas K Hayward
- Melanoma Institute Australia, University of Sydney, NSW, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot, Israel
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW, Australia.,Disciplines of Surgery and Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | - Yardena Samuels
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Yim YY, McDonald WH, Hyde K, Cruz-Rodríguez O, Tesmer JJG, Hamm HE. Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes. Biochemistry 2017; 56:5405-5416. [PMID: 28880079 DOI: 10.1021/acs.biochem.7b00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gβγ dimers are one of the essential signaling units of activated G protein-coupled receptors (GPCRs). There are five Gβ and 12 Gγ subunits in humans; numerous studies have demonstrated that different Gβ and Gγ subunits selectively interact to form unique Gβγ dimers, which in turn may target specific receptors and effectors. Perturbation of Gβγ signaling can lead to impaired physiological responses. Moreover, previous targeted multiple-reaction monitoring (MRM) studies of Gβ and Gγ subunits have shown distinct regional and subcellular localization patterns in four brain regions. Nevertheless, no studies have quantified or compared their individual protein levels. In this study, we have developed a quantitative MRM method not only to quantify but also to compare the protein abundance of neuronal Gβ and Gγ subunits. In whole and fractionated crude synaptosomes, we were able to identify the most abundant neuronal Gβ and Gγ subunits and their subcellular localizations. For example, Gβ1 was mostly localized at the membrane while Gβ2 was evenly distributed throughout synaptosomal fractions. The protein expression levels and subcellular localizations of Gβ and Gγ subunits may affect the Gβγ dimerization and Gβγ-effector interactions. This study offers not only a new tool for quantifying and comparing Gβ and Gγ subunits but also new insights into the in vivo distribution of Gβ and Gγ subunits, and Gβγ dimer assembly in normal brain function.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | | | | | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
29
|
Abstract
Itch is a protective sensation producing a desire to scratch. Pathologic itch can be a chronic symptom of illnesses such as uremia, cholestatic liver disease, neuropathies and dermatitis, however current therapeutic options are limited. Many types of cell surface receptors, including those present on cells in the skin, on sensory neurons and on neurons in the spinal cord, have been implicated in itch signaling. The role of G protein signaling in the regulation of pruriception is poorly understood. We identify here 2 G protein signaling components whose mutation impairs itch sensation. R7bp (a.k.a. Rgs7bp) is a palmitoylated membrane anchoring protein expressed in neurons that facilitates Gαi/o -directed GTPase activating protein activity mediated by the Gβ5/R7-RGS complex. Knockout of R7bp diminishes scratching responses to multiple cutaneously applied and intrathecally-administered pruritogens in mice. Knock-in to mice of a GTPase activating protein-insensitive mutant of Gαo (Gnao1 G184S/+) produces a similar pruriceptive phenotype. The pruriceptive defect in R7bp knockout mice was rescued in double knockout mice also lacking Oprk1, encoding the G protein-coupled kappa-opioid receptor whose activation is known to inhibit itch sensation. In a model of atopic dermatitis (eczema), R7bp knockout mice showed diminished scratching behavior and enhanced sensitivity to kappa opioid agonists. Taken together, our results indicate that R7bp is a key regulator of itch sensation and suggest the potential targeting of R7bp-dependent GTPase activating protein activity as a novel therapeutic strategy for pathological itch.
Collapse
|
30
|
Scherer SL, Cain MD, Kanai SM, Kaltenbronn KM, Blumer KJ. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα 13. J Biol Chem 2017; 292:9906-9918. [PMID: 28432124 DOI: 10.1074/jbc.m116.771923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of Gi/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated Gi/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα13·R7-RGS complexes. Because Gα13/R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ5 with or without R7BP. We found that neurite retraction evoked by Gα12/13-dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα12/13 but not Gαi/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function.
Collapse
Affiliation(s)
- Stephanie L Scherer
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Matthew D Cain
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stanley M Kanai
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kevin M Kaltenbronn
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kendall J Blumer
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
31
|
Aguado C, Orlandi C, Fajardo-Serrano A, Gil-Minguez M, Martemyanov KA, Luján R. Cellular and Subcellular Localization of the RGS7/Gβ5/R7BP Complex in the Cerebellar Cortex. Front Neuroanat 2016; 10:114. [PMID: 27965545 PMCID: PMC5127842 DOI: 10.3389/fnana.2016.00114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/10/2016] [Indexed: 11/13/2022] Open
Abstract
A member of regulator of G-protein signaling family, RGS7, is an essential modulator of signaling through GABAB receptors. RGS7 functions as a macromolecular complex with type 5 G protein β (Gβ5) and R7 binding protein (R7BP) to control the localization and function of the resultant heterotrimeric complexes. Here, we used co-immunoprecipitation, in situ hybridization, histoblot and immunohistochemical techniques at the light and electron microscopic level to advance understanding of RGS7-Gβ5-R7BP complexes in the central nervous system, focusing on distinct neuronal populations in the cerebellar cortex. Histoblot analysis showed that RGS7, Gβ5 and R7BP proteins were widely expressed in the brain, with mostly an overlapping pattern and showing a high expression level in the molecular layer of the cerebellar cortex. Co-immunoprecipitation experiments established that the RGS7/Gβ5 forms complexes with R7BP in the cerebellum. At the cellular level, RGS7 and R7BP mRNAs were expressed at the highest level in Purkinje cells (PCs) and Golgi cells, and at low levels in granule cells. Immunohistochemistry confirmed that labeling for RGS7, Gβ5 and R7BP were present in the three neuronal populations and concentrated in dendrites and spines. At the electron microscopic level, immunolabeling for RGS7, Gβ5 and R7BP proteins was found both at postsynaptic and presynaptic sites and showed similar distribution patterns. Immunoreactivity for the three proteins was mostly localized along the extrasynaptic plasma membrane of dendritic shafts and spines of PCs and to a lesser extent, in axon terminals (AT) establishing excitatory synapses. Quantitative analysis of immunogold particles for RGS7, Gβ5 and R7BP revealed that they are non-uniformly distributed along the surface of PCs, and show enrichment around excitatory synapses on dendritic spines. We further report that deletion of R7BP in mice reduced the targeting of both RGS7 and Gβ5 to the plasma membrane. Altogether, these data support the existence of macromolecular complexes composed of RGS7-Gβ5-R7BP in PCs. The location at post- and pre-synaptic sites in PCs spines-parallel fiber synapses suggests their involvement in the modulation of glutamatergic neurotransmission in the cerebellar cortex.
Collapse
Affiliation(s)
- Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Ana Fajardo-Serrano
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Mercedes Gil-Minguez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | | | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| |
Collapse
|
32
|
Shamseldin HE, Masuho I, Alenizi A, Alyamani S, Patil DN, Ibrahim N, Martemyanov KA, Alkuraya FS. GNB5 mutation causes a novel neuropsychiatric disorder featuring attention deficit hyperactivity disorder, severely impaired language development and normal cognition. Genome Biol 2016; 17:195. [PMID: 27677260 PMCID: PMC5037613 DOI: 10.1186/s13059-016-1061-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background Neuropsychiatric disorders are common forms of disability in humans. Despite recent progress in deciphering the genetics of these disorders, their phenotypic complexity continues to be a major challenge. Mendelian neuropsychiatric disorders are rare but their study has the potential to unravel novel mechanisms that are relevant to their complex counterparts. Results In an extended consanguineous family, we identified a novel neuropsychiatric phenotype characterized by severe speech impairment, variable expressivity of attention deficit hyperactivity disorder (ADHD), and motor delay. We identified the disease locus through linkage analysis on 15q21.2, and exome sequencing revealed a novel missense variant in GNB5. GNB5 encodes an atypical β subunit of the heterotrimeric GTP-binding proteins (Gβ5). Gβ5 is enriched in the central nervous system where it forms constitutive complexes with members of the regulator of G protein signaling family of proteins to modulate neurotransmitter signaling that affects a number of neurobehavioral outcomes. Here, we show that the S81L mutant form of Gβ5 has significantly impaired activity in terminating responses that are elicited by dopamine. Conclusions We demonstrate that these deficits originate from the impaired expression of the mutant Gβ5 protein, resulting in the decreased ability to stabilize regulator of G protein signaling complexes. Our data suggest that this novel neuropsychiatric phenotype is the human equivalent of Gnb5 deficiency in mice, which manifest motor deficits and hyperactivity, and highlight a critical role of Gβ5 in normal behavior as well as language and motor development in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1061-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, #3C2, Jupiter, FL, 33458, USA
| | - Ahmed Alenizi
- Department of Pediatrics, King Saud Medical City, Riyadh, Saudi Arabia
| | - Suad Alyamani
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dipak N Patil
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, #3C2, Jupiter, FL, 33458, USA
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, #3C2, Jupiter, FL, 33458, USA.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Luessen DJ, Hinshaw TP, Sun H, Howlett AC, Marrs G, McCool BA, Chen R. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology 2016; 110:297-307. [PMID: 27528587 DOI: 10.1016/j.neuropharm.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/20/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Tyler P Hinshaw
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Glen Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
34
|
Sutton LP, Ostrovskaya O, Dao M, Xie K, Orlandi C, Smith R, Wee S, Martemyanov KA. Regulator of G-Protein Signaling 7 Regulates Reward Behavior by Controlling Opioid Signaling in the Striatum. Biol Psychiatry 2016; 80:235-45. [PMID: 26364547 PMCID: PMC4753143 DOI: 10.1016/j.biopsych.2015.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/02/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Morphine mediates its euphoric and analgesic effects by acting on the μ-opioid receptor (MOR). MOR belongs to the family of G-protein coupled receptors whose signaling efficiency is controlled by the regulator of G-protein signaling (RGS) proteins. Our understanding of the molecular diversity of RGS proteins that control MOR signaling, their circuit specific actions, and underlying cellular mechanisms is very limited. METHODS We used genetic approaches to ablate regulator of G-protein signaling 7 (RGS7) both globally and in specific neuronal populations. We used conditioned place preference and self-administration paradigms to examine reward-related behavior and a battery of tests to assess analgesia, tolerance, and physical dependence to morphine. Electrophysiology approaches were applied to investigate the impact of RGS7 on morphine-induced alterations in neuronal excitability and plasticity of glutamatergic synapses. At least three animals were used for each assessment. RESULTS Elimination of RGS7 enhanced reward, increased analgesia, delayed tolerance, and heightened withdrawal in response to morphine administration. RGS7 in striatal neurons was selectively responsible for determining the sensitivity of rewarding and reinforcing behaviors to morphine without affecting analgesia, tolerance, and withdrawal. In contrast, deletion of RGS7 in dopaminergic neurons did not influence morphine reward. RGS7 exerted its effects by controlling morphine-induced changes in excitability of medium spiny neurons in nucleus accumbens and gating the compositional plasticity of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors. CONCLUSIONS This study identifies RGS7 as a novel regulator of MOR signaling by dissecting its circuit specific actions and pinpointing its role in regulating morphine reward by controlling the activity of nucleus accumbens neurons.
Collapse
Affiliation(s)
- Laurie P. Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Olga Ostrovskaya
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Maria Dao
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 USA,Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Roy Smith
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Sunmee Wee
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458 USA,Corresponding author: Dr. Kirill Martemyanov, Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, 3C2, Jupiter, FL 33458, Phone: (561) 228-2770,
| |
Collapse
|
35
|
Muntean BS, Martemyanov KA. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily. J Biol Chem 2016; 291:7195-204. [PMID: 26811338 PMCID: PMC4807299 DOI: 10.1074/jbc.m115.713446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity.
Collapse
Affiliation(s)
- Brian S Muntean
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
36
|
Tayou J, Wang Q, Jang GF, Pronin AN, Orlandi C, Martemyanov KA, Crabb JW, Slepak VZ. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein. J Biol Chem 2016; 291:9133-47. [PMID: 26895961 DOI: 10.1074/jbc.m115.694075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners.
Collapse
Affiliation(s)
- Junior Tayou
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Qiang Wang
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Alexey N Pronin
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Cesare Orlandi
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - John W Crabb
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Vladlen Z Slepak
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136,
| |
Collapse
|
37
|
Masuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal 2015; 8:ra123. [PMID: 26628681 DOI: 10.1126/scisignal.aab4068] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Members of the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) family play key roles in many physiological functions and are extensively exploited pharmacologically to treat diseases. Many of the diverse effects of individual GPCRs on cellular physiology are transduced by heterotrimeric G proteins, which are composed of α, β, and γ subunits. GPCRs interact with and stimulate the binding of guanosine triphosphate (GTP) to the α subunit to initiate signaling. Mammalian genomes encode 16 different G protein α subunits, each one of which has distinct properties. We developed a single-platform, optical strategy to monitor G protein activation in live cells. With this system, we profiled the coupling ability of individual GPCRs for different α subunits, simultaneously quantifying the magnitude of the signal and the rates at which the receptors activated the G proteins. We found that individual receptors engaged multiple G proteins with varying efficacy and kinetics, generating fingerprint-like profiles. Different classes of GPCR ligands, including full and partial agonists, allosteric modulators, and antagonists, distinctly affected these fingerprints to functionally bias GPCR signaling. Finally, we showed that intracellular signaling modulators further altered the G protein-coupling profiles of GPCRs, which suggests that their differential abundance may alter signaling outcomes in a cell-specific manner. These observations suggest that the diversity of the effects of GPCRs on cellular physiology may be determined by their differential engagement of multiple G proteins, coupling to which produces signals with varying signal magnitudes and activation kinetics, properties that may be exploited pharmacologically.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Olga Ostrovskaya
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Grant M Kramer
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA. Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Christopher D Jones
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA. Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
38
|
Orlandi C, Xie K, Masuho I, Fajardo-Serrano A, Lujan R, Martemyanov KA. Orphan Receptor GPR158 Is an Allosteric Modulator of RGS7 Catalytic Activity with an Essential Role in Dictating Its Expression and Localization in the Brain. J Biol Chem 2015; 290:13622-39. [PMID: 25792749 DOI: 10.1074/jbc.m115.645374] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Regulators of G protein signaling control the duration and extent of signaling via G protein-coupled receptor (GPCR) pathways by accelerating the GTP hydrolysis on G protein α subunits thereby promoting termination of GPCR signaling. A member of this family, RGS7, plays a critical role in the nervous system where it regulates multiple neurotransmitter GPCRs that mediate vision, memory, and the action of addictive drugs. Previous studies have established that in vivo RGS7 forms mutually exclusive complexes with the membrane protein RGS7-binding protein or the orphan receptor GPR158. In this study, we examine the impact of GPR158 on RGS7 in the brain. We report that knock-out of GPR158 in mice results in marked post-transcriptional destabilization of RGS7 and substantial loss of its association with membranes in several brain regions. We further identified the RGS7-binding site in the C terminus of GPR158 and found that it shares significant homology with the RGS7-binding protein. The proximal portion of the GPR158 C terminus additionally contained a conserved sequence that was capable of enhancing RGS7 GTPase-activating protein activity in solution by an allosteric mechanism acting in conjunction with the regulators of the G protein signaling-binding domain. The distal portion of the GPR158 C terminus contained several phosphodiesterase E γ-like motifs and selectively recruited G proteins in their activated state. The results of this study establish GPR158 as an essential regulator of RGS7 in the native nervous system with a critical role in controlling its expression, membrane localization, and catalytic activity.
Collapse
Affiliation(s)
- Cesare Orlandi
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Keqiang Xie
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Ikuo Masuho
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Ana Fajardo-Serrano
- the Instituto de Investigación en Descapacidades Neuronales (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Rafael Lujan
- the Instituto de Investigación en Descapacidades Neuronales (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| |
Collapse
|
39
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
40
|
Masuho I, Martemyanov KA, Lambert NA. Monitoring G Protein Activation in Cells with BRET. Methods Mol Biol 2015; 1335:107-13. [PMID: 26260597 DOI: 10.1007/978-1-4939-2914-6_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Live-cell assays based on fluorescence and luminescence are now indispensable tools for the study of G protein signaling. Assays based on fluorescence and bioluminescence resonance energy transfer (FRET and BRET) have been particularly valuable for monitoring changes in second messengers, protein-protein interactions, and protein conformation. Here, we describe a BRET assay that monitors the release of free Gβγ dimers after activation of heterotrimers containing Gα subunits from all four G protein subfamilies. This assay provides useful kinetic and pharmacological information with reasonably high throughput using a standard laboratory equipment.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, 33458, USA
| | | | | |
Collapse
|
41
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
42
|
Walker PD, Jarosz PA, Bouhamdan M, MacKenzie RG. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice. Physiol Behav 2014; 138:305-12. [PMID: 25455864 DOI: 10.1016/j.physbeh.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome.
Collapse
Affiliation(s)
- Paul D Walker
- Department of Anatomy & Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | - Mohamad Bouhamdan
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Robert G MacKenzie
- Center for Integrative Metabolic and Endocrine Research, Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
43
|
Octeau JC, Schrader JM, Masuho I, Sharma M, Aiudi C, Chen CK, Kovoor A, Celver J. G protein beta 5 is targeted to D2-dopamine receptor-containing biochemical compartments and blocks dopamine-dependent receptor internalization. PLoS One 2014; 9:e105791. [PMID: 25162404 PMCID: PMC4146516 DOI: 10.1371/journal.pone.0105791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/23/2014] [Indexed: 11/18/2022] Open
Abstract
G beta 5 (Gbeta5, Gβ5) is a unique G protein β subunit that is thought to be expressed as an obligate heterodimer with R7 regulator of G protein signaling (RGS) proteins instead of with G gamma (Gγ) subunits. We found that D2-dopamine receptor (D2R) coexpression enhances the expression of Gβ5, but not that of the G beta 1 (Gβ1) subunit, in HEK293 cells, and that the enhancement of expression occurs through a stabilization of Gβ5 protein. We had previously demonstrated that the vast majority of D2R either expressed endogenously in the brain or exogenously in cell lines segregates into detergent-resistant biochemical fractions. We report that when expressed alone in HEK293 cells, Gβ5 is highly soluble, but is retargeted to the detergent-resistant fraction after D2R coexpression. Furthermore, an in-cell biotin transfer proximity assay indicated that D2R and Gβ5 segregating into the detergent-resistant fraction specifically interacted in intact living cell membranes. Dopamine-induced D2R internalization was blocked by coexpression of Gβ5, but not Gβ1. However, the same Gβ5 coexpression levels had no effect on agonist-induced internalization of the mu opioid receptor (MOR), cell surface D2R levels, dopamine-mediated recruitment of β-arrestin to D2R, the amplitude of D2R-G protein coupling, or the deactivation kinetics of D2R-activated G protein signals. The latter data suggest that the interactions between D2R and Gβ5 are not mediated by endogenously expressed R7 RGS proteins.
Collapse
Affiliation(s)
- J. Christopher Octeau
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Joseph M. Schrader
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Meenakshi Sharma
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Christopher Aiudi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ching-Kang Chen
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Abraham Kovoor
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail: (AK); (JC)
| | - Jeremy Celver
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail: (AK); (JC)
| |
Collapse
|
44
|
Ostrovskaya O, Xie K, Masuho I, Fajardo-Serrano A, Lujan R, Wickman K, Martemyanov KA. RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling. eLife 2014; 3:e02053. [PMID: 24755289 PMCID: PMC3988575 DOI: 10.7554/elife.02053] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the hippocampus, the inhibitory neurotransmitter GABA shapes the activity of the output pyramidal neurons and plays important role in cognition. Most of its inhibitory effects are mediated by signaling from GABAB receptor to the G protein-gated Inwardly-rectifying K+ (GIRK) channels. Here, we show that RGS7, in cooperation with its binding partner R7BP, regulates GABABR-GIRK signaling in hippocampal pyramidal neurons. Deletion of RGS7 in mice dramatically sensitizes GIRK responses to GABAB receptor stimulation and markedly slows channel deactivation kinetics. Enhanced activity of this signaling pathway leads to decreased neuronal excitability and selective disruption of inhibitory forms of synaptic plasticity. As a result, mice lacking RGS7 exhibit deficits in learning and memory. We further report that RGS7 is selectively modulated by its membrane anchoring subunit R7BP, which sets the dynamic range of GIRK responses. Together, these results demonstrate a novel role of RGS7 in hippocampal synaptic plasticity and memory formation. DOI:http://dx.doi.org/10.7554/eLife.02053.001 Neurons communicate with one another at junctions called synapses. The arrival of an electrical signal known as an action potential at the first cell causes molecules known as neurotransmitters to be released into the synapse. These molecules diffuse across the gap between the neurons and bind to receptors on the receiving cell. Some neurotransmitters, such as glutamate, activate cells when they bind to receptors, thus making it easier for the second neuron to ‘fire’ (i.e., to generate an action potential). By contrast, other neurotransmitters, such as GABA, usually make it harder for the second neuron to fire. Many of the effects of GABA involve a type of receptor called GABAB. When GABA binds to one of these receptors, a molecule called a G-protein is recruited to the receptor. This activates the G-protein, triggering a cascade of events inside the cell that lead ultimately to the opening of potassium ion channels, which as known as GIRKs, in the cell membrane. Positively charged potassium ions then leave the cell through these channels, and this makes it more difficult for the cell to fire. Now, Ostrovskaya et al. have revealed that a complex of three proteins regulates the interaction between GABAB receptors and GIRK channels. In neurons that lack either of these proteins, the receptors have less influence on GIRKs than in normal cells. Moreover, mice that lack one of the proteins (called RGS7) perform less well in various learning and memory tests: for example, they take longer than normal animals to learn the location of an escape platform in a water maze, or to retain a memory of a fearful event. By identifying the proteins that regulate the interaction between GABAB receptors and GIRKs, Ostrovskaya et al. have helped to unravel a key signaling cascade relevant to cognition. Given that GIRK channels have recently been implicated in Down’s syndrome, these insights may also increase understanding of cognitive impairments in neuropsychiatric disorders. DOI:http://dx.doi.org/10.7554/eLife.02053.002
Collapse
Affiliation(s)
- Olga Ostrovskaya
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Betke KM, Rose KL, Friedman DB, Baucum AJ, Hyde K, Schey KL, Hamm HE. Differential localization of G protein βγ subunits. Biochemistry 2014; 53:2329-43. [PMID: 24568373 PMCID: PMC4004276 DOI: 10.1021/bi500091p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein βγ subunits play essential roles in regulating cellular signaling cascades, yet little is known about their distribution in tissues or their subcellular localization. While previous studies have suggested specific isoforms may exhibit a wide range of distributions throughout the central nervous system, a thorough investigation of the expression patterns of both Gβ and Gγ isoforms within subcellular fractions has not been conducted. To address this, we applied a targeted proteomics approach known as multiple-reaction monitoring to analyze localization patterns of Gβ and Gγ isoforms in pre- and postsynaptic fractions isolated from cortex, cerebellum, hippocampus, and striatum. Particular Gβ and Gγ subunits were found to exhibit distinct regional and subcellular localization patterns throughout the brain. Significant differences in subcellular localization between pre- and postsynaptic fractions were observed within the striatum for most Gβ and Gγ isoforms, while others exhibited completely unique expression patterns in all four brain regions examined. Such differences are a prerequisite for understanding roles of individual subunits in regulating specific signaling pathways throughout the central nervous system.
Collapse
Affiliation(s)
- Katherine M Betke
- Department of Pharmacology, ‡Mass Spectrometry Research Center, §Department of Molecular Physiology and Biophysics, and ∥Department of Biochemistry, Vanderbilt University Medical Center , Nashville, Tennessee 37232-6600, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Cain MD, Vo BQ, Kolesnikov AV, Kefalov VJ, Culican SM, Kerschensteiner D, Blumer KJ. An allosteric regulator of R7-RGS proteins influences light-evoked activity and glutamatergic waves in the inner retina. PLoS One 2013; 8:e82276. [PMID: 24349243 PMCID: PMC3857278 DOI: 10.1371/journal.pone.0082276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
In the outer retina, G protein-coupled receptor (GPCR) signaling mediates phototransduction and synaptic transmission between photoreceptors and ON bipolar cells. In contrast, the functions of modulatory GPCR signaling networks in the inner retina are less well understood. We addressed this question by determining the consequences of augmenting modulatory Gi/o signaling driven by endogenous transmitters. This was done by analyzing the effects of genetically ablating the R7 RGS-binding protein (R7BP), a membrane-targeting protein and positive allosteric modulator of R7-RGS (regulator of the G protein signaling 7) family that deactivates Gi/oα subunits. We found that R7BP is expressed highly in starburst amacrine cells and retinal ganglion cells (RGCs). As indicated by electroretinography and multielectrode array recordings of adult retina, ablation of R7BP preserved outer retina function, but altered the firing rate and latency of ON RGCs driven by rods and cones but not rods alone. In developing retina, R7BP ablation increased the burst duration of glutamatergic waves whereas cholinergic waves were unaffected. This effect on glutamatergic waves did not result in impaired segregation of RGC projections to eye-specific domains of the dorsal lateral geniculate nucleus. R7BP knockout mice exhibited normal spatial contrast sensitivity and visual acuity as assessed by optomotor reflexes. Taken together these findings indicate that R7BP-dependent regulation of R7-RGS proteins shapes specific aspects of light-evoked and spontaneous activity of RGCs in mature and developing retina.
Collapse
Affiliation(s)
- Matthew D. Cain
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bradly Q. Vo
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan M. Culican
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kendall J. Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|