1
|
Weaver DR, Schaefer KG, King GM. Atomic force microscope kymograph analysis: A case study of two membrane proteins. Methods 2024; 223:83-94. [PMID: 38286332 DOI: 10.1016/j.ymeth.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
Kymograph analysis is employed across the biological atomic force microscopy (AFM) community to boost temporal resolution. The method is well suited for revealing protein dynamics at the single molecule level in near-native conditions. Yet, kymograph analysis comes with limitations that depend on several factors including protein geometry and instrumental drift. This work focuses on conformational dynamics of difficult-to-study sparse distributions of membrane proteins. We compare and contrast AFM kymograph analysis for two proteins, one of which (SecDF) exhibits conformational dynamics primarily in the vertical direction (normal to the membrane surface) and the other (Pgp) exhibits a combination of lateral dynamics and vertical motion. Common experimental issues are analyzed including translational and rotational drift. Conformational transition detection is evaluated via kymograph simulations followed by state detection algorithms. We find that kymograph analysis is largely robust to lateral drift. Displacement of the AFM line scan trajectory away from the protein center of mass by a few nanometers, roughly half of the molecule diameter, does not significantly affect transition detection nor generate undue dwell time errors. On the other hand, for proteins like Pgp that exhibit significant azimuthal maximum height dependence, rotational drift can potentially produce artifactual transitions. Measuring the height of a membrane protein protrusion is generally superior to measurement of width, confirming intuition based on vertical resolution superiority. In low signal-to-noise scenarios, common state detection algorithms struggle with transition detection as opposed to infinite hidden Markov models. AFM kymography represents a valuable addition to the membrane biophysics toolkit; continued hardware and software improvements are poised to expand the method's impact in the field.
Collapse
Affiliation(s)
- Dylan R Weaver
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA; Joint with Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA.
| |
Collapse
|
2
|
Walsh OD, Choi L, Sigdel KP. Effect of CM15 on Supported Lipid Bilayer Probed by Atomic Force Microscopy. MEMBRANES 2023; 13:864. [PMID: 37999350 PMCID: PMC10672887 DOI: 10.3390/membranes13110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Antimicrobial peptides are key components of the immune system. These peptides affect the membrane in various ways; some form nano-sized pores, while others only produce minor defects. Since these peptides are increasingly important in developing antimicrobial drugs, understanding the mechanism of their interactions with lipid bilayers is critical. Here, using atomic force microscopy (AFM), we investigated the effect of a synthetic hybrid peptide, CM15, on the membrane surface comprising E. coli polar lipid extract. Direct imaging of supported lipid bilayers exposed to various concentrations of the peptide revealed significant membrane remodeling. We found that CM15 interacts with supported lipid bilayers and forms membrane-spanning defects very quickly. It is found that CM15 is capable of remodeling both leaflets of the bilayer. For lower CM15 concentrations, punctate void-like defects were observed, some of which re-sealed themselves as a function of time. However, for CM15 concentrations higher than 5 µM, the defects on the bilayers became so widespread that they disrupted the membrane integrity completely. This work enhances the understanding of CM15 interactions with the bacterial lipid bilayer.
Collapse
Affiliation(s)
| | | | - Krishna P. Sigdel
- Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768, USA
| |
Collapse
|
3
|
Atomic Force Microscopy Reveals Complexity Underlying General Secretory System Activity. Int J Mol Sci 2022; 24:ijms24010055. [PMID: 36613499 PMCID: PMC9820662 DOI: 10.3390/ijms24010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus. Using AFM, the dynamic structure of membrane-external protein topography of Sec system components can be directly visualized with high spatial-temporal precision. This mini-review is focused on AFM imaging of the Sec system in near-native fluid conditions where activity can be maintained and biochemically verified. Angstrom-scale conformational changes of SecYEG are reported on 100 ms timescales in fluid lipid bilayers. The association of SecA with SecYEG, forming membrane-bound SecYEG/SecA translocases, is directly visualized. Recent work showing topographical aspects of the translocation process that vary with precursor species is also discussed. The data suggests that the Sec system does not employ a single translocation mechanism. We posit that differences in the spatial frequency distribution of hydrophobic content within precursor sequences may be a determining factor in mechanism selection. Precise AFM investigations of active translocases are poised to advance our currently vague understanding of the complicated macromolecular movements underlying protein export across membranes.
Collapse
|
4
|
Russell CM, Schaefer KG, Dixson A, Gray ALH, Pyron RJ, Alves DS, Moore N, Conley EA, Schuck RJ, White TA, Do TD, King GM, Barrera FN. The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells. eLife 2022; 11:e75490. [PMID: 36173096 PMCID: PMC9522247 DOI: 10.7554/elife.75490] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Candida albicans causes severe invasive candidiasis. C. albicans infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear. We reveal that CL forms membrane pores using a unique mechanism. Unexpectedly, CL readily assembled into polymers in solution. We propose that the basic structural unit in polymer formation is a CL oligomer, which is sequentially added into a string configuration that can close into a loop. CL loops appear to spontaneously insert into the membrane to become pores. A CL mutation (G4W) inhibited the formation of polymers in solution and prevented pore formation in synthetic lipid systems. Epithelial cell studies showed that G4W CL failed to activate the danger response pathway, a hallmark of the pathogenic effect of CL. These results indicate that CL polymerization in solution is a necessary step for the damage of cellular membranes. Analysis of CL pores by atomic force microscopy revealed co-existence of simple depressions and more complex pores, which are likely formed by CL assembled in an alternate oligomer orientation. We propose that this structural rearrangement represents a maturation mechanism that stabilizes pore formation to achieve more robust cellular damage. To summarize, CL uses a previously unknown mechanism to damage membranes, whereby pre-assembly of CL loops in solution leads to formation of membrane pores. Our investigation not only unravels a new paradigm for the formation of membrane pores, but additionally identifies CL polymerization as a novel therapeutic target to treat candidiasis.
Collapse
Affiliation(s)
- Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Andrew Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Amber LH Gray
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Robert J Pyron
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Nicholas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Elizabeth A Conley
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Ryan J Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Tommi A White
- Department of Biochemistry, University of MissouriColumbiaUnited States
- Electron Microscopy Core, University of MissouriColumbiaUnited States
| | - Thanh D Do
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Gavin M King
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| |
Collapse
|
5
|
The conformations and basal conformational dynamics of translocation factor SecDF vary with translocon SecYEG interaction. J Biol Chem 2022; 298:102412. [PMID: 36007614 PMCID: PMC9508474 DOI: 10.1016/j.jbc.2022.102412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The general secretory, or Sec, system is a primary protein export pathway from the cytosol of Escherichia coli and all eubacteria. Integral membrane protein complex SecDF is a translocation factor that enhances polypeptide secretion, which is driven by the Sec translocase, consisting of translocon SecYEG and ATPase SecA. SecDF is thought to utilize a proton gradient to effectively pull precursor proteins from the cytoplasm into the periplasm. Working models have been developed to describe the structure and function of SecDF, but important mechanistic questions remain unanswered. Atomic force microscopy (AFM) is a powerful technique for studying the dynamics of single-molecule systems including membrane proteins in near-native conditions. The sharp tip of the AFM provides direct access to membrane-external protein conformations. Here, we acquired AFM images and kymographs (∼100 ms resolution) to visualize SecDF protrusions in near-native supported lipid bilayers and compared the experimental data to simulated AFM images based on static structures. When studied in isolation, SecDF exhibited a stable and compact conformation close to the lipid bilayer surface, indicative of a resting state. Interestingly, upon SecYEG introduction, we observed changes in both SecDF conformation and conformational dynamics. The population of periplasmic protrusions corresponding to an intermediate form of SecDF, which is thought to be active in precursor protein handling, increased >9-fold. In conjunction, our dynamics measurements revealed an enhancement in the transition rate between distinct SecDF conformations when the translocon was present. Together, this work provides a novel vista of basal-level SecDF conformational dynamics in near-native conditions.
Collapse
|
6
|
Schaefer KG, Grau B, Moore N, Mingarro I, King GM, Barrera FN. Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax. Faraday Discuss 2021; 232:114-130. [PMID: 34549736 PMCID: PMC8712456 DOI: 10.1039/d0fd00070a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and small (height ∼ 16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interactions. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion.
Collapse
Affiliation(s)
- Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| | - Brayan Grau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Nicolas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
7
|
Marcuello C, Frempong GA, Balsera M, Medina M, Lostao A. Atomic Force Microscopy to Elicit Conformational Transitions of Ferredoxin-Dependent Flavin Thioredoxin Reductases. Antioxidants (Basel) 2021; 10:antiox10091437. [PMID: 34573070 PMCID: PMC8469568 DOI: 10.3390/antiox10091437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Flavin and redox-active disulfide domains of ferredoxin-dependent flavin thioredoxin reductase (FFTR) homodimers should pivot between flavin-oxidizing (FO) and flavin-reducing (FR) conformations during catalysis, but only FR conformations have been detected by X-ray diffraction and scattering techniques. Atomic force microscopy (AFM) is a single-molecule technique that allows the observation of individual biomolecules with sub-nm resolution in near-native conditions in real-time, providing sampling of molecular properties distributions and identification of existing subpopulations. Here, we show that AFM is suitable to evaluate FR and FO conformations. In agreement with imaging under oxidizing condition, only FR conformations are observed for Gloeobacter violaceus FFTR (GvFFTR) and isoform 2 of Clostridium acetobutylicum FFTR (CaFFTR2). Nonetheless, different relative dispositions of the redox-active disulfide and FAD-binding domains are detected for FR homodimers, indicating a dynamic disposition of disulfide domains regarding the central protein core in solution. This study also shows that AFM can detect morphological changes upon the interaction of FFTRs with their protein partners. In conclusion, this study paves way for using AFM to provide complementary insight into the FFTR catalytic cycle at pseudo-physiological conditions. However, future approaches for imaging of FO conformations will require technical developments with the capability of maintaining the FAD-reduced state within the protein during AFM scanning.
Collapse
Affiliation(s)
- Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Gifty Animwaa Frempong
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
| | - Mónica Balsera
- Department of Abiotic Stress, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain;
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-97-676-2476 (M.M.); +34-87-655-5357 (A.L.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-97-676-2476 (M.M.); +34-87-655-5357 (A.L.)
| |
Collapse
|
8
|
Chattrakun K, Schaefer KG, Chandler LS, Marsh BP, King GM. Atomic Force Microscopy Reveals Membrane Protein Activity at the Single Molecule Level. Methods Mol Biol 2021; 2302:81-99. [PMID: 33877624 DOI: 10.1007/978-1-0716-1394-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy has emerged as a valuable complementary technique in membrane structural biology. The apparatus is capable of probing individual membrane proteins in fluid lipid bilayers at room temperature with spatial resolution at the molecular length scale. Protein conformational dynamics are accessible over a range of biologically relevant timescales. This chapter presents methodology our group uses to achieve robust AFM image data of the General Secretory system, the primary pathway of protein export from the cytoplasm to the periplasm of E. coli. Emphasis is given to measuring and maintaining biochemical activity and to objective AFM image processing methods. For example, the biochemical assays can be used to determine chemomechanical coupling efficiency of surface adsorbed translocases. The Hessian blob algorithm and its extension to nonlocalized linear features, the line detection algorithm, provide automated feature delineations. Many of the methods discussed here can be applied to other membrane protein systems of interest.
Collapse
Affiliation(s)
- Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA
| | - Lucas S Chandler
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA
| | - Brendan P Marsh
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA.,Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
9
|
Winkler K, Karner A, Horner A, Hannesschlaeger C, Knyazev D, Siligan C, Zimmermann M, Kuttner R, Pohl P, Preiner J. Interaction of the motor protein SecA and the bacterial protein translocation channel SecYEG in the absence of ATP. NANOSCALE ADVANCES 2020; 2:3431-3443. [PMID: 36134293 PMCID: PMC9418451 DOI: 10.1039/d0na00427h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/27/2020] [Indexed: 06/16/2023]
Abstract
Translocation of many secretory proteins through the bacterial plasma membrane is facilitated by a complex of the SecYEG channel with the motor protein SecA. The ATP-free complex is unstable in detergent, raising the question how SecA may perform several rounds of ATP hydrolysis without being released from the membrane embedded SecYEG. Here we show that dual recognition of (i) SecYEG and (ii) vicinal acidic lipids confers an apparent nanomolar affinity. High-speed atomic force microscopy visualizes the complexes between monomeric SecA and SecYEG as being stable for tens of seconds. These long-lasting events and complementary shorter ones both give rise to single ion channel openings of equal duration. Furthermore, luminescence resonance energy transfer reveals two conformations of the SecYEG-SecA complex that differ in the protrusion depth of SecA's two-helix finger into SecYEG's aqueous channel. Such movement of the finger is in line with the power stroke mechanism of protein translocation.
Collapse
Affiliation(s)
- Klemens Winkler
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Andreas Karner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| | - Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | | | - Denis Knyazev
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Christine Siligan
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| |
Collapse
|
10
|
Chattrakun K, Hoogerheide DP, Mao C, Randall LL, King GM. Protein Translocation Activity in Surface-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12246-12256. [PMID: 31448613 PMCID: PMC10906442 DOI: 10.1021/acs.langmuir.9b01928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity. Employing the model translocase from the general secretory (Sec) system of Escherichia coli, here we quantify the activity via two biochemical assays in surface-supported bilayers. The first assesses ATP hydrolysis and the second assesses polypeptide translocation across the membrane via protection from added protease. Hydrolysis assays revealed distinct levels of activation ranging from medium (translocase-activated) to high (translocation-associated) that were similar to traditional solution experiments and further identified an adenosine triphosphatase population exhibiting characteristics of conformational hysteresis. Translocation assays revealed turn over numbers that were comparable to solution but with a 10-fold reduction in apparent rate constant. Despite differences in kinetics, the chemomechanical coupling (ATP hydrolyzed per residue translocated) only varied twofold on glass compared to solution. The activity changed with the topographic complexity of the underlying surface. Rough glass coverslips were favored over atomically flat mica, likely due to differences in frictional coupling between the translocating polypeptide and surface. Neutron reflectometry and AFM corroborated the biochemical measurements and provided structural characterization of the submembrane space and upper surface of the bilayer. Overall, the translocation activity was maintained for the surface-adsorbed Sec system, albeit with a slower rate-limiting step. More generally, polypeptide translocation activity measurements yield valuable quantitative metrics to assess the local environment about surface-supported lipid bilayers.
Collapse
Affiliation(s)
- Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Sanganna Gari RR, Chattrakun K, Marsh BP, Mao C, Chada N, Randall LL, King GM. Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers. SCIENCE ADVANCES 2019; 5:eaav9404. [PMID: 31206019 PMCID: PMC6561738 DOI: 10.1126/sciadv.aav9404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.
Collapse
Affiliation(s)
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
AFM-Based Force Spectroscopy Guided by Recognition Imaging: A New Mode for Mapping and Studying Interaction Sites at Low Lateral Density. Methods Protoc 2019; 2:mps2010006. [PMID: 31164590 PMCID: PMC6481044 DOI: 10.3390/mps2010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
Ligand binding to receptors is one of the most important regulatory elements in biology as it is the initiating step in signaling pathways and cascades. Thus, precisely localizing binding sites and measuring interaction forces between cognate receptor-ligand pairs leads to new insights into the molecular recognition involved in these processes. Here we present a detailed protocol about applying a technique, which combines atomic force microscopy (AFM)-based recognition imaging and force spectroscopy for studying the interaction between (membrane) receptors and ligands on the single molecule level. This method allows for the selection of a single receptor molecule reconstituted into a supported lipid membrane at low density, with the subsequent quantification of the receptor-ligand unbinding force. Based on AFM tapping mode, a cantilever tip carrying a ligand molecule is oscillated across a membrane. Topography and recognition images of reconstituted receptors are recorded simultaneously by analyzing the downward and upward parts of the oscillation, respectively. Functional receptor molecules are selected from the recognition image with nanometer resolution before the AFM is switched to the force spectroscopy mode, using positional feedback control. The combined mode allows for dynamic force probing on different pre-selected molecules. This strategy results in higher throughput when compared with force mapping. Applied to two different receptor-ligand pairs, we validated the presented new mode.
Collapse
|
13
|
Chada N, Chattrakun K, Marsh BP, Mao C, Bariya P, King GM. Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis. SCIENCE ADVANCES 2018; 4:eaat8797. [PMID: 30397644 PMCID: PMC6200364 DOI: 10.1126/sciadv.aat8797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/13/2018] [Indexed: 05/06/2023]
Abstract
SecA is the critical adenosine triphosphatase that drives preprotein transport through the translocon, SecYEG, in Escherichia coli. This process is thought to be regulated by conformational changes of specific domains of SecA, but real-time, real-space measurement of these changes is lacking. We use single-molecule atomic force microscopy (AFM) to visualize nucleotide-dependent conformations and conformational dynamics of SecA. Distinct topographical populations were observed in the presence of specific nucleotides. AFM investigations during basal adenosine triphosphate (ATP) hydrolysis revealed rapid, reversible transitions between a compact and an extended state at the ~100-ms time scale. A SecA mutant lacking the precursor-binding domain (PBD) aided interpretation. Further, the biochemical activity of SecA prepared for AFM was confirmed by tracking inorganic phosphate release. We conclude that ATP-driven dynamics are largely due to PBD motion but that other segments of SecA contribute to this motion during the transition state of the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Priya Bariya
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
- Corresponding author.
| |
Collapse
|
14
|
Sanganna Gari RR, Seelheim P, Marsh B, Kiessling V, Creutz CE, Tamm LK. Quaternary structure of the small amino acid transporter OprG from Pseudomonas aeruginosa. J Biol Chem 2018; 293:17267-17277. [PMID: 30237175 DOI: 10.1074/jbc.ra118.004461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes nosocomial infections. The P. aeruginosa outer membrane contains specific porins that enable substrate uptake, with the outer membrane protein OprG facilitating transport of small, uncharged amino acids. However, the pore size of an eight-stranded β-barrel monomer of OprG is too narrow to accommodate even the smallest transported amino acid, glycine, raising the question of how OprG facilitates amino acid uptake. Pro-92 of OprG is critically important for amino acid transport, with a P92A substitution inhibiting transport and the NMR structure of this variant revealing that this substitution produces structural changes in the barrel rim and restricts loop motions. OprG may assemble into oligomers in the outer membrane (OM) whose subunit interfaces could form a transport channel. Here, we explored the contributions of the oligomeric state and the extracellular loops to OprG's function. Using chemical cross-linking to determine the oligomeric structures of both WT and P92A OprG in native outer membranes and atomic force microscopy, and single-molecule fluorescence of the purified proteins reconstituted into lipid bilayers, we found that both protein variants form oligomers, supporting the notion that subunit interfaces in the oligomer could provide a pathway for amino acid transport. Furthermore, performing transport assays with loop-deleted OprG variants, we found that these variants also can transport small amino acids, indicating that the loops are not solely responsible for substrate transport. We propose that OprG functions as an oligomer and that conformational changes in the barrel-loop region might be crucial for its activity.
Collapse
Affiliation(s)
| | - Patrick Seelheim
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| | - Brendan Marsh
- the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 OWA, United Kingdom
| | - Volker Kiessling
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| | - Carl E Creutz
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Lukas K Tamm
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| |
Collapse
|
15
|
Sigdel KP, Wilt LA, Marsh BP, Roberts AG, King GM. The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy. Biochem Pharmacol 2018; 156:302-311. [PMID: 30121251 DOI: 10.1016/j.bcp.2018.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
The membrane-bound P-glycoprotein (Pgp) transporter plays a major role in human disease and drug disposition because of its ability to efflux a chemically diverse range of drugs through ATP hydrolysis and ligand-induced conformational changes. Deciphering these structural changes is key to understanding the molecular basis of transport and to developing molecules that can modulate efflux. Here, atomic force microscopy (AFM) is used to directly image individual Pgp transporter molecules in a lipid bilayer under physiological pH and ambient temperature. Analysis of the Pgp AFM images revealed "small" and "large" protrusions from the lipid bilayer with significant differences in protrusion height and volume. The geometry of these "small" and "large" protrusions correlated to the predicted extracellular (EC) and cytosolic (C) domains of the Pgp X-ray crystal structure, respectively. To assign these protrusions, simulated AFM images were produced from the Pgp X-ray crystal structures with membrane planes defined by three computational approaches, and a simulated 80 Å AFM cantilever tip. The theoretical AFM images of the EC and C domains had similar heights and volumes to the "small" and "large" protrusions in the experimental AFM images, respectively. The assignment of the protrusions in the AFM images to the EC and C domains was confirmed by changes in protrusion volume by Pgp-specific antibodies. The Pgp domains showed a considerable degree of conformational dynamics in time resolved AFM images. With this information, a model of Pgp conformational dynamics in a lipid bilayer is proposed within the context of the known Pgp X-ray crystal structures.
Collapse
Affiliation(s)
- K P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States
| | - L A Wilt
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - B P Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States
| | - A G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States.
| | - G M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States; Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
16
|
Pittman AE, Marsh BP, King GM. Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8393-8399. [PMID: 29933696 DOI: 10.1021/acs.langmuir.8b00804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Systematically evolved from the primary active component of bee venom, MelP5 is a lipophilic peptide with important physical properties that differ from wild-type melittin, including the ability to create large equilibrium pores in lipid bilayers at low peptide to lipid ratios. Self-assembly into stable membrane spanning pores makes MelP5 a promising candidate for future applications in the pharmaceutical arena. Despite significant interest, little is known about the mechanism by which MelP5 remodels the lipid bilayer upon binding. We demonstrate by direct atomic force microscope imaging of supported lipid bilayers in solution that MelP5 remodels 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) in one of two ways. It creates either highly localized voids in the bilayer or diffuse nonlocalized thinning. Thinning of the bilayer was measured to be 3.0 ± 1.4 Å (mean ± standard deviation) below the surface of the upper leaflet of the bilayer. Pores, defined as highly localized voids in the bilayer, exhibited several sizes. Approximately 20% of pores exhibited large footprint areas (47 ± 20 nm2) which appear capable of passing bulky macromolecules. The peptide-effected bilayer was observed to reversibly exchange between membrane-thinned and pore states in an apparent dynamic equilibrium. Analysis of time-lapsed images suggested upper and lower bounds (0.2 < τ < 180 s) on the characteristic time scale of transitions between the membrane-thinned and pore states. Moreover, pores were found to colocalize with membrane-thinned regions, a novel observation that is consistent with the notion of cooperativity among membrane-bound peptides when forming pores.
Collapse
|
17
|
Li S, Kim SY, Pittman AE, King GM, Wimley WC, Hristova K. Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved Family of Pore-Forming Peptides. J Am Chem Soc 2018; 140:6441-6447. [DOI: 10.1021/jacs.8b03026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sijia Li
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Y. Kim
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anna E. Pittman
- Physics and Astronomy, University of Missouri, Columbia, Missouri 65201, United States
| | - Gavin M. King
- Physics and Astronomy, University of Missouri, Columbia, Missouri 65201, United States
- Biochemistry, University of Missouri, Columbia, Missouri 65201, United States
| | - William C. Wimley
- Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Chowdhury SR, Lu HP. Probing Activated and Non-Activated Single Calmodulin Molecules under a Piconewton Compressive Force. Biochemistry 2018. [PMID: 29516736 DOI: 10.1021/acs.biochem.7b01283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interrogating the protein structure-function inter-relationship under a piconewton force manipulation has been highly promising and informative. Although protein conformational changes under pulling force manipulations have been extensively studied, protein conformational changes under a compressive force have not been explored in detail. Using our home-modified sensitive and high signal-to-noise atomic force microscopy (AFM) approach, we have applied a piconewton compressive force, manipulating a Calmodulin (CaM) molecule to characterize two different forms of CaM, the Ca2+-ligated activated form and the Ca2+ free non-activated form (apo-CaM). We observed sudden and spontaneous structural rupture of apo-CaM under compressive force applied by an AFM tip, though no such events were recorded in the case of Ca2+-ligated activated CaM form. The sudden spontaneous structural rupture under a piconewton force compression has never been reported before, which presents an unexplored function that is likely important for protein-protein interactions and cell signaling functions.
Collapse
Affiliation(s)
- S Roy Chowdhury
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| |
Collapse
|
19
|
Marsh BP, Chada N, Sanganna Gari RR, Sigdel KP, King GM. The Hessian Blob Algorithm: Precise Particle Detection in Atomic Force Microscopy Imagery. Sci Rep 2018; 8:978. [PMID: 29343783 PMCID: PMC5772630 DOI: 10.1038/s41598-018-19379-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/29/2017] [Indexed: 11/09/2022] Open
Abstract
Imaging by atomic force microscopy (AFM) offers high-resolution descriptions of many biological systems; however, regardless of resolution, conclusions drawn from AFM images are only as robust as the analysis leading to those conclusions. Vital to the analysis of biomolecules in AFM imagery is the initial detection of individual particles from large-scale images. Threshold and watershed algorithms are conventional for automatic particle detection but demand manual image preprocessing and produce particle boundaries which deform as a function of user-defined parameters, producing imprecise results subject to bias. Here, we introduce the Hessian blob to address these shortcomings. Combining a scale-space framework with measures of local image curvature, the Hessian blob formally defines particle centers and their boundaries, both to subpixel precision. Resulting particle boundaries are independent of user defined parameters, with no image preprocessing required. We demonstrate through direct comparison that the Hessian blob algorithm more accurately detects biomolecules than conventional AFM particle detection techniques. Furthermore, the algorithm proves largely insensitive to common imaging artifacts and noise, delivering a stable framework for particle analysis in AFM.
Collapse
Affiliation(s)
- Brendan P Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 OWA, United Kingdom
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Raghavendar Reddy Sanganna Gari
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America.,School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, United States of America
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America. .,Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, United States of America.
| |
Collapse
|
20
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
21
|
|
22
|
Koch S, de Wit JG, Vos I, Birkner JP, Gordiichuk P, Herrmann A, van Oijen AM, Driessen AJM. Lipids Activate SecA for High Affinity Binding to the SecYEG Complex. J Biol Chem 2016; 291:22534-22543. [PMID: 27613865 DOI: 10.1074/jbc.m116.743831] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Indexed: 11/06/2022] Open
Abstract
Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed predominantly by the Sec translocase. This system consists of the membrane-embedded protein-conducting channel SecYEG, the motor ATPase SecA, and the heterotrimeric SecDFyajC membrane protein complex. Previous studies suggest that anionic lipids are essential for SecA activity and that the N terminus of SecA is capable of penetrating the lipid bilayer. The role of lipid binding, however, has remained elusive. By employing differently sized nanodiscs reconstituted with single SecYEG complexes and comprising varying amounts of lipids, we establish that SecA gains access to the SecYEG complex via a lipid-bound intermediate state, whereas acidic phospholipids allosterically activate SecA for ATP-dependent protein translocation.
Collapse
Affiliation(s)
- Sabrina Koch
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials and
| | - Janny G de Wit
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials and
| | - Iuliia Vos
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials and
| | - Jan Peter Birkner
- the Single-molecule Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Pavlo Gordiichuk
- the Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, 9747 AG, Groningen, The Netherlands, and
| | - Andreas Herrmann
- the Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, 9747 AG, Groningen, The Netherlands, and
| | - Antoine M van Oijen
- the Single-molecule Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.,the School of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Arnold J M Driessen
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials and
| |
Collapse
|
23
|
Nagarajan Y, Rongala J, Luang S, Singh A, Shadiac N, Hayes J, Sutton T, Gilliham M, Tyerman SD, McPhee G, Voelcker NH, Mertens HDT, Kirby NM, Lee JG, Yingling YG, Hrmova M. A Barley Efflux Transporter Operates in a Na+-Dependent Manner, as Revealed by a Multidisciplinary Platform. THE PLANT CELL 2016; 28:202-18. [PMID: 26672067 PMCID: PMC4746678 DOI: 10.1105/tpc.15.00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/11/2015] [Indexed: 05/02/2023]
Abstract
Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na(+) ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na(+)-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na(+) ion binding site. Our data enhance the understanding of the permeation functions of Bot1.
Collapse
Affiliation(s)
- Yagnesh Nagarajan
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Jay Rongala
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sukanya Luang
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
| | - Nadim Shadiac
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Julie Hayes
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Tim Sutton
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Gordon McPhee
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nicolas H Voelcker
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Haydyn D T Mertens
- Small- and Wide-Angle X-Ray Scattering Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Nigel M Kirby
- Small- and Wide-Angle X-Ray Scattering Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Jung-Goo Lee
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
24
|
Chada N, Sigdel KP, Gari RRS, Matin TR, Randall LL, King GM. Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins. Sci Rep 2015; 5:12550. [PMID: 26228793 PMCID: PMC4521160 DOI: 10.1038/srep12550] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/02/2015] [Indexed: 12/01/2022] Open
Abstract
Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on microscope cover glass following a straight-forward cleaning procedure. Direct comparison between AFM data obtained on glass and on mica substrates show no major differences in image fidelity. Repeated association of the ATPase SecA with the cytoplasmic protrusion of SecYEG demonstrates that the translocon remains competent for binding after tens of minutes of continuous AFM imaging. This opens the door for precision long-timescale investigations of the active translocase in near-native conditions and, more generally, for integration of high resolution biological AFM with many powerful optical techniques that require non-birefringent substrates.
Collapse
Affiliation(s)
- Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | | | - Tina Rezaie Matin
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | - Linda L Randall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| | - Gavin M King
- 1] Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 USA [2] Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 USA
| |
Collapse
|
25
|
Miller DM, Gulbis JM. Engineering protocells: prospects for self-assembly and nanoscale production-lines. Life (Basel) 2015; 5:1019-53. [PMID: 25815781 PMCID: PMC4500129 DOI: 10.3390/life5021019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
The increasing ease of producing nucleic acids and proteins to specification offers potential for design and fabrication of artificial synthetic "organisms" with a myriad of possible capabilities. The prospects for these synthetic organisms are significant, with potential applications in diverse fields including synthesis of pharmaceuticals, sources of renewable fuel and environmental cleanup. Until now, artificial cell technology has been largely restricted to the modification and metabolic engineering of living unicellular organisms. This review discusses emerging possibilities for developing synthetic protocell "machines" assembled entirely from individual biological components. We describe a host of recent technological advances that could potentially be harnessed in design and construction of synthetic protocells, some of which have already been utilized toward these ends. More elaborate designs include options for building self-assembling machines by incorporating cellular transport and assembly machinery. We also discuss production in miniature, using microfluidic production lines. While there are still many unknowns in the design, engineering and optimization of protocells, current technologies are now tantalizingly close to the capabilities required to build the first prototype protocells with potential real-world applications.
Collapse
Affiliation(s)
- David M Miller
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| | - Jacqueline M Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| |
Collapse
|
26
|
Sigdel KP, Grayer JS, King GM. Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory. NANO LETTERS 2013; 13:5106-11. [PMID: 24099456 DOI: 10.1021/nl403423p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The prospect of a robust three-dimensional atomic force microscope (AFM) holds significant promise in nanoscience. Yet, in conventional AFM, the tip-sample interaction force vector is not directly accessible. We scatter a focused laser directly off an AFM tip apex to rapidly and precisely measure the tapping tip trajectory in three-dimensional space. This data also yields three-dimensional cantilever spring constants, effective masses, and hence, the tip-sample interaction force components via Newton's second law. Significant lateral forces representing 49 and 13% of the normal force (Fz = 152 ± 17 pN) were observed in common tapping mode conditions as a silicon tip intermittently contacted a glass substrate in aqueous solution; as a consequence, the direction of the force vector tilted considerably more than expected. When addressing the surface of a lipid bilayer, the behavior of the force components differed significantly from that observed on glass. This is attributed to the lateral mobility of the lipid membrane coupled with its elastic properties. Direct access to interaction components Fx, Fy, and Fz provides a more complete view of tip dynamics that underlie force microscope operation and can form the foundation of a three-dimensional AFM in a plurality of conditions.
Collapse
Affiliation(s)
- Krishna P Sigdel
- Department of Physics and Astronomy and ‡Joint with the Department of Biochemistry, University of Missouri-Columbia , Columbia, Missouri 65211
| | | | | |
Collapse
|
27
|
Identification of YidC residues that define interactions with the Sec Apparatus. J Bacteriol 2013; 196:367-77. [PMID: 24187090 DOI: 10.1128/jb.01095-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, a subset of membrane proteins insert into the membrane via the Sec apparatus with the assistance of the widely conserved essential membrane protein insertase YidC. After threading into the SecYEG translocon, transmembrane segments of nascent proteins are thought to exit the translocon via a lateral gate in SecY, where YidC facilitates their transfer into the lipid bilayer. Interactions between YidC and components of the Sec apparatus are critical to its function. The first periplasmic loop of YidC interacts directly with SecF. We sought to identify the regions or residues of YidC that interact with SecY or with additional components of the Sec apparatus other than SecDF. Using a synthetic lethal screen, we identified residues of YidC that, when mutated, led to dependence on SecDF for viability. Each residue identified is highly conserved among YidC homologs; most lie within transmembrane domains. Overexpression of SecY in the presence of two YidC mutants partially rescued viability in the absence of SecDF, suggesting that the corresponding wild-type YidC residues (G355 and M471) participate in interactions, direct or indirect, with SecY. Staphylococcus aureus YidC complemented depletion of YidC, but not of SecDF, in Escherichia coli. G355 of E. coli YidC is invariant in S. aureus YidC, suggesting that this highly conserved glycine serves a conserved function in interactions with SecY. This study demonstrates that transmembrane residues are critical in YidC interactions with the Sec apparatus and provides guidance on YidC residues of interest for future structure-function analyses.
Collapse
|
28
|
Kedrov A, Kusters I, Driessen AJM. Single-Molecule Studies of Bacterial Protein Translocation. Biochemistry 2013; 52:6740-54. [DOI: 10.1021/bi400913x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexej Kedrov
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Ilja Kusters
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
29
|
Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species. Proc Natl Acad Sci U S A 2013; 110:11815-20. [PMID: 23818593 DOI: 10.1073/pnas.1303289110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.
Collapse
|