1
|
Wu J, Lou YG, Yang XL, Wang R, Zhang R, Aa JY, Wang GJ, Xie Y. Silybin regulates P450s activity by attenuating endoplasmic reticulum stress in mouse nonalcoholic fatty liver disease. Acta Pharmacol Sin 2023; 44:133-144. [PMID: 35705686 DOI: 10.1038/s41401-022-00924-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
Cytochrome P450s are important phase I metabolic enzymes located on endoplasmic reticulum (ER) involved in the metabolism of endogenous and exogenous substances. Our previous study showed that a hepatoprotective agent silybin restored CYP3A expression in mouse nonalcoholic fatty liver disease (NAFLD). In this study we investigated how silybin regulated P450s activity during NAFLD. C57BL/6 mice were fed a high-fat-diet (HFD) for 8 weeks to induce NAFLD, and were administered silybin (50, 100 mg ·kg-1 ·d-1, i.g.) in the last 4 weeks. We showed that HFD intake induced hepatic steatosis and ER stress, leading to significant inhibition on the activity of five primary P450s including CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP3A in liver microsomes. These changes were dose-dependently reversed by silybin administration. The beneficial effects of silybin were also observed in TG-stimulated HepG2 cells in vitro. To clarify the underlying mechanism, we examined the components involved in the P450 catalytic system, membrane phospholipids and ER membrane fluidity, and found that cytochrome b5 (cyt b5) was significantly downregulated during ER stress, and ER membrane fluidity was also reduced evidenced by DPH polarization and lower polyunsaturated phospholipids levels. The increased ratios of NADP+/NADPH and PC/PE implied Ca2+ release and disruption of cellular Ca2+ homeostasis resulted from mitochondria dysfunction and cytochrome c (cyt c) release. The interaction between cyt c and cyt b5 under ER stress was an important reason for P450s activity inhibition. The effect of silybin throughout the whole course suggested that it regulated P450s activity through its anti-ER stress effect in NAFLD. Our results suggest that ER stress may be crucial for the inhibition of P450s activity in mouse NAFLD and silybin regulates P450s activity by attenuating ER stress.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun-Ge Lou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xu-le Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ran Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ji-Ye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang-Ji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Liu H, Fan H, He P, Zhuang H, Liu X, Chen M, Zhong W, Zhang Y, Zhen C, Li Y, Jiang H, Meng T, Xu Y, Zhao G, Feng D. Prohibitin 1 regulates mtDNA release and downstream inflammatory responses. EMBO J 2022; 41:e111173. [PMID: 36245295 PMCID: PMC9753472 DOI: 10.15252/embj.2022111173] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 01/15/2023] Open
Abstract
Exposure of mitochondrial DNA (mtDNA) to the cytosol activates innate immune responses. But the mechanisms by which mtDNA crosses the inner mitochondrial membrane are unknown. Here, we found that the inner mitochondrial membrane protein prohibitin 1 (PHB1) plays a critical role in mtDNA release by regulating permeability across the mitochondrial inner membrane. Loss of PHB1 results in alterations in mitochondrial integrity and function. PHB1-deficient macrophages, serum from myeloid-specific PHB1 KO (Phb1MyeKO) mice, and peripheral blood mononuclear cells from neonatal sepsis patients show increased interleukin-1β (IL-1β) levels. PHB1 KO mice are also intolerant of lipopolysaccharide shock. Phb1-depleted macrophages show increased cytoplasmic release of mtDNA and inflammatory responses. This process is suppressed by cyclosporine A and VBIT-4, which inhibit the mitochondrial permeability transition pore (mPTP) and VDAC oligomerization. Inflammatory stresses downregulate PHB1 expression levels in macrophages. Under normal physiological conditions, the inner mitochondrial membrane proteins, AFG3L2 and SPG7, are tethered to PHB1 to inhibit mPTP opening. Downregulation of PHB1 results in enhanced interaction between AFG3L2 and SPG7, mPTP opening, mtDNA release, and downstream inflammatory responses.
Collapse
Affiliation(s)
- Hao Liu
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Hualin Fan
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- Department of Cardiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of CardiologyHeyuan People's HospitalHeyuanChina
| | - Haixia Zhuang
- Department of AnesthesiologySecond Clinical College of Guangzhou Medical UniversityGuangzhouChina
| | - Xiao Liu
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Meiting Chen
- Emergency DepartmentThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenwei Zhong
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Yi Zhang
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Cien Zhen
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- Department of Cardiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yanling Li
- Emergency DepartmentThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huilin Jiang
- Emergency DepartmentThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Tian Meng
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Yiming Xu
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Guojun Zhao
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
| | - Du Feng
- Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Guangzhou Municipal and Guangdong Provincial Key hLaboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Hepatocyte growth factor protects pulmonary endothelial barrier against oxidative stress and mitochondria-dependent apoptosis. Chin Med J (Engl) 2022; 135:837-848. [PMID: 35671182 PMCID: PMC9276181 DOI: 10.1097/cm9.0000000000001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
5
|
Zhou J. Two potential molecular signaling pathways of the UFL1 gene to induce the endoplasmic reticulum stress and apoptosis of the ovarian granulosa cell. Med Hypotheses 2020; 145:110328. [PMID: 33035966 DOI: 10.1016/j.mehy.2020.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
Endoplasmic reticulum stress (ERS) is a crucial physiological and pathological process takes place in the endoplasmic reticulum that usually induced by various intracellular and extracellular factors. It causes multiple diseases, including breast cancer, hepatocellular carcinoma, and premature ovarian failure that mainly associates with the ovarian granulosa cells. To effectively alleviate and cure the ERS and following diseases, molecular signaling pathways that are responsible for inducing ERS must be deeply investigated. There are many intracellular pathways to initiate the ERS, among which, detailed molecular mechanism the UFM1-specific ligase 1 (UFL1) gene induced analogous ubiquitylation related pathway is still unclear. However, some researches have reported that the UFL1 gene is responsible for initiating the ERS in the ovarian granulosa cell and premature ovarian failure. In this article, a new, highly possible molecular signaling pathway is proposed and hoping to provide a unique aspect for the following researches about ERS, especially in the ovarian granulosa cell.
Collapse
Affiliation(s)
- Jingyang Zhou
- Class 182, Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, Jiangxi Province, People's Republic of China.
| |
Collapse
|
6
|
Hu C, Zhou G, Liu K, Yin W, Zhou L, Wang J, Chen L, Zuo S, Xie Y, Zuo X. CaMKII as a key regulator of contrast-induced nephropathy through mPTP opening in HK-2 cells. Cell Signal 2020; 75:109734. [PMID: 32791339 DOI: 10.1016/j.cellsig.2020.109734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 11/26/2022]
Abstract
Contrast-induced nephropathy (CIN), refers to acute kidney injury observed after administration of contrast media during angiographic or other medical procedures such as urography, and accounting for 12% of all causes of acute renal failure, but no specific prevention or treatment strategy exists for its obscure pathophysiology. The aim of our study was to explore the influence of calcium/calmodulin-dependent protein kinase II (CaMKII) in CIN by using HK-2 cells. Knockdown of CypD was achieved by lentivirus, and CaMKII overexpression by transfection with the plasmid. In this study, we have demonstrated that CypD-mediated mPTP opening triggered mitochondrial dysfunction and tubule cells apoptosis in CIN. We also found that iohexol treatment was associated with mitochondrial ROS overloading, ATP depletion and LDH release. Inhibition of CypD with the pharmacologic inhibitor or knockdown of CypD abrogated mPTP opening, oxidative stress, mitochondria damage, and cell apoptosis induced by iohexol. In addition, we found that inhibition of the CaMKII activity alleviated iohexol-induced CypD expression, whereas also decreased mPTP opening, oxidative stress, mitochondria damage, and cell apoptosis, similarly to the inhibition of CypD did. Moreover, CaMKII overexpression enhanced iohexol-induced mPTP opening, mitochondrial damage and renal tubular epithelial cells apoptosis. These findings first identified the novel role of CaMKII in iohexol-induced tubular cells apoptosis and delineated the CaMKII-CypD/mPTP pathway during contrast-induced tubular cell damage. Hence, these results could provide a new strategy for CIN protection.
Collapse
Affiliation(s)
- Can Hu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ge Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Wenjun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lingyun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jianglin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Linhua Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Shanru Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yueliang Xie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiaocong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
7
|
Fernandes M, Duplaquet L, Tulasne D. Proteolytic cleavages of MET: the divide-and-conquer strategy of a receptor tyrosine kinase. BMB Rep 2019. [PMID: 30670153 PMCID: PMC6507848 DOI: 10.5483/bmbrep.2019.52.4.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane-anchored full-length MET stimulated by its ligand HGF/SF induces various biological responses, including survival, growth, and invasion. This panel of responses, referred to invasive growth, is required for embryogenesis and tissue regeneration in adults. On the contrary, MET deregulation is associated with tumorigenesis in many kinds of cancer. In addition to its well-documented ligand-stimulated downstream signaling, the receptor can be cleaved by proteases such as secretases, caspases, and calpains. These cleavages are involved either in MET receptor inactivation or, more interestingly, in generating active fragments that can modify cell fate. For instance, MET fragments can promote cell death or invasion. Given a large number of proteases capable of cleaving MET, this receptor appears as a prototype of proteolytic-cleavage-regulated receptor tyrosine kinase. In this review, we describe and discuss the mechanisms and consequences, both physiological and pathological, of MET proteolytic cleavages.
Collapse
Affiliation(s)
- Marie Fernandes
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Leslie Duplaquet
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - David Tulasne
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| |
Collapse
|
8
|
Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Curr Top Microbiol Immunol 2019; 420:175-210. [PMID: 30128827 PMCID: PMC7134364 DOI: 10.1007/82_2018_124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.
Collapse
Affiliation(s)
- Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tao Huang
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Rebecca L McCloud
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Boobalan Pachaiyappan
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
9
|
Wang J, Tang Z, Zhang Y, Qiu C, Zhu L, Zhao N, Liu Z. Matrine alleviates AGEs- induced cardiac dysfunctions by attenuating calcium overload via reducing ryanodine receptor 2 activity. Eur J Pharmacol 2019; 842:118-124. [DOI: 10.1016/j.ejphar.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
|
10
|
Manterola A, Bernal-Chico A, Cipriani R, Ruiz A, Pérez-Samartín A, Moreno-Rodríguez M, Hsu KL, Cravatt BF, Brown JM, Rodríguez-Puertas R, Matute C, Mato S. Re-examining the potential of targeting ABHD6 in multiple sclerosis: Efficacy of systemic and peripherally restricted inhibitors in experimental autoimmune encephalomyelitis. Neuropharmacology 2018; 141:181-191. [DOI: 10.1016/j.neuropharm.2018.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
|
11
|
Szalai P, Parys JB, Bultynck G, Christensen SB, Nissen P, Møller JV, Engedal N. Nonlinear relationship between ER Ca 2+ depletion versus induction of the unfolded protein response, autophagy inhibition, and cell death. Cell Calcium 2018; 76:48-61. [PMID: 30261424 DOI: 10.1016/j.ceca.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) Ca2+ depletion activates the unfolded protein response (UPR), inhibits bulk autophagy and eventually induces cell death in mammalian cells. However, the extent and duration of ER Ca2+ depletion required is unknown. We instigated a detailed study in two different cell lines, using sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors to gradually reduce ER Ca2+ levels in a controlled manner. Remarkably, UPR induction (as assessed by expression analyses of UPR-regulated proteins) and autophagy inhibition (as assessed by analyses of effects on starvation-induced bulk autophagy) required substantially higher drug concentrations than those needed to strongly decrease total ER Ca2+ levels. In fact, even when ER Ca2+ levels were so low that we could hardly detect any release of Ca2+ upon challenge with ER Ca2+ purging agents, UPR was not induced, and starvation-induced bulk autophagy was still fully supported. Moreover, although we observed reduced cell proliferation at this very low level of ER Ca2+, cells could tolerate prolonged periods (days) without succumbing to cell death. Addition of increasing concentrations of extracellular EGTA also gradually depleted the ER of Ca2+, and, as with the SERCA inhibitors, EGTA-induced activation of UPR and cell death required higher EGTA concentrations than those needed to strongly reduce ER Ca2+ levels. We conclude that ER Ca2+ depletion-induced effects on UPR, autophagy and cell death require either an extreme general depletion of ER Ca2+ levels, or Ca2+ depletion in areas of the ER that have a higher resistance to Ca2+ drainage than the bulk of the ER.
Collapse
Affiliation(s)
- Paula Szalai
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Norway; Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | | | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (Pumpkin), Danish Research Foundation, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Jesper V Møller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Norway.
| |
Collapse
|
12
|
Shin M, Ware TB, Lee HC, Hsu KL. Lipid-metabolizing serine hydrolases in the mammalian central nervous system: endocannabinoids and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:907-921. [PMID: 30905349 DOI: 10.1016/j.bbalip.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small molecule substrates using a conserved activated serine nucleophile. The mammalian central nervous system (CNS) express a diverse repertoire of serine hydrolases that act as (phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and neurodegenerative disorders. This review briefly summarizes recent progress in understanding the biochemical and (patho)physiological roles of these lipid-metabolizing serine hydrolases in the mammalian CNS with a focus on serine hydrolases involved in the endocannabinoid system. The development and application of specific inhibitors for an individual serine hydrolase, if available, are also described. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
13
|
de Oliveira Souza A, Couto-Lima CA, Rosa Machado MC, Espreafico EM, Pinheiro Ramos RG, Alberici LC. Protective action of Omega-3 on paraquat intoxication in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1050-1063. [PMID: 28849990 DOI: 10.1080/15287394.2017.1357345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Paraquat (PQ) (1,1'-dimethyl-4-4'-bipyridinium dichloride) is the second most widely used herbicide worldwide; however, in countries different sales and distribution remain restricted. Chronic exposure to PQ leads to several diseases related to oxidative stress and mitochondrial dysfunctions including myocardial failure, cancer, and neurodegeneration and subsequently death depending upon the dose level. The aim of this study was to examine if diet supplementation with eicosapentaenoic and docosahexaenoic acids (EPA and DHA, omega-3 long-chain fatty acids) serves a protective mechanism against neuromuscular dysfunctions mediated by PQ using Drosophila melanogaster as a model with focus on mitochondrial metabolism. PQ ingestion (170 mg/kg b.w. for 3 d) resulted in a decreased life span and climbing ability in D. melanogaster. In the brain, PQ increased thioflavin fluorescence and reduced either 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) nuclei staining and neuronal nuclei protein (NeuN) positive neurons, indicating amyloid formation and neurodegenetation, respectively. In the thorax, PQ ingestion lowered citrate synthase activity and respiratory functions indicating a reduction in mitochondrial content. PQ elevated Ca2+/calmodulin-dependent protein kinase II (CaMKII) mRNA expression levels, indicative of high calcium influx from cytosol to mitochondrial matrix. In brain and thorax, PQ also increased hydrogen peroxide (H2O2) production and impaired acetylcholinesterase (AChE) activity. Concomitant EPA/DHA ingestion (0.31/0.19 mg/kg b.w.) protected D. melanogaster against PQ-induced toxicity preserving neuromuscular function and slowing down the rate of aging. In brain and thorax, these omega-3 fatty acids inhibited excess H2O2 production and restored AChE activity. EPA/DHA delayed amyloid deposition in the brain, and restored low citrate synthase activity and respiratory functions in the thorax. The effects in the thorax were attributed to stimulated mRNA expression level of genes involved either in mitochondrial dynamics or biogenesis promoted by EPA/DHA: dynamin-related protein (DRP1), mitochondrial assembly regulatory factor (MARF), mitochondrial dynamin like GTPase (OPA1), and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α). In conclusion, diet supplementation with EPA/DHA appears to protect D. melanogaster muscular and neuronal tissues against PQ intoxication.
Collapse
Affiliation(s)
- Anderson de Oliveira Souza
- a Institute of Health and Biotechnology, Federal University of Amazonas (UFAM) Estrada Coari-Mamiá 305 , CEP 69460-000 , Coari-AM , Brazil
- b Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo (FCFRP-USP) Avenida do Café s/nº , CEP 14040-903 , Ribeirão Preto-SP , Brazil
| | - Carlos Antônio Couto-Lima
- c Department of Molecular and Cell Biology , Faculty of Medicine of Ribeirão Preto (FMRP-USP) Avenida Bandeirantes 3900 , CEP 14049-900 , Ribeirão Preto-SP , Brazil
| | - Maiaro Cabral Rosa Machado
- c Department of Molecular and Cell Biology , Faculty of Medicine of Ribeirão Preto (FMRP-USP) Avenida Bandeirantes 3900 , CEP 14049-900 , Ribeirão Preto-SP , Brazil
| | - Enilza Maria Espreafico
- c Department of Molecular and Cell Biology , Faculty of Medicine of Ribeirão Preto (FMRP-USP) Avenida Bandeirantes 3900 , CEP 14049-900 , Ribeirão Preto-SP , Brazil
| | - Ricardo Guelerman Pinheiro Ramos
- c Department of Molecular and Cell Biology , Faculty of Medicine of Ribeirão Preto (FMRP-USP) Avenida Bandeirantes 3900 , CEP 14049-900 , Ribeirão Preto-SP , Brazil
| | - Luciane Carla Alberici
- b Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo (FCFRP-USP) Avenida do Café s/nº , CEP 14040-903 , Ribeirão Preto-SP , Brazil
| |
Collapse
|
14
|
Yun B, Lee H, Powell R, Reisdorph N, Ewing H, Gelb MH, Hsu KL, Cravatt BF, Leslie CC. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2. Biochem Biophys Res Commun 2017; 490:1226-1231. [PMID: 28684316 DOI: 10.1016/j.bbrc.2017.06.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/23/2023]
Abstract
The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H2O2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2.
Collapse
Affiliation(s)
- Bogeon Yun
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - HeeJung Lee
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - Roger Powell
- Department of Immunology, National Jewish Health, Denver, CO, 80206, USA
| | - Nichole Reisdorph
- Department of Immunology, National Jewish Health, Denver, CO, 80206, USA
| | - Heather Ewing
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA.
| |
Collapse
|
15
|
Ca 2+ ionophores are not suitable for inducing mPTP opening in murine isolated adult cardiac myocytes. Sci Rep 2017; 7:4283. [PMID: 28655872 PMCID: PMC5487341 DOI: 10.1038/s41598-017-04618-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
Abstract
Opening of the mitochondrial permeability transition pore (mPTP) plays a major role in cell death during cardiac ischaemia-reperfusion. Adult isolated rodent cardiomyocytes are valuable cells to study the effect of drugs targeting mPTP. This study investigated whether the use of Ca2+ ionophores (A23187, ionomycin and ETH129) represent a reliable model to study inhibition of mPTP opening in cardiomyocytes. We monitored mPTP opening using the calcein/cobalt fluorescence technique in adult rat and wild type or cyclophilin D (CypD) knock-out mice cardiomyocytes. Cells were either treated with Ca2+ ionophores or subjected to hypoxia followed by reoxygenation. The ionophores induced mPTP-dependent swelling in isolated mitochondria. A23187, but not ionomycin, induced a decrease in calcein fluorescence. This loss could not be inhibited by CypD deletion and was explained by a direct interaction between A23187 and cobalt. ETH129 caused calcein loss, mitochondrial depolarization and cell death but CypD deletion did not alleviate these effects. In the hypoxia-reoxygenation model, CypD deletion delayed both mPTP opening and cell death occurring at the time of reoxygenation. Thus, Ca2+ ionophores are not suitable to induce CypD-dependent mPTP opening in adult murine cardiomyocytes. Hypoxia-reoxygenation conditions appear therefore as the most reliable model to investigate mPTP opening in these cells.
Collapse
|
16
|
Yu YC, Kuang WB, Huang RZ, Fang YL, Zhang Y, Chen ZF, Ma XL. Design, synthesis and pharmacological evaluation of new 2-oxo-quinoline derivatives containing α-aminophosphonates as potential antitumor agents. MEDCHEMCOMM 2017; 8:1158-1172. [PMID: 30108826 DOI: 10.1039/c7md00098g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
A series of novel 2-oxo-quinoline derivatives containing α-aminophosphonates were designed and synthesized as antitumor agents. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay results demonstrated that some compounds exhibited moderate to high inhibitory activity against HepG2, SK-OV-3 and NCI-H460 tumor cell lines, and most compounds showed much lower cytotoxicity against HL-7702 normal cells than 5-FU and cisplatin. The action mechanism of representative compound 5b was investigated by fluorescence staining assay, flow cytometric analysis and western blot (WB) assay, which indicated that this compound induced apoptosis and G2/M phase arrest accompanied by an increase in the production of intracellular Ca2+ and reactive oxygen species (ROS) and affecting associated enzymes and genes.
Collapse
Affiliation(s)
- Yan-Cheng Yu
- College of Pharmacy , Guilin Medical University , Guilin 541004 , PR China . ; ; ; Tel: +86 773 5895132.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Wen-Bin Kuang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Ri-Zhen Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Yi-Lin Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Ye Zhang
- College of Pharmacy , Guilin Medical University , Guilin 541004 , PR China . ; ; ; Tel: +86 773 5895132.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China . .,Department of Chemistry & Pharmaceutical Science , Guilin Normal College , Guilin 541001 , PR China
| | - Zhen-Feng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , PR China .
| | - Xian-Li Ma
- College of Pharmacy , Guilin Medical University , Guilin 541004 , PR China . ; ; ; Tel: +86 773 5895132
| |
Collapse
|
17
|
Yun B, Lee H, Ewing H, Gelb MH, Leslie CC. Off-target effect of the cPLA2α inhibitor pyrrophenone: Inhibition of calcium release from the endoplasmic reticulum. Biochem Biophys Res Commun 2016; 479:61-6. [PMID: 27620490 DOI: 10.1016/j.bbrc.2016.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/10/2023]
Abstract
Cytosolic phospholipase A2α (cPLA2α) mediates agonist-induced release of arachidonic acid from membrane phospholipid for production of eicosanoids. The activation of cPLA2α involves increases in intracellular calcium, which binds to the C2 domain and promotes cPLA2α translocation from the cytosol to membrane to access substrate. The cell permeable pyrrolidine-containing cPLA2α inhibitors including pyrrophenone have been useful to understand cPLA2α function. Although this serine hydrolase inhibitor does not inhibit other PLA2s or downstream enzymes that metabolize arachidonic acid, we reported that it blocks increases in mitochondrial calcium and cell death in lung fibroblasts. In this study we used the calcium indicators G-CEPIA1er and CEPIA2mt to compare the effect of pyrrophenone in regulating calcium levels in the endoplasmic reticulum (ER) and mitochondria in response to A23187 and receptor stimulation. Pyrrophenone blocked calcium release from the ER and concomitant increases in mitochondrial calcium in response to stimulation by ATP, serum and A23187. In contrast, ER calcium release induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin was not blocked by pyrrophenone suggesting specificity for the calcium release pathway. As a consequence of blocking calcium mobilization, pyrrophenone inhibited serum-stimulated translocation of the cPLA2α C2 domain to Golgi. The ability of pyrrophenone to block ER calcium release is an off-target effect since it occurs in fibroblasts lacking cPLA2α. The results implicate a serine hydrolase in regulating ER calcium release and highlight the importance of careful dose-response studies with pyrrophenone to study cPLA2α function.
Collapse
Affiliation(s)
- Bogeon Yun
- Department of Pediatrics, National Jewish Health, 1400 Jackson St., Denver, CO 80206, USA
| | - HeeJung Lee
- Department of Pediatrics, National Jewish Health, 1400 Jackson St., Denver, CO 80206, USA
| | - Heather Ewing
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Christina C Leslie
- Department of Pediatrics, National Jewish Health, 1400 Jackson St., Denver, CO 80206, USA.
| |
Collapse
|
18
|
Doczi J, Torocsik B, Echaniz-Laguna A, Mousson de Camaret B, Starkov A, Starkova N, Gál A, Molnár MJ, Kawamata H, Manfredi G, Adam-Vizi V, Chinopoulos C. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells. Sci Rep 2016; 6:26700. [PMID: 27221760 PMCID: PMC4879635 DOI: 10.1038/srep26700] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/09/2016] [Indexed: 01/03/2023] Open
Abstract
The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT’s voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the ‘thinness ratio’ and the ‘cobalt-calcein’ technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca2+ levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient.
Collapse
Affiliation(s)
- Judit Doczi
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary.,MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| | - Beata Torocsik
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary
| | - Andoni Echaniz-Laguna
- Département de Neurologie, Hôpitaux Universitaires, Hôpital de Hautepierre, 67098 Strasbourg cedex, France
| | - Bénédicte Mousson de Camaret
- Service des Maladies Héréditaires du Métabolisme, Centre de Biologie et de Pathologie Est, CHU Lyon, 69677 Bron cedex, France
| | - Anatoly Starkov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Natalia Starkova
- Icahn School of Medicine at Mount Sinai, Department of Hematology and Medical Oncology, New York, NY 10029, USA
| | - Aniko Gál
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1083, Hungary
| | - Mária J Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1083, Hungary
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary.,MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| |
Collapse
|
19
|
Janssen LJ, Mukherjee S, Ask K. Calcium Homeostasis and Ionic Mechanisms in Pulmonary Fibroblasts. Am J Respir Cell Mol Biol 2015; 53:135-48. [PMID: 25785898 DOI: 10.1165/rcmb.2014-0269tr] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibroblasts are key cellular mediators of many chronic interstitial lung diseases, including idiopathic pulmonary fibrosis, scleroderma, sarcoidosis, drug-induced interstitial lung disease, and interstitial lung disease in connective tissue disease. A great deal of effort has been expended to understand the signaling mechanisms underlying the various cellular functions of fibroblasts. Recently, it has been shown that Ca(2+) oscillations play a central role in the regulation of gene expression in human pulmonary fibroblasts. However, the mechanisms whereby cytosolic [Ca(2+)] are regulated and [Ca(2+)] oscillations transduced are both poorly understood. In this review, we present the general concepts of [Ca(2+)] homeostasis, of ionic mechanisms responsible for various Ca(2+) fluxes, and of regulation of gene expression by [Ca(2+)]. In each case, we then also summarize the original findings that pertain specifically to pulmonary fibroblasts. From these data, we propose an overall signaling cascade by which excitation of the fibroblasts triggers pulsatile release of internally sequestered Ca(2+), which, in turn, activates membrane conductances, including voltage-dependent Ca(2+) influx pathways. Collectively, these events produce recurring Ca(2+) oscillations, the frequency of which is transduced by Ca(2+)-dependent transcription factors, which, in turn, orchestrate a variety of cellular events, including proliferation, synthesis/secretion of extracellular matrix proteins, autoactivation (production of transforming growth factor-β), and transformation into myofibroblasts. That unifying hypothesis, in turn, allows us to highlight several specific cellular targets and therapeutic intervention strategies aimed at controlling unwanted pulmonary fibrosis. The relationships between Ca(2+) signaling events and the unfolded protein response and apoptosis are also explored.
Collapse
Affiliation(s)
- Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Roy S, Šileikytė J, Schiavone M, Neuenswander B, Argenton F, Aubé J, Hedrick MP, Chung TDY, Forte MA, Bernardi P, Schoenen FJ. Discovery, Synthesis, and Optimization of Diarylisoxazole-3-carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem 2015; 10:1655-71. [PMID: 26286375 DOI: 10.1002/cmdc.201500284] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/23/2023]
Abstract
The mitochondrial permeability transition pore (mtPTP) is a Ca(2+) -requiring mega-channel which, under pathological conditions, leads to the deregulated release of Ca(2+) and mitochondrial dysfunction, ultimately resulting in cell death. Although the mtPTP is a potential therapeutic target for many human pathologies, its potential as a drug target is currently unrealized. Herein we describe an optimization effort initiated around hit 1, 5-(3-hydroxyphenyl)-N-(3,4,5-trimethoxyphenyl)isoxazole-3-carboxamide, which was found to possess promising inhibitory activity against mitochondrial swelling (EC50 <0.39 μM) and showed no interference on the inner mitochondrial membrane potential (rhodamine 123 uptake EC50 >100 μM). This enabled the construction of a series of picomolar mtPTP inhibitors that also potently increase the calcium retention capacity of the mitochondria. Finally, the therapeutic potential and in vivo efficacy of one of the most potent analogues, N-(3-chloro-2-methylphenyl)-5-(4-fluoro-3-hydroxyphenyl)isoxazole-3-carboxamide (60), was validated in a biologically relevant zebrafish model of collagen VI congenital muscular dystrophies.
Collapse
Affiliation(s)
- Sudeshna Roy
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA)
| | - Justina Šileikytė
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, 35131 (Italy)
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, 35131 (Italy)
| | - Benjamin Neuenswander
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA)
| | | | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA)
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037 (USA)
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037 (USA)
| | - Michael A Forte
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239 (USA).
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, 35131 (Italy).
| | - Frank J Schoenen
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA).
| |
Collapse
|
21
|
Necrosis- and apoptosis-related Met cleavages have divergent functional consequences. Cell Death Dis 2015; 6:e1769. [PMID: 25996296 PMCID: PMC4669710 DOI: 10.1038/cddis.2015.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 01/06/2023]
Abstract
Upon activation by its ligand hepatocyte growth factor/scatter factor, the receptor tyrosine kinase Met promotes survival, proliferation, and migration of epithelial cells during embryogenesis. Deregulated Met signaling can also promote cancer progression and metastasis. Met belongs to the functional family of dependence receptors whose activity switches from pro-survival to pro-apoptotic during apoptosis upon caspase cleavage. Although apoptosis resistance is a hallmark of cancer cells, some remain sensitive to other cell death processes, including necrosis induced by calcium stress. The role and fate of Met during necrotic cell death are unknown. Following treatment with calcium ionophores, cell lines and primary cells undergo necrosis, and the full-length Met receptor is efficiently degraded. This degradation is achieved by double cleavage of Met in its extracellular domain by a metalloprotease of the A disintegrin and metalloproteinase (ADAM) family and in its intracellular domain by calpains (calcium-dependent proteases). These cleavages separate the Met extracellular region from its kinase domain, thus preventing Met activity and its potential pro-survival activity. Although the intracellular fragment is very similar to the fragment generated by caspases, it displays no pro-apoptotic property, likely because of the presence of the last few amino acids of Met, known to inhibit this pro-apoptotic function. The fragments identified here are observed in lung tumors overexpressing the Met receptor, along with fragments previously identified, suggesting that proteolytic cleavages of Met are involved in its degradation in tumor tissues. Thus, Met is a modulator of necrosis, able to protect cells when activated by its ligand but efficiently degraded by proteolysis when this process is engaged.
Collapse
|
22
|
Rousseau M, Naika GS, Perron J, Jacques F, Gelb MH, Boilard E. Study of the role of cytosolic phospholipase A2 alpha in eicosanoid generation and thymocyte maturation in the thymus. PLoS One 2015; 10:e0126204. [PMID: 25969996 PMCID: PMC4430275 DOI: 10.1371/journal.pone.0126204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/30/2015] [Indexed: 11/29/2022] Open
Abstract
The thymus is a primary lymphoid organ, home of maturation and selection of thymocytes for generation of functional T-cells. Multiple factors are involved throughout the different stages of the maturation process to tightly regulate T-cell production. The metabolism of arachidonic acid by cyclooxygenases, lipoxygenases and specific isomerases generates eicosanoids, lipid mediators capable of triggering cellular responses. In this study, we determined the profile of expression of the eicosanoids present in the mouse thymus at different stages of thymocyte development. As the group IVA cytosolic phospholipase A2 (cPLA2α) catalyzes the hydrolysis of phospholipids, thereby generating arachidonic acid, we further verified its contribution by including cPLA2α deficient mice to our investigations. We found that a vast array of eicosanoids is expressed in the thymus, which expression is substantially modulated through thymocyte development. The cPLA2α was dispensable in the generation of most eicosanoids in the thymus and consistently, the ablation of the cPLA2α gene in mouse thymus and the culture of thymuses from human newborns in presence of the cPLA2α inhibitor pyrrophenone did not impact thymocyte maturation. This study provides information on the eicosanoid repertoire present during thymocyte development and suggests that thymocyte maturation can occur independently of cPLA2α.
Collapse
Affiliation(s)
- Matthieu Rousseau
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
| | - Gajendra S. Naika
- Department of Chemistry, University of Washington, Seattle, WA, the United States of America
| | - Jean Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
| | - Frederic Jacques
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, WA, the United States of America
| | - Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
- * E-mail:
| |
Collapse
|
23
|
Joiner MLA, Koval OM. CaMKII and stress mix it up in mitochondria. Front Pharmacol 2014; 5:67. [PMID: 24822046 PMCID: PMC4013469 DOI: 10.3389/fphar.2014.00067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022] Open
Abstract
CaMKII is a newly discovered resident of mitochondria in the heart. Mitochondrial CaMKII promotes poor outcomes after heart injury from a number of pathological conditions, including myocardial infarction (MI), ischemia reperfusion (IR), and stress from catecholamine stimulation. A study using the inhibitor of CaMKII, CaMKIIN, with expression delimited to myocardial mitochondria, indicates that an underlying cause of heart disease results from the opening of the mitochondrial permeability transition pore (mPTP). Evidence from electrophysiological and other experiments show that CaMKII inhibition likely suppresses mPTP opening by reducing Ca2+ entry into mitochondria. However, we expect other proteins involved in Ca2+ signaling in the mitochondria are affected with CaMKII inhibition. Several outstanding questions remain for CaMKII signaling in heart mitochondria. Most importantly, how does CaMKII, without the recognized N-terminal mitochondrial targeting sequence transfer to mitochondria?
Collapse
Affiliation(s)
| | - Olha M Koval
- Internal Medicine/Cardiology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
24
|
Weisthal S, Keinan N, Ben-Hail D, Arif T, Shoshan-Barmatz V. Ca(2+)-mediated regulation of VDAC1 expression levels is associated with cell death induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2270-81. [PMID: 24704533 DOI: 10.1016/j.bbamcr.2014.03.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/07/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca(2+) across the OMM and because Ca(2+) has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca(2+) levels ([Ca(2)(+)]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca(2+) and induce VDAC1 over-expression. Direct elevation of [Ca(2+)]i by the Ca(2+)-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca(2+)]i using the cell-permeable Ca(2+)-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca(2+)]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca(2+)-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca(2+)]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca(2+) promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Shira Weisthal
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nurit Keinan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Danya Ben-Hail
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|