1
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Moriggi M, Ruggiero L, Torretta E, Zoppi D, Arosio B, Ferri E, Castegna A, Fiorillo C, Gelfi C, Capitanio D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants (Basel) 2024; 13:1406. [PMID: 39594549 PMCID: PMC11591206 DOI: 10.3390/antiox13111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Dario Zoppi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy;
| | - Evelyn Ferri
- IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Environment, University of Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy;
| | - Chiara Fiorillo
- Child Neuropsychiatric Unit, IRCCS Istituto Giannina Gaslini, DINOGMI-University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| |
Collapse
|
3
|
Arnab MKH, Islam MR, Rahman MS. A comprehensive review on phytochemicals in the treatment and prevention of pancreatic cancer: Focusing on their mechanism of action. Health Sci Rep 2024; 7:e2085. [PMID: 38690008 PMCID: PMC11056788 DOI: 10.1002/hsr2.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background and Aims Pancreatic cancer develops in the normal tissues of the pancreas from malignant cells. The chance of recovery is not good, and the chance of survival 5 years following diagnosis is quite low. Pancreatic cancer treatment strategies such as radiotherapy and chemotherapy had relatively low success rates. Therefore, the present study aims to explore new therapies for treating pancreatic cancer. Methods The present study searched for information about pancreatic cancer pathophysiology, available treatment options; and their comparative benefits and challenges. Aiming to identify potential alternative therapeutics, this comprehensive review analyzed information from renowned databases such as Scopus, PubMed, and Google Scholar. Results In recent years, there has been a rise in interest in the possibility that natural compounds could be used as treatments for cancer. Cannabinoids, curcumin, quercetin, resveratrol, and triptolide are some of the anticancer phytochemicals now used to manage pancreatic cancer. The above compounds are utilized by inhibiting or stimulating biological pathways such as apoptosis, autophagy, cell growth inhibition or reduction, oxidative stress, epithelial-mesenchymal transformation, and increased resistance to chemotherapeutic drugs in the management of pancreatic cancer. Conclusion Right now, surgery is the only therapeutic option for patients with pancreatic cancer. However, most people who get sick have been diagnosed too late to benefit from potentially effective surgery. Alternative medications, like natural compounds and herbal medicines, are promising complementary therapies for pancreatic cancer. Therefore, we recommend large-scale standardized clinical research for the investigation of natural compounds to ensure their consistency and comparability in pancreatic cancer treatment.
Collapse
|
4
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Duan H, Zhang Y, Qiu H, Fu X, Liu C, Zang X, Xu A, Wu Z, Li X, Zhang Q, Zhang Z, Cui F. Machine learning-based prediction model for distant metastasis of breast cancer. Comput Biol Med 2024; 169:107943. [PMID: 38211382 DOI: 10.1016/j.compbiomed.2024.107943] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/10/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Breast cancer is the most prevalent malignancy in women. Advanced breast cancer can develop distant metastases, posing a severe threat to the life of patients. Because the clinical warning signs of distant metastasis are manifested in the late stage of the disease, there is a need for better methods of predicting metastasis. METHODS First, we screened breast cancer distant metastasis target genes by performing difference analysis and weighted gene co-expression network analysis (WGCNA) on the selected datasets, and performed analyses such as GO enrichment analysis on these target genes. Secondly, we screened breast cancer distant metastasis target genes by LASSO regression analysis and performed correlation analysis and other analyses on these biomarkers. Finally, we constructed several breast cancer distant metastasis prediction models based on Logistic Regression (LR) model, Random Forest (RF) model, Support Vector Machine (SVM) model, Gradient Boosting Decision Tree (GBDT) model and eXtreme Gradient Boosting (XGBoost) model, and selected the optimal model from them. RESULTS Several 21-gene breast cancer distant metastasis prediction models were constructed, with the best performance of the model constructed based on the random forest model. This model accurately predicted the emergence of distant metastases from breast cancer, with an accuracy of 93.6 %, an F1-score of 88.9 % and an AUC value of 91.3 % on the validation set. CONCLUSION Our findings have the potential to be translated into a point-of-care prognostic analysis to reduce breast cancer mortality.
Collapse
Affiliation(s)
- Hao Duan
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- Beidahuang Industry Group General Hospital, Harbin, 150001, China
| | - Haoye Qiu
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiuhao Fu
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Chunling Liu
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiaofeng Zang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Anqi Xu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ziyue Wu
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Xingfeng Li
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Qingchen Zhang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon 2024; 10:e24335. [PMID: 38293343 PMCID: PMC10826740 DOI: 10.1016/j.heliyon.2024.e24335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The need for naturally occurring constituents is driven by the rise in the cancer prevalence and the unpleasant side effects associated with chemotherapeutics. Triptolide, the primary active component of "Tripterygium Wilfordii", has exploited for biological mechanisms and therapeutic potential against various tumors. Based on the recent pre-clinical investigations, triptolide is linked to the induction of death of cancerous cells by triggering cellular apoptosis via inhibiting heat shock protein expression (HSP70), and cyclin dependent kinase (CDKs) by up regulating expression of P21. MKP1, histone methyl transferases and RNA polymerases have all recently identified as potential targets of triptolide in cells. Autophagy, AKT signaling pathway and various pathways involving targeted proteins such as A-disintegrin & metalloprotease-10 (ADAM10), Polycystin-2 (PC-2), dCTP pyro-phosphatase 1 (DCTP1), peroxiredoxin-I (Prx-I), TAK1 binding protein (TAB1), kinase subunit (DNA-PKcs) and the xeroderma-pigmentosum B (XPB or ERCC3) have been exploited. Besides that, triptolide is responsible for enhancing the effectiveness of various chemotherapeutics. In addition, several triptolide moieties, including minnelide and LLDT8, have progressed in investigations on humans for the treatment of cancer. Targeted strategies, such as triptolide conjugation with ligands or triptolide loaded nano-carriers, are efficient techniques to confront toxicities associated with triptolide. We expect and anticipate that advances in near future, regarding combination therapies of triptolide, might be beneficial against cancerous cells.
Collapse
Affiliation(s)
- Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiaojiang Li
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dawei Zhang
- Department of General Surgery Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|
7
|
Chin Y, Gumilar KE, Li XG, Tjokroprawiro BA, Lu CH, Lu J, Zhou M, Sobol RW, Tan M. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics 2023; 13:2281-2300. [PMID: 37153737 PMCID: PMC10157728 DOI: 10.7150/thno.82431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Heat Shock Factor 1 (HSF1) is a master regulator of heat shock responsive signaling. In addition to playing critical roles in cellular heat shock response, emerging evidence suggests that HSF1 also regulates a non-heat shock responsive transcriptional network to handle metabolic, chemical, and genetic stress. The function of HSF1 in cellular transformation and cancer development has been extensively studied in recent years. Due to important roles for HSF1 for coping with various stressful cellular states, research on HSF1 has been very active. New functions and molecular mechanisms underlying these functions have been continuously discovered, providing new targets for novel cancer treatment strategies. In this article, we review the essential roles and mechanisms of HSF1 action in cancer cells, focusing more on recently discovered functions and their underlying mechanisms to reflect the new advances in cancer biology. In addition, we emphasize new advances with regard to HSF1 inhibitors for cancer drug development.
Collapse
Affiliation(s)
- Yeh Chin
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Khanisyah E Gumilar
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Brahmana A. Tjokroprawiro
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Chien-Hsing Lu
- Department of Gynecology and Obstetrics, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
8
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
10
|
He X, Wang N, Zhang Y, Huang X, Wang Y. The therapeutic potential of natural products for treating pancreatic cancer. Front Pharmacol 2022; 13:1051952. [PMID: 36408249 PMCID: PMC9666876 DOI: 10.3389/fphar.2022.1051952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Pancreatic cancer is one of the most malignant tumors of the digestive tract, with the poor prognosis and low 5-year survival rate less than 10%. Although surgical resection and chemotherapy as gemcitabine (first-line treatment) has been applied to the pancreatic cancer patients, the overall survival rates of pancreatic cancer are quite low due to drug resistance. Therefore, it is of urgent need to develop alternative strategies for its treatment. In this review, we summarized the major herbal drugs and metabolites, including curcumin, triptolide, Panax Notoginseng Saponins and their metabolites etc. These compounds with antioxidant, anti-angiogenic and anti-metastatic activities can inhibit the progression and metastasis of pancreatic cancer. Expecting to provide comprehensive information of potential natural products, our review provides valuable information and strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xia He
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Department of Surgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Xiaobo Huang, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Xiaobo Huang, ; Yi Wang,
| |
Collapse
|
11
|
Mu L, Wu P, Zhang Y, Li S, Yang R, Wang S. Development of a novel oral complex lipid emulsion containing triptolide for targeting pancreatic cancer. Pharm Dev Technol 2022; 27:881-891. [PMID: 36154850 DOI: 10.1080/10837450.2022.2127767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Triptolide (TP), a diterpenoid triepoxide, exhibits strong anti-cancer activities, especially against pancreatic cancer, but its clinical application is limited by organ toxicity. TP was combined with diammonium glycyrrhizinate (DG), as a cytoprotective agent, in a novel oral complex lipid emulsion (TP/DG-CLE) to increase the therapeutic index of TP against pancreatic cancer. The emulsion was produced by subjecting phospholipid and active components to high shear conditions using high-pressure homogenization resulting in droplets of essentially neutral or small positive charge and consistent size below 200nm. Pharmacokinetic studies in Sprague Dawley rats revealed an AUC (0-8h) of TP following oral dosing of TP/DG-CLE that was 4-fold higher than that achieved for triptolide/diammonium glycyrrhizinate suspension, demonstrating significantly higher TP bioavailability and longer residence time in the bloodstream. Tissue distribution data obtained in mice demonstrated that TP/DG-CLE having a TP/DG weight ratio of 1:22.5 preferentially accumulated in the pancreas. Moreover, toxicology assays in rats provided indications of minor liver damage following daily administration of the emulsion for two weeks. Together these studies establish complex lipid emulsions containing triptolide and DG as a promising oral formulation for treatment of pancreatic cancer and establish a platform for developing new chemotherapeutic treatments.
Collapse
Affiliation(s)
- Liangyu Mu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Peiyao Wu
- Shenyang Pharmaceutical University, Shenyang, China.,Peking University, Beijing, China
| | - Ying Zhang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Shiqi Li
- Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Yang
- Shenyang Pharmaceutical University, Shenyang, China.,Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - ShuJun Wang
- Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
12
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
13
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
14
|
Mannino MP, Hart GW. The Beginner’s Guide to O-GlcNAc: From Nutrient Sensitive Pathway Regulation to Its Impact on the Immune System. Front Immunol 2022; 13:828648. [PMID: 35173739 PMCID: PMC8841346 DOI: 10.3389/fimmu.2022.828648] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/05/2022] [Indexed: 12/27/2022] Open
Abstract
The addition of N-acetyl glucosamine (GlcNAc) on the hydroxy group of serine/threonine residues is known as O-GlcNAcylation (OGN). The dynamic cycling of this monosaccharide on and off substrates occurs via O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminase (OGA) respectively. These enzymes are found ubiquitously in eukaryotes and genetic knock outs of the ogt gene has been found to be lethal in embryonic mice. The substrate scope of these enzymes is vast, over 15,000 proteins across 43 species have been identified with O-GlcNAc. OGN has been known to play a key role in several cellular processes such as: transcription, translation, cell signaling, nutrient sensing, immune cell development and various steps of the cell cycle. However, its dysregulation is present in various diseases: cancer, neurodegenerative diseases, diabetes. O-GlcNAc is heavily involved in cross talk with other post-translational modifications (PTM), such as phosphorylation, acetylation, and ubiquitination, by regulating each other’s cycling enzymes or directly competing addition on the same substrate. This crosstalk between PTMs can affect gene expression, protein localization, and protein stability; therefore, regulating a multitude of cell signaling pathways. In this review the roles of OGN will be discussed. The effect O-GlcNAc exerts over protein-protein interactions, the various forms of crosstalk with other PTMs, and its role as a nutrient sensor will be highlighted. A summary of how these O-GlcNAc driven processes effect the immune system will also be included.
Collapse
|
15
|
Su YH, Hsu TW, Chen HA, Su CM, Huang MT, Chuang TH, Leo Su J, Hsieh CL, Chiu CF. ERK-mediated transcriptional activation of Dicer is involved in gemcitabine resistance of pancreatic cancer. J Cell Physiol 2021; 236:4420-4434. [PMID: 33184874 DOI: 10.1002/jcp.30159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Gemcitabine has been a commonly used therapeutic agent for treatment of pancreatic cancer. In the clinic, a growing resistance to gemcitabine has been observed in patients with pancreatic cancer, and investigation of the underlying mechanism of gemcitabine resistance is urgently required. The microRNA (miRNA)-producing enzyme, Dicer, is crucial for the maturation of miRNAs, and is involved in clinical aggressiveness, poor prognosis, and survival outcomes in various cancers, however, the role of Dicer in acquired gemcitabine resistance of pancreatic cancer is still not clear. Here, we found that Dicer expression was significantly increased in gemcitabine-resistant PANC-1 (PANC-1/GEM) cells compared with parental PANC-1 cells and observed a high level of Dicer correlated with increased risk of pancreatic cancer. Suppression of Dicer obviously decreased gemcitabine resistance in PANC-1/GEM cells; consistently, overexpression of Dicer in PANC-1 cells increased gemcitabine resistance. Moreover, we identified that transcriptional factor Sp1 targeted the promoter region of Dicer and found ERK/Sp1 signaling regulated Dicer expression in PANC-1/GEM cells, as well as positively correlated with pancreatic cancer progression and suggest that targeting the ERK/Sp1/Dicer pathway has potential therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred NOD
- Mice, SCID
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcriptional Activation
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Wei Hsu
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - J Leo Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Ling Hsieh
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Triptolide impairs glycolysis by suppressing GATA4/Sp1/PFKP signaling axis in mouse Sertoli cells. Toxicol Appl Pharmacol 2021; 425:115606. [PMID: 34087332 DOI: 10.1016/j.taap.2021.115606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
Triptolide (TP), a primary bioactive ingredient isolated from the traditional Chinese herbal medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted great interest for its therapeutic biological activities in inflammation and autoimmune disease. However, its clinical use is limited by severe testicular toxicity, and the underlying mechanism has not been elucidated. Our preliminary evidence demonstrated that TP disrupted glucose metabolism and caused testicular toxicity. During spermatogenesis, Sertoli cells (SCs) provide lactate as an energy source to germ cells by glycolysis. The transcription factors GATA-binding protein 4 (GATA4) and specificity protein 1 (Sp1) can regulate glycolysis. Based on this evidence, we speculate that TP causes abnormal glycolysis in SCs by influencing the expression of the transcription factors GATA4 and Sp1. The mechanism of TP-induced testicular toxicity was investigated in vitro and in vivo. The data indicated that TP decreased glucose consumption, lactate production, and the mRNA levels of glycolysis-related transporters and enzymes. TP also downregulated the protein expression of the transcription factors GATA4 and Sp1, as well as the glycolytic enzyme phosphofructokinase platelet (PFKP). Phosphorylated GATA4 and nuclear GATA4 protein levels were reduced in a dose- and time-dependent manner after TP incubation. Similar effects were observed in shGata4-treated TM4 cells and BALB/c mice administered 0.4 mg/kg TP for 28 days, and glycolysis was also inhibited. Gata4 knockdown downregulated Sp1 and PFKP expression. Furthermore, the Sp1 inhibitor plicamycin inhibited PFKP protein levels in TM4 cells. In conclusion, TP inhibited GATA4-mediated glycolysis by suppressing Sp1-dependent PFKP expression in SCs and caused testicular toxicity.
Collapse
|
17
|
O-GlcNAcylation and O-GlcNAc Cycling Regulate Gene Transcription: Emerging Roles in Cancer. Cancers (Basel) 2021; 13:cancers13071666. [PMID: 33916244 PMCID: PMC8037238 DOI: 10.3390/cancers13071666] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (PTM) linking nutrient flux through the hexosamine biosynthetic pathway (HBP) to gene transcription. Mounting experimental and clinical data implicates aberrant O-GlcNAcylation in the development and progression of cancer. Herein, we discuss how alteration of O-GlcNAc-regulated transcriptional mechanisms leads to atypical gene expression in cancer. We discuss the challenges associated with studying O-GlcNAc function and present several new approaches for studies of O-GlcNAc-regulated transcription. Abstract O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar post-translational modification (PTM) of intracellular proteins linking nutrient flux through the Hexosamine Biosynthetic Pathway (HBP) to the control of cis-regulatory elements in the genome. Aberrant O-GlcNAcylation is associated with the development, progression, and alterations in gene expression in cancer. O-GlcNAc cycling is defined as the addition and subsequent removal of the modification by O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) provides a novel method for cells to regulate various aspects of gene expression, including RNA polymerase function, epigenetic dynamics, and transcription factor activity. We will focus on the complex relationship between phosphorylation and O-GlcNAcylation in the regulation of the RNA Polymerase II (RNAP II) pre-initiation complex and the regulation of the carboxyl-terminal domain of RNAP II via the synchronous actions of OGT, OGA, and kinases. Additionally, we discuss how O-GlcNAcylation of TATA-box binding protein (TBP) alters cellular metabolism. Next, in a non-exhaustive manner, we will discuss the current literature on how O-GlcNAcylation drives gene transcription in cancer through changes in transcription factor or chromatin remodeling complex functions. We conclude with a discussion of the challenges associated with studying O-GlcNAcylation and present several new approaches for studying O-GlcNAc regulated transcription that will advance our understanding of the role of O-GlcNAc in cancer.
Collapse
|
18
|
Liu T, Long T, Li H. Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor-κB-dependent pathway. Exp Ther Med 2021; 21:202. [PMID: 33500696 DOI: 10.3892/etm.2021.9635] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common cancer of the oral cavity. Curcumin (Cur), a naturally derived compound, is reported to have broad-spectrum anticancer activity and is considered as an effective nuclear factor-κB (NF-κB) inhibitor. The present study aimed to clarify the detailed molecular mechanism though which Cur regulates NF-κB pathway activity in OSCC. The viability of HSC3 and CAL33 cells following treatment with Cur was determined using a Cell Counting Kit-8 assay. The protein and mRNA expression of specificity protein 1 (Sp1), p65 and heat shock factor 1 (HSF1) was determined by western blotting and reverse transcription-quantitative PCR analysis, respectively. The NF-κB activity was measured by Dual-Luciferase reporter assay. Short hairpin RNA targeting Sp1 or control RNA was transfected into HSC3 cells using X-treme GENE HP DNA Transfection System. Colony formation assays were performed using crystal violet staining. The results demonstrated that Cur significantly inhibited the viability and colony formation ability of HSC3 and CAL33 cells. In addition, Cur decreased the expression of Sp1, p65 and HSF1 by suppressing their transcription levels. Cur decreased NF-κB activity in OSCC cells, and Sp1 downregulation enhanced the effect of Cur. The findings from the present study suggested that Cur may inhibit the proliferation of OSCC cells via a Sp1/NF-κB-dependent mechanism.
Collapse
Affiliation(s)
- Tian Liu
- Department of Stomatology, The Central Hospital of Wuhan, Wuhan, Hubei 430000, P.R. China
| | - Tian Long
- Department of Stomatology, The Central Hospital of Wuhan, Wuhan, Hubei 430000, P.R. China
| | - Haosen Li
- Department of Stomatology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
19
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Liu Y, Chen Q, Zhang N, Zhang K, Dou T, Cao Y, Liu Y, Li K, Hao X, Xie X, Li W, Ren Y, Zhang J. Proteomic profiling and genome-wide mapping of O-GlcNAc chromatin-associated proteins reveal an O-GlcNAc-regulated genotoxic stress response. Nat Commun 2020; 11:5898. [PMID: 33214551 PMCID: PMC7678849 DOI: 10.1038/s41467-020-19579-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
O-GlcNAc modification plays critical roles in regulating the stress response program and cellular homeostasis. However, systematic and multi-omics studies on the O-GlcNAc regulated mechanism have been limited. Here, comprehensive data are obtained by a chemical reporter-based method to survey O-GlcNAc function in human breast cancer cells stimulated with the genotoxic agent adriamycin. We identify 875 genotoxic stress-induced O-GlcNAc chromatin-associated proteins (OCPs), including 88 O-GlcNAc chromatin-associated transcription factors and cofactors (OCTFs), subsequently map their genomic loci, and construct a comprehensive transcriptional reprogramming network. Notably, genotoxicity-induced O-GlcNAc enhances the genome-wide interactions of OCPs with chromatin. The dynamic binding switch of hundreds of OCPs from enhancers to promoters is identified as a crucial feature in the specific transcriptional activation of genes involved in the adaptation of cancer cells to genotoxic stress. The OCTF nuclear respiratory factor 1 (NRF1) is found to be a key response regulator in O-GlcNAc-modulated cellular homeostasis. These results provide a valuable clue suggesting that OCPs act as stress sensors by regulating the expression of various genes to protect cancer cells from genotoxic stress. Protein O-GlcNAcylation is involved in regulating gene expression and maintaining cellular homeostasis. Here, the authors develop a chemical reporter-based strategy for the proteomic profiling and genome-wide mapping of genotoxic stress-induced O-GlcNAcylated chromatin-associated proteins.
Collapse
Affiliation(s)
- Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Nana Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Keren Zhang
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Tongyi Dou
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yu Cao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yimin Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Kun Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xinya Hao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xueqin Xie
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China.
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| |
Collapse
|
21
|
Liu HJ, Wang M, Hu X, Shi S, Xu P. Enhanced Photothermal Therapy through the In Situ Activation of a Temperature and Redox Dual-Sensitive Nanoreservoir of Triptolide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003398. [PMID: 32797711 PMCID: PMC7983299 DOI: 10.1002/smll.202003398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Indexed: 05/30/2023]
Abstract
Photothermal therapy (PTT) has attracted tremendous attention due to its noninvasiveness and localized treatment advantages. However, heat shock proteins (HSPs) associated self-preservation mechanisms bestow cancer cells thermoresistance to protect them from the damage of PTT. To minimize the thermoresistance of cancer cells and improve the efficacy of PTT, an integrated on-demand nanoplatform composed of a photothermal conversion core (gold nanorod, GNR), a cargo of a HSPs inhibitor (triptolide, TPL), a mesoporous silica based nanoreservoir, and a photothermal and redox di-responsive polymer shell is developed. The nanoplatform can be enriched in the tumor site, and internalized into cancer cells, releasing the encapsulated TPL under the trigger of intracellular elevated glutathione and near-infrared laser irradiation. Ultimately, the liberated TPL could diminish thermoresistance of cancer cells by antagonizing the PTT induced heat shock response via multiple mechanisms to maximize the PTT effect for cancer treatment.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Xiangxiang Hu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| |
Collapse
|
22
|
Targeting O-GlcNAcylation to develop novel therapeutics. Mol Aspects Med 2020; 79:100885. [PMID: 32736806 DOI: 10.1016/j.mam.2020.100885] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc) is an abundant post-translational modification (PTM) that modifies the serine or threonine residues of thousands of proteins in the nucleus, cytoplasm and mitochondria. Being a major "nutrient sensor" in cells, the O-GlcNAc pathway is sensitive to cellular metabolic states. Extensive crosstalk is observed between O-GlcNAcylation and protein phosphorylation. O-GlcNAc regulates protein functions at multiple levels, including enzymatic activity, transcriptional activity, subcellular localization, intermolecular interactions and degradation. Abnormal O-GlcNAcylation is associated with many human diseases including cancer, diabetes and neurodegenerative diseases. Though research on O-GlcNAc is still in its infantry, accumulating evidence suggest O-GlcNAcylation to be a promising therapeutic target. In this review, we briefly discuss the basic features of this PTM, the O-GlcNAc signaling pathway, its regulatory functions on different proteins, and its involvement in human diseases. We hope this review will provide insights to researchers who study human disease, as well as researchers who are interested in the fundamental roles of O-GlcNAcylation in all cells.
Collapse
|
23
|
Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, Giri B, Ferrantella A, Dudeja V, Saluja A, Banerjee S. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest 2020; 130:451-465. [PMID: 31613799 DOI: 10.1172/jci127515] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered to be a highly immunosuppressive and heterogenous neoplasm. Despite improved knowledge regarding the genetic background of the tumor and better understanding of the tumor microenvironment, immune checkpoint inhibitor therapy (targeting CTLA4, PD1, PDL1) has not been very successful against PDAC. The robust desmoplastic stroma, along with an extensive extracellular matrix (ECM) that is rich in hyaluronan, plays an integral role in this immune evasion. Hexosamine biosynthesis pathway (HBP), a shunt pathway of glycolysis, is a metabolic node in cancer cells that can promote survival pathways on the one hand and influence the hyaluronan synthesis in the ECM on the other. The rate-limiting enzyme of the pathway, glutamine-fructose amidotransferase 1 (GFAT1), uses glutamine and fructose 6-phosphate to eventually synthesize uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). In the current manuscript, we targeted this glutamine-utilizing enzyme by a small molecule glutamine analog (6-diazo-5-oxo-l-norleucine [DON]). Our results showed that DON decreased the self-renewal potential and metastatic ability of tumor cells. Further, treatment with DON decreased hyaluronan and collagen in the tumor microenvironment, leading to an extensive remodeling of the ECM and an increased infiltration of CD8+ T cells. Additionally, treatment with DON sensitized pancreatic tumors to anti-PD1 therapy, resulting in tumor regression and prolonged survival.
Collapse
|
24
|
Xie L, Zhao Y, Duan J, Fan S, Shu L, Liu H, Wang Y, Xu Y, Li Y. Integrated Proteomics and Metabolomics Reveal the Mechanism of Nephrotoxicity Induced by Triptolide. Chem Res Toxicol 2020; 33:1897-1906. [PMID: 32519852 DOI: 10.1021/acs.chemrestox.0c00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook F., has great potential in the treatment of autoimmune diseases. However, it has been found that the side effects of TP involve multiple organs and systems, of which the most serious side effects relate to the kidney. The mechanism of nephrotoxicity caused by TP requires further investigation. In the present study, we integrated proteomic and metabolomic methods to identify proteins and small molecule metabolites associated with TP-induced nephrotoxicity. There was a significant difference (p value <0.05) in the expression changes of 357 proteins for quantitative proteomics. In addition, high resolution metabolomic data showed significant changes in the levels of 9 metabolites, including hypoxanthine, PC(22:0/18:4), sphingosine, phenylalanine, etc. Finally, based on the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database for network analysis, it was determined that the 7 differentially expressed proteins were highly correlated with these 9 metabolites. Enrichment analysis revealed that the metabolic pathways involved purine and pyrimidine metabolism, glycerol and phospholipid metabolism, sphingolipid metabolism, and amino acid metabolism. The key target proteins were verified by Western blot technology, and the mechanism of TP-induced nephrotoxicity was further elucidated to provide a basis for safe and rational application.
Collapse
Affiliation(s)
- Lijuan Xie
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yiwei Zhao
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Jingyi Duan
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Simiao Fan
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Lexin Shu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| |
Collapse
|
25
|
Wu H, Rao Q, Ma GC, Yu XH, Zhang CE, Ma ZJ. Effect of Triptolide on Dextran Sodium Sulfate-Induced Ulcerative Colitis and Gut Microbiota in Mice. Front Pharmacol 2020; 10:1652. [PMID: 32063856 PMCID: PMC7000629 DOI: 10.3389/fphar.2019.01652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Triptolide is beneficial for the treatment of ulcerative colitis (UC), which is closely related to the gut microbiota. However, whether the therapeutic effects of triptolide involve the regulation of the gut microbiota is still unclear. In the present study, animal models of UC mice induced by dextran sodium sulfate (DSS) were established, the changes of gut microbiota in mice were detected by high-throughput sequencing. The effects of triptolide on DSS-induced UC mouse and its gut microbiota were studied. As a result, we found that triptolide exerted anti-inflammatory and therapeutic effects on UC mice. Sequencing results for the gut microbiota showed that the composition of the gut microbiota from DSS group was disordered as compared with that from the control group, consistent with a decrease in the abundance of flora. Triptolide treatment accelerated the recovery of the population of the gut microbiota and significantly improved the microbial diversity. At the phylum level, the population of Bacteroidetes decreased and that of Firmicutes increased. At the genus level, Bacteroides and Lachnospiraceae counts decreased. Thus, triptolide could regulate the composition of the gut microbiota, accelerate the recovery of microbiota, and exert good therapeutic effects in UC mice. Our results also revealed that fecal transplantation from triptolide-treated mice could relieve UC. This study provides a reference for the rational use of triptolide for the treatment of UC.
Collapse
Affiliation(s)
- Hao Wu
- The Department of General Surgeryis a part of Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Quan Rao
- The Department of General Surgeryis a part of Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guang-Chao Ma
- The Department of General Surgeryis a part of Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hong Yu
- The Department of General Surgeryis a part of Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cong-En Zhang
- The Department of General Surgeryis a part of Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jie Ma
- The Department of General Surgeryis a part of Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Gao Z, Zhang Y, Zhou H, Lv J. Baicalein inhibits the growth of oral squamous cell carcinoma cells by downregulating the expression of transcription factor Sp1. Int J Oncol 2020; 56:273-282. [PMID: 31746368 DOI: 10.3892/ijo.2019.4894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/29/2019] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), the most common malignancy of the oral cavity, accounts for >90% of all diagnosed oral cancer cases. Baicalein, a naturally derived compound, has been shown to alter p65 and the nuclear factor (NF)‑κB pathway, thus exerting cytotoxic effects on various tumor cell types. However, the mechanism of action of baicalein in OSCC has not been fully elucidated. In the present study, the proliferation of OSCC cells treated with baicalein was examined using a CCK‑8 assay. The effects of baicalein on the cell cycle and apoptosis of OSCC cells were determined by flow cytometric analyses. The expression of specificity protein 1 (Sp1), p65 and p50 at the mRNA and protein levels was determined by reverse transcription‑quantitative PCR and western blot analysis, respectively. The results of the present study demonstrated that baicalein suppresses the proliferation of OSCC cell lines in vivo and in vitro. Baicalein also induced apoptosis of OSCC cells and arrested the cell cycle at the G0/G1 phase. Baicalein inhibited the expression of Sp1, p65 and p50 by downregulating the relative mRNA levels. Baicalein reduced the activity of NF‑κB in OSCC cells. Knockdown of Sp1 also resulted in reduced expression of p65 and p50. In addition, Sp1 silencing enhanced the effects of baicalein. In conclusion, the present study demonstrated that baicalein suppresses the growth of OSCC cells through an Sp1/NF‑κB‑dependent mechanism.
Collapse
Affiliation(s)
- Zilong Gao
- Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yaqian Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Pathology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juan Lv
- Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
27
|
Zhang B, Li MD, Yin R, Liu Y, Yang Y, Mitchell-Richards KA, Nam JH, Li R, Wang L, Iwakiri Y, Chung D, Robert ME, Ehrlich BE, Bennett AM, Yu J, Nathanson MH, Yang X. O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCI Insight 2019; 4:127709. [PMID: 31672932 DOI: 10.1172/jci.insight.127709] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase-KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology and
| | - Min-Dian Li
- Department of Cellular and Molecular Physiology and
| | - Ruonan Yin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuyang Liu
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Yunfan Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rui Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Physiology and Neurobiology and.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology and.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anton M Bennett
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | | | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology and.,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Huang W, Liu C, Xie L, Wang Y, Xu Y, Li Y. Integrated network pharmacology and targeted metabolomics to reveal the mechanism of nephrotoxicity of triptolide. Toxicol Res (Camb) 2019; 8:850-861. [PMID: 32110379 PMCID: PMC7017871 DOI: 10.1039/c9tx00067d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Triptolide (TP) is one of the important active components in Tripterygium wilfordii Hook. F., which shows strong anti-inflammatory and immunomodulatory effects. However, a large number of literature studies have reported that TP is the main component causing nephrotoxicity, and the mechanism of nephrotoxicity has not yet been revealed. Therefore, it is of great practical significance to clarify the toxicity mechanism of TP. This study integrated network pharmacology and targeted metabolomics to reveal the nephrotoxicity mechanism of TP. Firstly, network pharmacology screening of 61 action targets related to TP induced nephrotoxicity, with 39 direct targets and 22 indirect targets, was performed. Subsequently, based on a large-scale protein-protein interaction (PPI) and molecular docking validation, the core targets were identified. Based on the above targets and enrichment analysis, the purine metabolism, Toll-like receptor signaling pathway and NF-κB signaling pathway were found play a pivotal role in TP-induced nephrotoxicity. Literature investigation showed that purine and pyrimidine metabolism pathways were closely related to kidney diseases. Therefore, by using the quantitative method of determining endogenous purine and pyrimidine previously established in the laboratory, a targeted metabolomic analysis of TP was carried out. Finally, six nephrotoxicity biomarkers, dihydroorotate, thymidine, 2-deoxyinosine, uric acid, adenosine and xanthine, were found. Combining the above results, the mechanisms underlying the nephrotoxicity of TP were speculated to be due to the over-consumption of xanthine and uric acid, which would result in enormous ROS being released in response to oxidative stress in the body. Furthermore, activation of the Toll-like receptor signalling pathway can promotes the phosphorylation of the downstream protein NF-κB and causes an inflammatory response that ultimately leads to nephrotoxicity.
Collapse
Affiliation(s)
- Wei Huang
- School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Jian Kang Chan Ye Yuan , Jinghai Dist. , Tianjin 301617 , China . ; ; ; Tel: +86-22-59596223
| | - Chuanxin Liu
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Liangxiang Town , Fangshan District , Beijing 102488 , China
| | - Lijuan Xie
- School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Jian Kang Chan Ye Yuan , Jinghai Dist. , Tianjin 301617 , China . ; ; ; Tel: +86-22-59596223
| | - Yuming Wang
- School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Jian Kang Chan Ye Yuan , Jinghai Dist. , Tianjin 301617 , China . ; ; ; Tel: +86-22-59596223
| | - Yanyan Xu
- School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Jian Kang Chan Ye Yuan , Jinghai Dist. , Tianjin 301617 , China . ; ; ; Tel: +86-22-59596223
| | - Yubo Li
- School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Jian Kang Chan Ye Yuan , Jinghai Dist. , Tianjin 301617 , China . ; ; ; Tel: +86-22-59596223
| |
Collapse
|
29
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Novák O, Strnad M, Forzani C, Hirt H, Havaux M, Monnet F. OXI1 and DAD Regulate Light-Induced Cell Death Antagonistically through Jasmonate and Salicylate Levels. PLANT PHYSIOLOGY 2019; 180:1691-1708. [PMID: 31123095 PMCID: PMC6752932 DOI: 10.1104/pp.19.00353] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Singlet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate OXI1 expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing OXI1 in Arabidopsis (Arabidopsis thaliana) increased plant sensitivity to high light and induced early senescence of mature leaves. Both phenomena rely on a marked accumulation of jasmonate and salicylate. DAD1 or DAD2 overexpression decreased OXI1 expression, jasmonate levels, and sensitivity to photooxidative stress. Knock-out mutants of DAD1 or DAD2 exhibited the opposite responses. Exogenous applications of jasmonate upregulated salicylate biosynthesis genes and caused leaf damage in wild-type plants but not in the salicylate biosynthesis mutant Salicylic acid induction-deficient2, indicating that salicylate plays a crucial role in PCD downstream of jasmonate. Treating plants with salicylate upregulated the DAD genes and downregulated OXI1 We conclude that OXI1 and DAD are antagonistic regulators of cell death through modulating jasmonate and salicylate levels. High light-induced PCD thus results from a tight control of the relative activities of these regulating proteins, with DAD exerting a negative feedback control on OXI1 expression.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Stefano D'Alessandro
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michel Havaux
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Fabien Monnet
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
- Université d'Avignon et des Pays de Vaucluse, F-84000 Avignon, France
| |
Collapse
|
30
|
Sharma NS, Gupta VK, Dauer P, Kesh K, Hadad R, Giri B, Chandra A, Dudeja V, Slawson C, Banerjee S, Vickers SM, Saluja A, Banerjee S. O-GlcNAc modification of Sox2 regulates self-renewal in pancreatic cancer by promoting its stability. Theranostics 2019; 9:3410-3424. [PMID: 31281487 PMCID: PMC6587167 DOI: 10.7150/thno.32615] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) claims more than 90% of the patients diagnosed with the disease owing to its aggressive biology that is manifested by high rate of tumor recurrence. Aberrant upregulation in the transcriptional activity of proteins involved in self-renewal like Sox2, Oct4 and Nanog is instrumental in these recurrence phenomena. In cancer, Sox2 is aberrantly "turned-on" leading to activation of downstream genes those results in relapse of the tumor. Molecular mechanisms that regulate the activity of Sox2 in PDAC are not known. In the current study, we have studied the how glycosylation of Sox2 by O-GlcNAc transferase (OGT) can affect its transcriptional activity and thus regulate self-renewal in cancer. Methods: RNA-Seq analysis of CRISPR-OGTi PDAC cells indicated a deregulation of differentiation and self-renewal pathways in PDAC. Pancreatic tumor burden following inhibition of OGT in vivo was done by using small molecule inhibitor, OSMI, on subcutaneous implantation of PDAC cells. Sox2 activity assay was performed by Dual Luciferase Reporter Assay kit. Results: Our study shows for the first time that in PDAC, glycosylation of Sox2 by OGT stabilizes it in the nucleus. Site directed mutagenesis of this site (S246A) prevents this modification. We further show that inhibition of OGT delayed initiation of pancreatic tumors by inhibition of Sox2. We also show that targeting OGT in vivo with a small molecule-inhibitor OSMI, results in decreased tumor burden in PDAC. Conclusion: Understanding this mechanism of SOX2 regulation by its glycosylation is expected to pave the way for development of novel therapy that has the potential to eradicate the cells responsible for tumor-recurrence.
Collapse
Affiliation(s)
| | | | - Patricia Dauer
- Department of Pharmacology, University of Minnesota, Minneapolis Minnesota
| | - Kousik Kesh
- Department of Surgery, University of Miami, Miami, FL
| | - Roey Hadad
- Department of Surgery, University of Miami, Miami, FL
| | - Bhuwan Giri
- Department of Surgery, University of Miami, Miami, FL
| | | | - Vikas Dudeja
- Department of Surgery, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miami, FL
| | - Chad Slawson
- University of Kansas Medical Center, Kansas City, KS
| | - Santanu Banerjee
- Department of Surgery, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miami, FL
| | - Selwyn M Vickers
- School of Medicine Dean's Office, University of Alabama at Birmingham
| | - Ashok Saluja
- Department of Surgery, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miami, FL
| | - Sulagna Banerjee
- Department of Surgery, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miami, FL
| |
Collapse
|
31
|
Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol Sci 2019; 40:327-341. [DOI: 10.1016/j.tips.2019.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 11/30/2022]
|
32
|
Munkley J. The glycosylation landscape of pancreatic cancer. Oncol Lett 2019; 17:2569-2575. [PMID: 30854032 PMCID: PMC6388511 DOI: 10.3892/ol.2019.9885] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic adenocarcinoma is a lethal disease with a 5-year survival rate of <5%, the lowest of all types of cancer. The diagnosis of pancreatic cancer relies on imaging and tissue biopsy, and the only curative therapy is complete surgical resection. Pancreatic cancer has the propensity to metastasise at an early stage and the majority of patients are diagnosed when surgery is no longer an option. Hence, there is an urgent need to identify biomarkers to enable early diagnosis, and to develop new therapeutic strategies. One approach for this involves targeting cancer-associated glycans. The most widely used serological marker in pancreatic cancer is the carbohydrate antigen CA 19-9 which contains a glycan known as sialyl Lewis A (sLeA). The CA 19-9 assay is used routinely to monitor response to treatment, but concerns have been raised about its sensitivity and specificity as a diagnostic biomarker. In addition to sLeA, a wide range of alterations to other important glycans have been observed in pancreatic cancer. These include increases in the sialyl Lewis X antigen (sLex), an increase in truncated O-glycans (Tn and sTn), increased branched and fucosylated N-glycans, upregulation of specific proteoglycans and galectins, and increased O-GlcNAcylation. Growing evidence supports crucial roles for glycans in all stages of cancer progression, and it is well established that glycans regulate tumour proliferation, invasion and metastasis. The present review describes the biological significance of glycans in pancreatic cancer, and discusses the clinical value of exploiting aberrant glycosylation to improve the diagnosis and treatment of this deadly disease.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
33
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
34
|
El-Zahaby SA, Elnaggar YSR, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019; 293:21-35. [PMID: 30445002 DOI: 10.1016/j.jconrel.2018.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is nowadays the most life-threatening cancer type worldwide. The problem of poor diagnosis, anti-neoplastics resistance and biopharmaceutical drawbacks of effective anti-cancer drugs lead to worsen disease state. Nanotechnology-based carrier systems used in both imaging and treatment procedures had solved many of these problems. It is critical to develop advanced detection method to save patients from being too late diagnosed. Targeting the pancreatic cancer cells as well helped in decreasing the side effects associated with normal cells destruction. Drug resistance is another challenge in pancreatic cancer management that can be solved by thorough understanding of the microenvironment associated with the disease to design creative nanocarriers. This is the first article to review multifaceted approaches of nanomedicine in pancreatic cancer detection and management. Additionally, mortality rates in selected Arab and European countries were illustrated herein. An emphasis was given on therapeutic and diagnostic challenges and different nanotechnologies adopted to overcome. The four main approaches encompassed nanomedicine for herbal treatment, nanomedicine of synthetic anti-cancer drugs, metal nanoparticles as a distinct treatment policy and nanotechnology for cancer diagnosis. Future research perspectives have been finally proposed.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
35
|
Silencing of Transcription Factor Sp1 Promotes SN1 Transporter Regulation by Ammonia in Mouse Cortical Astrocytes. Int J Mol Sci 2019; 20:ijms20020234. [PMID: 30634395 PMCID: PMC6359076 DOI: 10.3390/ijms20020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
The involvement of the astrocytic SN1 (SNAT3) transporter in ammonia-induced l-glutamine retention was recently documented in mouse-cultured astrocytes. Here we investigated the involvement of specificity protein 1 (Sp1) transcription factor in SN1 regulation in ammonium chloride (“ammonia”)-treated astrocytes. Sp1 expression and its cellular localization were determined using real-time qPCR, Western blot, and confocal microscopy. Sp1 binding to Snat3 promoter was analyzed by chromatin immunoprecipitation. The role of Sp1 in SN1 expression and SN1-mediated [3H]glutamine uptake in ammonia-treated astrocytes was verified using siRNA and mithramycin A. The involvement of protein kinase C (PKC) isoforms in Sp1 level/phosphorylation status was verified using siRNA technology. Sp1 translocation to the nuclei and its enhanced binding to the Snat3 promoter, along with Sp1 dependence of system N-mediated [3H]glutamine uptake, were observed in astrocytes upon ammonia exposure. Ammonia decreased the level of phosphorylated Sp1, and the effect was reinforced by long-term incubation with PKC modulator, phorbol 12-myristate 13-acetate, which is a treatment likely to dephosphorylate Sp1. Furthermore, silencing of the PKCδ isoform appears to enhance the ammonia effect on the Sp1 level. Collectively, the results demonstrate the regulatory role of Sp1 in regulation of SN1 expression and activity in ammonia-treated astrocytes and implicate altered Sp1 phosphorylation status in this capacity.
Collapse
|
36
|
El-Zahaby SA, Elnaggar YS, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019. [DOI: https://doi.org/10.1016/j.jconrel.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Wang M, Chen B, Chai L. Triptolide suppresses the proliferation and induces the apoptosis of nasopharyngeal carcinoma cells via the PI3K/Akt pathway. Oncol Lett 2018; 17:1372-1378. [PMID: 30655908 DOI: 10.3892/ol.2018.9726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an endothelium-associated malignancy that is heavily influenced by Epstein Barr virus infection. Triptolide, extracted from Tripterygium wilfordii, has been proven to possess anti-inflammatory, immunosuppressive and anti-cancerous activity. Although the effect of triptolide on numerous cancer cell types has been outlined, its effect in NPC remained unclear. The present study investigated the effects and underlying mechanisms of triptolide in C666-1 and NP69 cells. It was revealed that triptolide significantly inhibited proliferation and induced apoptosis in C666-1 cells. Increased levels of cleaved-caspase-3 and apoptosis regulator BAX, decreased expression of apoptosis regulator Bcl-2, and reduced phosphorylation of RAC-α serine/threonine-protein kinase (Akt), were responsible for this induction of apoptosis. Notably, pretreating C666-1 cells with the phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002 suggested that with increasing concentrations of LY294002, triptolide exhibited decreasing ability to suppress proliferation and induce apoptosis in these cells. In conclusion, the results demonstrated that triptolide suppressed the proliferation and induced the apoptosis of C666-1 cells in a PI3K/Akt-dependent manner and therefore, may serve as a promising therapeutic candidate for NPC.
Collapse
Affiliation(s)
- Mi Wang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bo Chen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Liang Chai
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
38
|
Yang Y, Zhang LJ, Bai XG, Xu HJ, Jin ZL, Ding M. Synergistic antitumour effects of triptolide plus gemcitabine in bladder cancer. Biomed Pharmacother 2018; 106:1307-1316. [DOI: 10.1016/j.biopha.2018.07.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 01/03/2023] Open
|
39
|
Griffipavixanthone induces apoptosis of human breast cancer MCF-7 cells in vitro. Breast Cancer 2018; 26:190-197. [PMID: 30259331 DOI: 10.1007/s12282-018-0912-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Griffipavixanthone (GPX) is a compound extracted from Garcinia oblongifolia Champ. But, no research has yet been done about the effect of GPX on breast cancer. METHODS We evaluated the proliferation of human breast cancer cells by CCK-8 assay and apoptosis by Annexin V (AV)-FITC and PI double staining. We used transwell assay to indicate the invasion and migration of MCF-7. To explore the molecular mechanism of GPX, we detected the mRNA and protein expression using qRT-PCR and Western blot. RESULTS In this study, we evaluated if GPX could inhibit the proliferation of human breast cancer cell MCF-7 and T-47D with IC50 value of 9.64 ± 0.12 µM and 10.2 1 ± 0.38 µM at 48 h. And the IC50 value of MCF-10A is 32.11 ± 0.21 µM, which showed GPX had a tiny side effect for normal breast cells. Annexin V (AV)-FITC and PI double staining demonstrated firmly the apoptosis of MCF-7 resulting from GPX. Transwell assay indicated that GPX inhibited the invasion and migration of MCF-7. In addition, we found GPX cleaved caspase-8/9 and PARP, which play important roles in apoptotic pathway. Furthermore, through the Western blot assay, GPX increased the level of pro-apoptosis protein Bax and cytochrome C. On the contrary, GPX decreased the level of anti-apoptosis protein Bcl-2. Moreover, GPX increased the mRNA and protein expression level of p53 and its target genes, which indicated that GPX induced MCF-7 cell apoptosis by up-regulating p53 and Bax expression while suppressing Bcl-2 expression. CONCLUSION All the results showed that GPX induces MCF-7 cell apoptosis and could be considered as a potential drug for breast cancer.
Collapse
|
40
|
Dauer P, Sharma NS, Gupta VK, Nomura A, Dudeja V, Saluja A, Banerjee S. GRP78-mediated antioxidant response and ABC transporter activity confers chemoresistance to pancreatic cancer cells. Mol Oncol 2018; 12:1498-1512. [PMID: 29738634 PMCID: PMC6120253 DOI: 10.1002/1878-0261.12322] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/21/2023] Open
Abstract
Chemoresistance is a major therapeutic challenge that plays a role in the poor statistical outcomes in pancreatic cancer. Unfolded protein response (UPR) is one of the homeostasis mechanisms in cancer cells that have been correlated with chemoresistance in a number of cancers including pancreatic cancer. In this study, we show that modulating glucose regulatory protein 78 (GRP78), the master regulator of the UPR, can have a profound effect on multiple pathways that mediate chemoresistance. Our study showed for the first time that silencing GRP78 can diminish efflux activity of ATP-binding cassette (ABC) transporters, and it can decrease the antioxidant response resulting in an accumulation of reactive oxygen species (ROS). We also show that these effects can be mediated by the activity of specificity protein 1 (SP1), a transcription factor overexpressed in pancreatic cancer. Thus, inhibition of SP1 negatively affects the UPR, deregulates the antioxidant response of NRF2, as well as ABC transporter activity by inhibiting GRP78-mediated ER homeostasis. Sp1 and NRF2 have been classified as nononcogene addiction genes and thus are imperative to understanding the molecular mechanism of resistance. These finding have huge clinical relevance as both Sp1 and GRP78 are overexpressed in pancreatic cancer patients and increased expression of these proteins is indicative of poor prognosis. Understanding how these proteins may regulate chemoresistance phenotype of this aggressive cancer may pave the way for development of efficacious therapy for this devastating disease.
Collapse
Affiliation(s)
- Patricia Dauer
- Department of PharmacologyUniversity of MinnesotaMinneapolisMNUSA
| | - Nikita S. Sharma
- Department of SurgeryUniversity of MiamiFLUSA
- Sylvester Comprehensive Cancer CenterMiamiFLUSA
| | - Vineet K. Gupta
- Department of SurgeryUniversity of MiamiFLUSA
- Sylvester Comprehensive Cancer CenterMiamiFLUSA
| | - Alice Nomura
- Department of SurgeryUniversity of MiamiFLUSA
- Sylvester Comprehensive Cancer CenterMiamiFLUSA
| | - Vikas Dudeja
- Department of SurgeryUniversity of MiamiFLUSA
- Sylvester Comprehensive Cancer CenterMiamiFLUSA
| | - Ashok Saluja
- Department of SurgeryUniversity of MiamiFLUSA
- Sylvester Comprehensive Cancer CenterMiamiFLUSA
| | - Sulagna Banerjee
- Department of SurgeryUniversity of MiamiFLUSA
- Sylvester Comprehensive Cancer CenterMiamiFLUSA
| |
Collapse
|
41
|
Voiculescu I, Toda M, Inomata N, Ono T, Li F. Nano and Microsensors for Mammalian Cell Studies. MICROMACHINES 2018; 9:E439. [PMID: 30424372 PMCID: PMC6187600 DOI: 10.3390/mi9090439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
This review presents several sensors with dimensions at the nano- and micro-scale used for biological applications. Two types of cantilever beams employed as highly sensitive temperature sensors with biological applications will be presented. One type of cantilever beam is fabricated from composite materials and is operated in the deflection mode. In order to achieve the high sensitivity required for detection of heat generated by a single mammalian cell, the cantilever beam temperature sensor presented in this review was microprocessed with a length at the microscale and a thickness in the nanoscale dimension. The second type of cantilever beam presented in this review was operated in the resonant frequency regime. The working principle of the vibrating cantilever beam temperature sensor is based on shifts in resonant frequency in response to temperature variations generated by mammalian cells. Besides the cantilever beam biosensors, two biosensors based on the electric cell-substrate impedance sensing (ECIS) used to monitor mammalian cells attachment and viability will be presented in this review. These ECIS sensors have dimensions at the microscale, with the gold films used for electrodes having thickness at the nanoscale. These micro/nano biosensors and their mammalian cell applications presented in the review demonstrates the diversity of the biosensor technology and applications.
Collapse
Affiliation(s)
- Ioana Voiculescu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA.
| | - Masaya Toda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Naoki Inomata
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Fang Li
- Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA.
| |
Collapse
|
42
|
Triptolide inhibits Epstein-Barr nuclear antigen 1 expression by increasing sensitivity of mitochondria apoptosis of nasopharyngeal carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:192. [PMID: 30111354 PMCID: PMC6094928 DOI: 10.1186/s13046-018-0865-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/19/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is widely found in nasopharyngeal carcinoma (NPC) tissue and associated with poor prognosis of patients. EBV nuclear antigen 1 (EBNA1) is expressed in all NPC tumors and plays multiple biological roles in both virus and host cells. Triptolide is a natural product extracted from Tripterygium and shows anti-cancer activities. The goal of this work was to illustrate the anti-cancer effect of triptolide and elucidate a novel anti-apoptotic mechanism of EBNA1 in NPC cells encountered with triptolide. METHODS In the present study, a CCK-8 assay was used to analyze the proliferation of NPC cells treated with triptolide in a dose- and time-dependent ways. Effects of triptolide on NPC cell cycle and apoptosis were investigated by flow cytometric analysis. EBNA1 expression in mRNA and protein levels was determined by quantitative real-time PCR and Western blot, respectively. RESULTS Our results showed that triptolide effectively inhibited proliferation of NPC cells. Triptolide arrested NPC cell cycles in S phase and induced apoptosis through a caspase-9-dependent apoptosis pathway. Low-dose of triptolide reduced the half-life of EBNA1 and significantly decreased EBNA1 expression by promoting the process of proteasome-ubiquitin pathway. Over-expression of EBNA1, which was independent from EBV genome, effectively attenuated the apoptosis induced by triptolide. In addition, triptolide significantly inhibited proliferations of tumors induced by EBV-positive cells in vivo. Furthermore, EBNA1 were expressed in all NPC biopsies of Chinese patients. CONCLUSIONS In summary, our study provides the evidence that triptolide induces EBNA1 degradation and stimulates NPC apoptosis through mitochondria apoptotic pathway. In addition, EBNA1 assists NPC cells to resist triptolide-induced apoptosis through inhibiting caspase-9-dependent apoptotic pathway.
Collapse
|
43
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
44
|
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 2018; 50:155-173. [PMID: 29594839 DOI: 10.1007/s10863-018-9751-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Collapse
|
45
|
Huang Y, Wu S, Zhang Y, Wang L, Guo Y. Antitumor effect of triptolide in T-cell lymphoblastic lymphoma by inhibiting cell viability, invasion, and epithelial-mesenchymal transition via regulating the PI3K/AKT/mTOR pathway. Onco Targets Ther 2018; 11:769-779. [PMID: 29483777 PMCID: PMC5815473 DOI: 10.2147/ott.s149788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION T-cell lymphoblastic lymphoma (T-LBL) is a widely disseminated disease worldwide. Triptolide (TPL) is purified from Chinese herb and displays anti-inflammatory, anti-fertility, anti-tumor and immunosuppressive effects. MATERIALS AND METHODS Here, in vitro and in vivo experiments were conducted to investigate the anti-tumor effect of TPL treatment in T-LBL and the potential mechanism in T-LBL progression. RESULTS TPL inhibited cell proliferation of T-LBL cells (Jurkat cells and Molt-3 cells) in a dose-dependent manner. Flow cytometry analysis showed that cell apoptosis rate was increased by TPL treatment. TPL also up-regulated the expression of Caspase-3, Bax and down-regulated the expression of Bcl-2, indicating that TPL promoted apoptosis in Jurkat cells. Moreover, TPL inhibited invasion ability of Jurkat cells and down-regulated the expression of MMP-3 and MMP-9 in a dose-dependent manner. The expression of Snail, Slug, Twist and Integrin αVβ6 was decreased and the expression of E-cadherin was increased by TPL treatment, indicating that TPL inhibited EMT of Jurkat cells. Apart from that, TPL treatment attenuated the phoslevels of PI3K, Akt and mTOR and suppressed AKT activation compared with control group, suggesting that TPL inhibited PI3K/Akt/mTOR signal pathway in T-LBL. In vivo experiments showed that TPL inhibited tumor growth of T-LBL and promoted apoptosis of tumor cells. The expression of PCNA, Bcl-2, Snail, p-PI3K, p-Akt and mTOR was suppressed by TPL in a dose-dependent manner, suggesting that TPL suppressed tumor growth and promoted apoptosis of tumor cells by inhibiting PI3K/Akt/mTOR signal pathway in T-LBL. CONCLUSION In conclusion, TPL exerted anti-tumor effect in T-LBL by inhibiting cell viability, invasion and EMT via regulating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yan Huang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Sun Wu
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yuan Zhang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Lihua Wang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yan Guo
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
46
|
Hyperglycemia and aberrant O-GlcNAcylation: contributions to tumor progression. J Bioenerg Biomembr 2018; 50:175-187. [DOI: 10.1007/s10863-017-9740-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
|
47
|
Dauer P, Zhao X, Gupta VK, Sharma N, Kesh K, Gnamlin P, Dudeja V, Vickers SM, Banerjee S, Saluja A. Inactivation of Cancer-Associated-Fibroblasts Disrupts Oncogenic Signaling in Pancreatic Cancer Cells and Promotes Its Regression. Cancer Res 2017; 78:1321-1333. [PMID: 29259015 DOI: 10.1158/0008-5472.can-17-2320] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
Abstract
Resident fibroblasts that contact tumor epithelial cells (TEC) can become irreversibly activated as cancer-associated-fibroblasts (CAF) that stimulate oncogenic signaling in TEC. In this study, we evaluated the cross-talk between CAF and TEC isolated from tumors generated in a mouse model of KRAS/mut p53-induced pancreatic cancer (KPC mice). Transcriptomic profiling conducted after treatment with the anticancer compound Minnelide revealed deregulation of the TGFβ signaling pathway in CAF, resulting in an apparent reversal of their activated state to a quiescent, nonproliferative state. TEC exposed to media conditioned by drug-treated CAFs exhibited a decrease in oncogenic signaling, as manifested by downregulation of the transcription factor Sp1. This inhibition was rescued by treating TEC with TGFβ. Given promising early clinical studies with Minnelide, our findings suggest that approaches to inactivate CAF and prevent tumor-stroma cross-talk may offer a viable strategy to treat pancreatic cancer.Significance: In an established mouse model of pancreatic cancer, administration of the promising experimental drug Minnelide was found to actively deplete reactive stromal fibroblasts and to trigger tumor regression, with implications for stromal-based strategies to attack this disease. Cancer Res; 78(5); 1321-33. ©2018 AACR.
Collapse
Affiliation(s)
- Patricia Dauer
- Department of Surgery, University of Miami, Miami, Florida.,Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Xianda Zhao
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Vineet K Gupta
- Department of Surgery, University of Miami, Miami, Florida
| | - Nikita Sharma
- Department of Surgery, University of Miami, Miami, Florida
| | - Kousik Kesh
- Department of Surgery, University of Miami, Miami, Florida
| | - Prisca Gnamlin
- Department of Surgery, University of Miami, Miami, Florida
| | - Vikas Dudeja
- Department of Surgery, University of Miami, Miami, Florida
| | - Selwyn M Vickers
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota.,Department of Surgery, University of Alabama, Tuscaloosa, Alabama
| | | | - Ashok Saluja
- Department of Surgery, University of Miami, Miami, Florida.
| |
Collapse
|
48
|
"Nutrient-sensing" and self-renewal: O-GlcNAc in a new role. J Bioenerg Biomembr 2017; 50:205-211. [PMID: 29204729 DOI: 10.1007/s10863-017-9735-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Abstract
Whether embryonic, hematopoietic or cancer stem cells, this metabolic reprogramming is dependent on the nutrient-status and bioenergetic pathways that is influenced by the micro-environmental niches like hypoxia. Thus, the microenvironment plays a vital role in determining the stem cell fate by inducing metabolic reprogramming. Under the influence of the microenvironment, like hypoxia, the stem cells have increased glucose and glutamine uptake which result in activation of hexosamine biosynthesis pathway (HBP) and increased O-GlcNAc Transferase (OGT). The current review is focused on understanding how HBP, a nutrient-sensing pathway (that leads to increased OGT activity) is instrumental in regulating self-renewal not only in embryonic and hematopoietic stem cells (ESC/HSC) but also in cancer stem cells.
Collapse
|
49
|
Li M, Hu T, Tie C, Qu L, Zheng H, Zhang J. Quantitative Proteomics and Targeted Fatty Acids Analysis Reveal the Damage of Triptolide in Liver and Kidney. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/25/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Menglin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Cai Tie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Liang Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
- Pharmaron Beijing Co., Ltd.; BDA; Beijing P.R. China
| | - Hao Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing P. R. China
| |
Collapse
|
50
|
Li R, Zhang Z, Wang J, Huang Y, Sun W, Xie R, Hu F, Lei T. Triptolide suppresses growth and hormone secretion in murine pituitary corticotroph tumor cells via NF-kappaB signaling pathway. Biomed Pharmacother 2017; 95:771-779. [PMID: 28892788 DOI: 10.1016/j.biopha.2017.08.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
Triptolide is a principal diterpene triepoxide from the Chinese medical plant Tripterygium wilfordii Hook. f., whose extracts have been utilized in dealing with diverse diseases in traditional Chinese medicine for centuries. Recently, the antitumor effect of triptolide has been found in several pre-clinical neoplasm models, but its effect on pituitary corticotroph adenomas has not been investigated so far. In this study, we are aiming to figure out the antitumor effect of triptolide and address the underlying molecular mechanism in AtT20 murine corticotroph cell line. Our results demonstrated that triptolide inhibited cell viability and colony number of AtT20 cells in a dose- and time-dependent pattern. Triptolide also suppressed proopiomelanocortin (Pomc) mRNA expression and extracellular adrenocorticotropic hormone (ACTH) secretion in AtT20 cells. Flow cytometry prompted that triptolide leaded to G2/M phase arrest, apoptosis program and mitochondrial membrane depolarization in AtT20 cells. Moreover, dose-dependent activation of caspase-3 and decreased Bcl2/Bax proportion were observed after triptolide treatment. By western blot analysis we found that triptolide impeded phosphorylation of NF-κB p65 subunit and extracellular signal-regulated kinase (ERK), along with reduction of cyclin D1, without any impact on other NF-κB related protein expression like total p65, p50, IκB-α, p-IκB-α. Furthermore, the mouse xenograft model revealed the inhibition of tumor growth and hormone secretion after triptolide administration. Altogether this compound might be a potential pharmaceutical choice in managing Cushing's disease.
Collapse
Affiliation(s)
- Ran Li
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Zhuo Zhang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Junwen Wang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Yiming Huang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Wei Sun
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Ruifan Xie
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; Research Group Experimental Neurooncology, Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Feng Hu
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Ting Lei
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China.
| |
Collapse
|