1
|
Tjahjono NS, Subramanian D, Shihabeddin TZ, Hicks HD, Varner VD, Petroll WM, Schmidtke DW. Effect of Decorin and Aligned Collagen Fibril Topography on TGF-β1 Activation of Corneal Keratocytes. Bioengineering (Basel) 2025; 12:259. [PMID: 40150723 PMCID: PMC11939610 DOI: 10.3390/bioengineering12030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
During corneal wound healing, transforming growth factor-beta 1 (TGF-β1) causes differentiation of quiescent keratocytes into myofibroblasts. Decorin has been investigated as a promising anti-fibrotic therapeutic for corneal healing due to its interaction with TGF-β1, collagen, and cell surface receptors. In this study, a novel microfluidic method for coating aligned collagen fibrils with decorin was developed to mimic the presence of decorin within the corneal stroma. Decorin was found to bind selectively to collagen and remained bound for at least five days. To investigate the effects of decorin coatings on keratocyte activation, primary rabbit keratocytes were cultured in the presence of TGF-β1 for 5 days on substrates with or without decorin and stained for α-smooth muscle actin (α-SMA). The expression of α-SMA was reduced by similar amounts on monomeric collagen (40%), random collagen fibrils (32%), and aligned collagen fibrils (32%) coated with decorin as controls. However, α-SMA expression was differentially expressed between the collagen substrates not coated with decorin, with significantly lower expression on uncoated aligned collagen fibrils compared to uncoated collagen monomers. Addition of decorin directly to culture media, had a limited effect on reducing myofibroblast differentiation. Taken together, these results demonstrate the importance of topography and ECM composition on keratocyte activation.
Collapse
Affiliation(s)
- Nathaniel S. Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Tarik Z. Shihabeddin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Hudson D. Hicks
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - W. Matthew Petroll
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75090, USA
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
2
|
Langlois A, Cherfan J, Meugnier E, Rida A, Arous C, Peronet C, Hamdard H, Zarrouki B, Wehrle‐Haller B, Pinget M, Craige SM, Bouzakri K. DECORIN, a triceps-derived myokine, protects sorted β-cells and human islets against chronic inflammation associated with type 2 diabetes. Acta Physiol (Oxf) 2025; 241:e14267. [PMID: 39844653 PMCID: PMC11754997 DOI: 10.1111/apha.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
AIM Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored. METHODS The effect of DECORIN was assessed in sorted human and rat β-cell and human islets from healthy and type 2 diabetes (T2D) donors. We assessed glucose-stimulated insulin secretion (GSIS) and cytokine-mediated cell death. We then challenged sorted β-cells and human islets with inflammatory cytokines commonly associated with diabetes, such as tumor necrosis factor-α (TNF-α) alone or in combination with interleukin1-β (IL1-β) and interferon-γ (cytomix). RESULTS DECORIN enhanced cell spreading and the localization of phosphorylated FAK at adhesions, promoting GSIS under basal conditions. It also increased insulin granule docking adhesion length and countered the inhibitory effects of TNF-α on adhesion and actin remodeling at the β-cell surface, resulting in preserved GSIS. DECORIN protected from cell death in sorted β-cells and islets challenged with TNF-α alone or TNF-α + cytomix. Interestingly, DECORIN increased both insulin content and secretion in human islets from T2D individuals. Additionally, DECORIN treatment reversed the impaired gene expression caused by T2D and enhanced the expression of genes essential for islet function and metabolism. CONCLUSION Collectively, we have shown that DECORIN had a beneficial effect on human islets, protecting them from inflammation-induced cell death. In T2D islets, DECORIN restores islet function and reverses the expression of T2D-associated genes. Based on our data, we propose that DECORIN is a promising therapeutic target for diabetes-associated inflammation and diabetes itself.
Collapse
Affiliation(s)
- Allan Langlois
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Julien Cherfan
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ‐LyonUniversité Claude Bernard Lyon‐1LyonFrance
| | - Ahmad Rida
- ILONOV, Boulevard René LericheStrasbourgFrance
| | - Caroline Arous
- Department of Cell Physiology and Metabolism, Centre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Claude Peronet
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Harzo Hamdard
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Bader Zarrouki
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolic (CVRM), BioPharmaceuticals R&DGothenburgSweden
| | - Bernhard Wehrle‐Haller
- Department of Cell Physiology and Metabolism, Centre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Michel Pinget
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
- ILONOV, Boulevard René LericheStrasbourgFrance
| | - Siobhan M. Craige
- Department of Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgVirginiaUSA
| | - Karim Bouzakri
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
- ILONOV, Boulevard René LericheStrasbourgFrance
| |
Collapse
|
3
|
Qi P, Huang M, Ren X, Zhai Y, Qiu C, Zhu H. Identification of potential biomarkers and therapeutic targets related to post-traumatic stress disorder due to traumatic brain injury. Eur J Med Res 2024; 29:44. [PMID: 38212778 PMCID: PMC10782540 DOI: 10.1186/s40001-024-01640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD), a disease state that has an unclear pathogenesis, imposes a substantial burden on individuals and society. Traumatic brain injury (TBI) is one of the most significant triggers of PTSD. Identifying biomarkers associated with TBI-related PTSD will help researchers to uncover the underlying mechanism that drives disease development. Furthermore, it remains to be confirmed whether different types of traumas share a common mechanism of action. METHODS For this study, we screened the eligible data sets from the Gene Expression Omnibus (GEO) database, obtained differentially expressed genes (DEGs) through analysis, conducted functional enrichment analysis on the DEGs in order to understand their molecular mechanisms, constructed a PPI network, used various algorithms to obtain hub genes, and finally evaluated, validated, and analyzed the diagnostic performance of the hub genes. RESULTS A total of 430 upregulated and 992 down-regulated differentially expressed genes were extracted from the TBI data set. A total of 1919 upregulated and 851 down-regulated differentially expressed genes were extracted from the PTSD data set. Functional enrichment analysis revealed that the differentially expressed genes had biological functions linked to molecular regulation, cell signaling transduction, cell metabolic regulation, and immune response. After constructing a PPI network and introducing algorithm analysis, the upregulated hub genes were identified as VNN1, SERPINB2, and ETFDH, and the down-regulated hub genes were identified as FLT3LG, DYRK1A, DCN, and FKBP8. In addition, by comparing the data with patients with other types of trauma, it was revealed that PTSD showed different molecular processes that are under the influence of different trauma characteristics and responses. CONCLUSIONS By exploring the role of different types of traumas during the pathogenesis of PTSD, its possible molecular mechanisms have been revealed, providing vital information for understanding the complex pathways associated with TBI-related PTSD. The data in this study has important implications for the design and development of new diagnostic and therapeutic methods needed to treat and manage PTSD.
Collapse
Affiliation(s)
- Peng Qi
- Department of Emergency, First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Xuewen Ren
- Department of Emergency, First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yongzhi Zhai
- Department of Emergency, First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chen Qiu
- Department of Orthopedics, Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - Haiyan Zhu
- Department of Emergency, First Medical Center of Chinese, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
4
|
Zhang Y, Geng F, Wang Y, Cao J. Textural modification of Chinese traditional stewed pig trotter: Effect of acid or alkaline-induced degradation of collagen fibers. J Texture Stud 2022; 54:268-275. [PMID: 36502368 DOI: 10.1111/jtxs.12735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the effects of acid or alkaline treatments on the textural properties of Chinese traditional stewed pig trotter in relation to the degradation of collagen fibers. Pig trotters were subjected to different pHs of 4, 5, 6, 7, and 8 and then stewed at 95°C for 60 min. Textural parameters (springiness, chewiness, hardness, and gumminess) of pig trotters and Raman spectroscopy, cross-links, decorin, and glycosaminoglycans contents of collagen fibers were assessed. The acid or alkaline treatments at pH 4, 5, 6, and 8 improved the textural properties evidenced by lower chewiness, hardness, and gumminess, and promoted the unfolding of the secondary structure evidenced by a loss of α-helix paralleled with an increase of random coil, as well as induced a breakage to the covalent cross-links evidenced by the reduction of cross-links, decorin, and glycosaminoglycans. This study thus concluded positive effects of acid or alkaline treatments on the textural modification of Chinese traditional stewed pig trotter in relation to the induced degradation of the collagen fibers.
Collapse
Affiliation(s)
- Yuemei Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ying Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jinxuan Cao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Giatagana EM, Berdiaki A, Gaardløs M, Tsatsakis AM, Samsonov SA, Nikitovic D. Rapamycin-induced autophagy in osteosarcoma cells is mediated via the biglycan/Wnt/β-catenin signaling axis. Am J Physiol Cell Physiol 2022; 323:C1740-C1756. [PMID: 36280393 DOI: 10.1152/ajpcell.00368.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biglycan is a class I secreted small leucine-rich proteoglycan (SLRP), which regulates signaling pathways connected to bone pathologies. Autophagy is a vital catabolic process with a dual role in cancer progression. Here, we show that biglycan inhibits autophagy in two osteosarcoma cell lines (P ≤ 0.001), while rapamycin-induced autophagy decreases biglycan expression in MG63 osteosarcoma cells and abrogates the biglycan-induced cell growth increase (P ≤ 0.001). Rapamycin also inhibits β-catenin translocation to the nucleus, inhibiting the Wnt pathway (P ≤ 0.001) and reducing biglycan's colocalization with the Wnt coreceptor LRP6 (P ≤ 0.05). Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug doxorubicin in MG63 OS cells through an autophagy-dependent manner (P ≤ 0.05). Cotreatment of these cells with rapamycin and doxorubicin enhances cells response to doxorubicin by decreasing biglycan (P ≤ 0.001) and β-catenin (P ≤ 0.05) expression. Biglycan deficiency leads to increased caspase-3 activation (P ≤ 0.05), suggesting increased apoptosis of biglycan-deficient cells treated with doxorubicin. Computational models of LRP6 and biglycan complexes suggest that biglycan changes the receptor's ability to interact with other signaling molecules by affecting the interdomain bending angles in the receptor structure. Biglycan binding to LRP6 activates the Wnt pathway and β-catenin nuclear translocation by disrupting β-catenin degradation complex (P ≤ 0.01 and P ≤ 0.05). Interestingly, this mechanism is not followed in moderately differentiated, biglycan-nonexpressing U-2OS OS cells. To sum up, biglycan exhibits protective effects against the doxorubicin in MG63 OS cells by activating the Wnt signaling pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Margrethe Gaardløs
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| |
Collapse
|
6
|
Dong Y, Zhong J, Dong L. The Role of Decorin in Autoimmune and Inflammatory Diseases. J Immunol Res 2022; 2022:1283383. [PMID: 36033387 PMCID: PMC9402370 DOI: 10.1155/2022/1283383] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Decorin is an extracellular matrix protein that belongs to the family of small leucine-rich proteoglycans. As a matrix protein, the first discovered role of decorin is participating in collagen fibril formation. Many other functions of decorin in various biological processes have been subsequently identified. Decorin is involved in an extensive signaling network and can interact with other extracellular matrix components, growth factors, receptor tyrosine kinases, and various proteases. Decorin has been shown to be involved in wound repair, cell cycle, angiogenesis, tumor metastasis, and autophagy. Recent evidence indicates that it also plays a role in immune regulation and inflammatory diseases. This review summarizes the characteristics of decorin in immune and inflammatory diseases, including inflammatory bowel disease (IBD), Sjögren's syndrome (SS), chronic obstructive pulmonary disease (COPD), IgA nephropathy, rheumatoid arthritis (RA), spondyloarthritis (SpA), osteoarthritis, multiple sclerosis (MS), idiopathic inflammatory myopathies (IIM), and systemic sclerosis (SSc) and discusses the potential role in these disorders.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Lin Y, Wang Y, Jin G, Duan J, Zhang Y, Cao J. The Texture Change of Chinese Traditional Pig Trotter with Soy Sauce during Stewing Processing: Based on a Thermal Degradation Model of Collagen Fibers. Foods 2022; 11:foods11121772. [PMID: 35741970 PMCID: PMC9223209 DOI: 10.3390/foods11121772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023] Open
Abstract
In order to clarify the influence of the thermal degradation of collagen fibers on the texture profile analysis (TPA) parameters of pig trotter stewed with soy sauce (PTSWSS), TPA (springiness, chewiness, hardness, and gumminess), the secondary structures, the cross-linkage, decorin (DCN) and glycosaminoglycan (GAG) levels, and the histochemical morphology of collagen fibers during the stewing process (0, 30, 60, 120 min) were assessed. The springiness and hardness increased after 30 min of stewing, along with the denaturation of collagen proteins. TPA parameters improved with the prolonged stewing times of 60 and 120 min, along with the ultra-structural dissolution of collagen fibers, and a substantial reduction in cross-linkage, DCN, and GAG levels, and the unfolded triple-helix structure. This study concluded that the TPA parameters of PTSWSS were dependent on the stewing time, and that the improvement in TPA parameters with longer stewing time could primarily be attributed to the thermal degradation of collagen fibers.
Collapse
Affiliation(s)
- Yuhai Lin
- Hormel (China) Investment Co., Ltd., Jiaxing 314001, China; (Y.L.); (J.D.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (G.J.); (Y.Z.)
| | - Ying Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (G.J.); (Y.Z.)
| | - Guofeng Jin
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (G.J.); (Y.Z.)
| | - Junjie Duan
- Hormel (China) Investment Co., Ltd., Jiaxing 314001, China; (Y.L.); (J.D.)
| | - Yuemei Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (G.J.); (Y.Z.)
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (G.J.); (Y.Z.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-18758823803
| |
Collapse
|
8
|
Wu M, Downie LE, Hill LJ, Chinnery HR. The effect of topical decorin on temporal changes to corneal immune cells after epithelial abrasion. J Neuroinflammation 2022; 19:90. [PMID: 35414012 PMCID: PMC9006562 DOI: 10.1186/s12974-022-02444-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Corneal immune cells interact with corneal sensory nerves during both homeostasis and inflammation. This study sought to evaluate temporal changes to corneal immune cell density in a mouse model of epithelial abrasion and nerve injury, and to investigate the immunomodulatory effects of topical decorin, which we have shown previously to promote corneal nerve regeneration. METHODS Bilateral corneal epithelial abrasions (2 mm) were performed on C57BL/6J mice. Topical decorin or saline eye drops were applied three times daily for 12 h, 24 h, 3 days or 5 days. Optical coherence tomography imaging was performed to measure the abrasion area. The densities of corneal sensory nerves (β-tubulin III) and immune cells, including dendritic cells (DCs; CD11c+), macrophages (Iba-1+) and neutrophils (NIMP-R14+) were measured. Cx3cr1gfp/gfp mice that spontaneously lack resident corneal intraepithelial DCs were used to investigate the specific contribution of epithelial DCs. Neuropeptide and cytokine gene expression was evaluated using qRT-PCR at 12 h post-injury. RESULTS In decorin-treated corneas, higher intraepithelial DC densities and lower neutrophil densities were observed at 24 h after injury, compared to saline controls. At 12 h post-injury, topical decorin application was associated with greater re-epithelialisation. At 5 days post-injury, corneal stromal macrophage density in the decorin-treated and contralateral eyes was lower, and nerve density was higher, compared to eyes treated with saline only. Lower expression of transforming growth factor beta (TGF-β) and higher expression of CSPG4 mRNA was detected in corneas treated with topical decorin. There was no difference in corneal neutrophil density in Cx3cr1gfp/gfp mice treated with or without decorin at 12 h. CONCLUSIONS Topical decorin regulates immune cell dynamics after corneal injury, by inhibiting neutrophils and recruiting intraepithelial DCs during the acute phase (< 24 h), and inhibiting macrophage density at the study endpoint (5 days). These immunomodulatory effects were associated with faster re-epithelialisation and likely contribute to promoting sensory nerve regeneration. The findings suggest a potential interaction between DCs and neutrophils with topical decorin treatment, as the decorin-induced neutrophil inhibition was absent in Cx3cr1gfp/gfp mice that lack corneal epithelial DCs. TGF-β and CSPG4 proteoglycan likely regulate decorin-mediated innate immune cell responses and nerve regeneration after injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Biglycan Interacts with Type I Insulin-like Receptor (IGF-IR) Signaling Pathway to Regulate Osteosarcoma Cell Growth and Response to Chemotherapy. Cancers (Basel) 2022; 14:cancers14051196. [PMID: 35267503 PMCID: PMC8909324 DOI: 10.3390/cancers14051196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Osteosarcoma (OS) is an aggressive, primary bone cancer. OS cells produce altered osteoid whose components participate in signaling correlated to the development of this cancer. Biglycan (BGN), a proteoglycan, is correlated to aggressive OS type and resistance to chemotherapy. A constitutive signaling of insulin-like growth factor receptor I (IGF-IR) signaling in sarcoma progression was established. We showed that biglycan binds IGF-IR resulting in prolonged IGF-IR activation, nuclear translocation, and growth response of the poorly-differentiated MG63 cells correlated to increased aggressiveness markers expression and enhanced chemoresistance. This mechanism is not valid in moderately and well-differentiated, biglycan non-expressing U-2OS and Saos-2 OS cells. Abstract Osteosarcoma (OS) is a mesenchymally derived, aggressive bone cancer. OS cells produce an aberrant nonmineralized or partly mineralized extracellular matrix (ECM) whose components participate in signaling pathways connected to specific pathogenic phenotypes of this bone cancer. The expression of biglycan (BGN), a secreted small leucine-rich proteoglycan (SLRP), is correlated to aggressive OS phenotype and resistance to chemotherapy. A constitutive signaling of IGF-IR signaling input in sarcoma progression has been established. Here, we show that biglycan activates the IGF-IR signaling pathway to promote MG63 biglycan-secreting OS cell growth by forming a complex with the receptor. Computational models of IGF-IR and biglycan docking suggest that biglycan binds IGF-IR dimer via its concave surface. Our binding free energy calculations indicate the formation of a stable complex. Biglycan binding results in prolonged IGF-IR activation leading to protracted IGF-IR-dependent cell growth response of the poorly-differentiated MG63 cells. Moreover, biglycan facilitates the internalization (p ≤ 0.01, p ≤ 0.001) and sumoylation-enhanced nuclear translocation of IGF-IR (p ≤ 0.05) and its DNA binding in MG63 cells (p ≤ 0.001). The tyrosine kinase activity of the receptor mediates this mechanism. Furthermore, biglycan downregulates the expression of the tumor-suppressor gene, PTEN (p ≤ 0.01), and increases the expression of endothelial–mesenchymal transition (EMT) and aggressiveness markers vimentin (p ≤ 0.01) and fibronectin (p ≤ 0.01) in MG63 cells. Interestingly, this mechanism is not valid in moderately and well-differentiated, biglycan non-expressing U-2OS and Saos-2 OS cells. Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug, doxorubicin, in MG63 OS cells (p ≤ 0.01). In conclusion, these data indicate a potential direct and adjunct therapeutical role of biglycan in osteosarcoma.
Collapse
|
10
|
Baghy K, Reszegi A, Horváth Z, Kovalszky I. The Role of Decorin in Cancer. BIOLOGY OF EXTRACELLULAR MATRIX 2022:23-47. [DOI: 10.1007/978-3-030-99708-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Matsushima N, Miyashita H, Kretsinger RH. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans. J Cell Commun Signal 2021; 15:519-531. [PMID: 33860400 DOI: 10.1007/s12079-021-00616-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan.
- Center for Medical Education, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Hiroki Miyashita
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan
- Hokubu Rinsho Co., Ltd, Sapporo, 060⎼0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
12
|
Baghy K, Reszegi A, Tátrai P, Kovalszky I. Decorin in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:17-38. [PMID: 32845500 DOI: 10.1007/978-3-030-48457-6_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-β, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Kennelly TM, Li Y, Cao Y, Qwarnstrom EE, Geoghegan M. Distinct Binding Interactions of α 5β 1-Integrin and Proteoglycans with Fibronectin. Biophys J 2019; 117:688-695. [PMID: 31337547 PMCID: PMC6712418 DOI: 10.1016/j.bpj.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dynamic single-molecule force spectroscopy was performed to monitor the unbinding of fibronectin with the proteoglycans syndecan-4 (SDC4) and decorin and to compare this with the unbinding characteristics of α5β1-integrin. A single energy barrier was sufficient to describe the unbinding of both SDC4 and decorin from fibronectin, whereas two barriers were observed for the dissociation of α5β1-integrin from fibronectin. The outer (high-affinity) barriers in the interactions of fibronectin with α5β1-integrin and SDC4 are characterized by larger barrier heights and widths and slower dissociation rates than those of the inner (low-affinity) barriers in the interactions of fibronectin with α5β1-integrin and decorin. These results indicate that SDC4 and (ultimately) α5β1-integrin have the ability to withstand deformation in their interactions with fibronectin, whereas the decorin-fibronectin interaction is considerably more brittle.
Collapse
Affiliation(s)
- Thomas M Kennelly
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yiran Li
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yi Cao
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Eva E Qwarnstrom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
14
|
Järvinen TAH, Ruoslahti E. Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. Br J Pharmacol 2019; 176:16-25. [PMID: 29847688 PMCID: PMC6284330 DOI: 10.1111/bph.14374] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) molecules play important roles in regulating processes such as cell proliferation, migration, differentiation and survival. Decorin is a proteoglycan that binds to ('decorates') collagen fibrils in the ECM. Decorin also interacts with many growth factors and their receptors, the most notable of these interactions being its inhibitory activity on TGF-β, the growth factor responsible for fibrosis formation. We have generated a recombinant, multi-functional, fusion-protein consisting of decorin as a therapeutic domain and a vascular homing and cell-penetrating peptide as a targeting vehicle. This recombinant decorin (CAR-DCN) accumulates at the sites of the targeted disease at higher levels and, as a result, has substantially enhanced biological activity over native decorin. CAR-DCN is an example of how molecular engineering can give a compound the ability to seek out sites of disease and enhance its therapeutic potential. CAR-DCN will hopefully be used to treat severe human diseases. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Tero A H Järvinen
- Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
- Department of Orthopedics and TraumatologyTampere University HospitalTampereFinland
| | - Erkki Ruoslahti
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
15
|
Shu CC, Smith MM, Appleyard RC, Little CB, Melrose J. Achilles and tail tendons of perlecan exon 3 null heparan sulphate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice. PeerJ 2018; 6:e5120. [PMID: 30042881 PMCID: PMC6056265 DOI: 10.7717/peerj.5120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to determine the role of the perlecan (Hspg2) heparan sulphate (HS) side chains on cell and matrix homeostasis in tail and Achilles tendons in 3 and 12 week old Hspg2 exon 3 null HS deficient (Hspg2Δ3 − ∕Δ3 −) and C57 BL/6 Wild Type (WT) mice. Perlecan has important cell regulatory and matrix organizational properties through HS mediated interactions with a range of growth factors and morphogens and with structural extracellular matrix glycoproteins which define tissue function and allow the resident cells to regulate tissue homeostasis. It was expected that ablation of the HS chains on perlecan would severely disrupt normal tendon organization and functional properties and it was envisaged that this study would better define the role of HS in normal tendon function and in tendon repair processes. Tail and Achilles tendons from each genotype were biomechanically tested (ultimate tensile stress (UTS), tensile modulus (TM)) and glycosaminoglycan (GAG) and collagen (hydroxyproline) compositional analyses were undertaken. Tenocytes were isolated from tail tendons from each mouse genotype and grown in monolayer culture. These cultures were undertaken in the presence of FGF-2 to assess the cell signaling properties of each genotype. Total RNA was isolated from 3–12 week old tail and Achilles tendons and qRT-PCR was undertaken to assess the expression of the following genes Vcan, Bgn, Dcn, Lum, Hspg2, Ltbp1, Ltbp2, Eln and Fbn1. Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils were imaged using transmission electron microscopy (TEM). FGF-2 stimulated tenocyte monolayers displayed elevated Adamts4, Mmp2, 3, 13 mRNA levels compared to WT mice. Non-stimulated tendon Col1A1, Vcan, Bgn, Dcn, Lum, Hspg2, Ltbp1, Ltbp2, Eln and Fbn1 mRNA levels showed no major differences between the two genotypes other than a decline with ageing while LTBP2 expression increased. Eln expression also declined to a greater extent in the perlecan exon 3 null mice (P < 0.05). Type VI collagen and perlecan were immunolocalised in tail tendon and collagen fibrils imaged using transmission electron microscopy (TEM). This indicated a more compact form of collagen localization in the perlecan exon 3 null mice. Collagen fibrils were also smaller by TEM, which may facilitate a more condensed fibril packing accounting for the superior UTS displayed by the perlecan exon 3 null mice. The amplified catabolic phenotype of Hspg2Δ3 − ∕Δ3 − mice may account for the age-dependent decline in GAG observed in tail tendon over 3 to 12 weeks. After Achilles tenotomy Hspg2Δ3 − ∕Δ3 − and WT mice had similar rates of recovery of UTS and TM over 12 weeks post operatively indicating that a deficiency of HS was not detrimental to tendon repair.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia
| | - Margaret M Smith
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia
| | - Richard C Appleyard
- Murray Maxwell Biomechanics Laboratory, Royal North Shore Hospital, University of Sydney, St. Leonards, New South Wales, Australia.,Surgical Skills Laboratory, Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia.,Sydney Medical School, Northern, University of Sydney, Sydney, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Laboratory, Kolling Institute of Medical Research, University of Sydney, Australia.,Sydney Medical School, Northern, University of Sydney, Sydney, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Tashima T, Nagatoishi S, Caaveiro JMM, Nakakido M, Sagara H, Kusano-Arai O, Iwanari H, Mimuro H, Hamakubo T, Ohnuma SI, Tsumoto K. Molecular basis for governing the morphology of type-I collagen fibrils by Osteomodulin. Commun Biol 2018; 1:33. [PMID: 30271919 PMCID: PMC6123635 DOI: 10.1038/s42003-018-0038-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
Small leucine-rich repeat proteoglycan (SLRP) proteins have an important role in the organization of the extracellular matrix, especially in the formation of collagen fibrils. However, the mechanism governing the shape of collagen fibrils is poorly understood. Here, we report that the protein Osteomodulin (OMD) of the SLRP family is a monomeric protein in solution that interacts with type-I collagen. This interaction is dominated by weak electrostatic forces employing negatively charged residues of OMD, in particular Glu284 and Glu303, and controlled by entropic factors. The protein OMD establishes a fast-binding equilibrium with collagen, where OMD may engage not only with individual collagen molecules, but also with the growing fibrils. This weak electrostatic interaction is carefully balanced so it modulates the shape of the fibrils without compromising their viability. Takumi Tashima and colleagues provide structural insights into how collagen fibrils are shaped by Osteomodulin. Osteomodulin keeps a fast-binding equilibrium with the collagen fibrils to slow down its growth, promoting the formation of uniform, intact collagen fibrils.
Collapse
Affiliation(s)
- Takumi Tashima
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Project Division of Advanced Biopharmaceutical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Osamu Kusano-Arai
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroko Iwanari
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hitomi Mimuro
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.,Department of Infectious Diseases Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takao Hamakubo
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, 153-8904, Japan
| | - Shin-Ichi Ohnuma
- Institute of Ophthalmology, University College London (UCL), London, EC1V 9EL, UK
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
17
|
Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget 2018; 9:5480-5491. [PMID: 29435195 PMCID: PMC5797066 DOI: 10.18632/oncotarget.23869] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/27/2017] [Indexed: 12/02/2022] Open
Abstract
Decorin (DCN), an extracellular matrix (ECM) protein, belongs to the small leucine-rich proteoglycan family. As a pluripotent molecule, DCN regulates the bioactivities of cell growth factors and participates in ECM assembly. Accumulating evidence has shown that DCN acts as a ligand of various cytokines and growth factors by directly or indirectly interacting with the corresponding signalling molecules involved in cell growth, differentiation, proliferation, adhesion and metastasis and that DCN especially plays vital roles in cancer cell proliferation, spread, pro-inflammatory processes and anti-fibrillogenesis. The multifunctional nature of DCN thus enables it to be a potential therapeutic agent for a variety of diseases and shows good prospects for clinical and research applications. DCN, an extracellular matrix (ECM) protein that belongs to the small leucine-rich proteoglycan family, is widely distributed and plays multifunctional roles in the stroma and epithelial cells. Originally, DCN was known as an effective collagen-binding partner for fibrillogenesis [1] and to modulate key biomechanical parameters of tissue integrity in the tendon, skin and cornea [2]; thus, it was named decorin (DCN). Since being initially cloned in 1986, DCN was discovered to be a structural constituent of the ECM [3]. However, the paradigm has been shifted; it has become increasingly evident that in addition to being a matrix structural protein, DCN affects a wide range of biological processes, including cell growth, differentiation, proliferation, adhesion, spread and migration, and regulates inflammation and fibrillogenesis [4–7]. Two main themes for DCN functions have emerged: maintenance of cellular structure and regulation of signal transduction pathways, culminating in anti-tumourigenic effects. Here, we review the interaction network of DCN and emphasize the biological correlations between these interactions, some of which are expected to be therapeutic intervention targets.
Collapse
Affiliation(s)
- Wen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yan Ge
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Cheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Ishikawa Y, Holden P, Bächinger HP. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J Biol Chem 2017; 292:17216-17224. [PMID: 28860186 DOI: 10.1074/jbc.m117.802298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Collagen is the most abundant protein in the extracellular matrix in humans and is critical to the integrity and function of many musculoskeletal tissues. A molecular ensemble comprising more than 20 molecules is involved in collagen biosynthesis in the rough endoplasmic reticulum. Two proteins, heat shock protein 47 (Hsp47/SERPINH1) and 65-kDa FK506-binding protein (FKBP65/FKBP10), have been shown to play important roles in this ensemble. In humans, autosomal recessive mutations in both genes cause similar osteogenesis imperfecta phenotypes. Whereas it has been proposed that Hsp47 and FKBP65 interact in the rough endoplasmic reticulum, there is neither clear evidence for this interaction nor any data regarding their binding affinities for each other. In this study using purified endogenous proteins, we examined the interaction between Hsp47, FKBP65, and collagen and also determined their binding affinities and functions in vitro Hsp47 and FKBP65 show a direct but weak interaction, and FKBP65 prefers to interact with Hsp47 rather than type I collagen. Our results suggest that a weak interaction between Hsp47 and FKBP65 confers mutual molecular stability and also allows for a synergistic effect during collagen folding. We also propose that Hsp47 likely acts as a hub molecule during collagen folding and secretion by directing other molecules to reach their target sites on collagens. Our findings may explain why osteogenesis imperfecta-causing mutations in both genes result in similar phenotypes.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Paul Holden
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| |
Collapse
|
19
|
Ishikawa Y, Mizuno K, Bächinger HP. Ziploc-ing the structure 2.0: Endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline. J Biol Chem 2017; 292:9273-9282. [PMID: 28385890 DOI: 10.1074/jbc.m116.772657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/27/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix proteins are biosynthesized in the rough endoplasmic reticulum (rER), and the triple-helical protein collagen is the most abundant extracellular matrix component in the human body. Many enzymes, molecular chaperones, and post-translational modifiers facilitate collagen biosynthesis. Collagen contains a large number of proline residues, so the cis/trans isomerization of proline peptide bonds is the rate-limiting step during triple-helix formation. Accordingly, the rER-resident peptidyl prolyl cis/trans isomerases (PPIases) play an important role in the zipper-like triple-helix formation in collagen. We previously described this process as "Ziploc-ing the structure" and now provide additional information on the activity of individual rER PPIases. We investigated the substrate preferences of these PPIases in vitro using type III collagen, the unhydroxylated quarter fragment of type III collagen, and synthetic peptides as substrates. We observed changes in activity of six rER-resident PPIases, cyclophilin B (encoded by the PPIB gene), FKBP13 (FKBP2), FKBP19 (FKBP11), FKBP22 (FKBP14), FKBP23 (FKBP7), and FKBP65 (FKBP10), due to posttranslational modifications of proline residues in the substrate. Cyclophilin B and FKBP13 exhibited much lower activity toward post-translationally modified substrates. In contrast, FKBP19, FKBP22, and FKBP65 showed increased activity toward hydroxyproline-containing peptide substrates. Moreover, FKBP22 showed a hydroxyproline-dependent effect by increasing the amount of refolded type III collagen in vitro and FKBP19 seems to interact with triple helical type I collagen. Therefore, we propose that hydroxyproline modulates the rate of Ziploc-ing of the triple helix of collagen in the rER.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University and.,Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Kazunori Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University and .,Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| |
Collapse
|
20
|
Paracuellos P, Kalamajski S, Bonna A, Bihan D, Farndale RW, Hohenester E. Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin. Matrix Biol 2017; 63:106-116. [PMID: 28215822 PMCID: PMC5618690 DOI: 10.1016/j.matbio.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~ 2.2 Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs. Their overall fold is similar to that of the prototypical SLRP, decorin, but unlike decorin neither fibromodulin nor chondroadherin forms a stable dimer. A previously identified binding site for integrin α2β1 maps to an α-helix in the C-terminal cap region of chondroadherin. Interrogation of the Collagen Toolkits revealed a unique binding site for chondroadherin in collagen II, and no binding to collagen III. A triple-helical peptide containing the sequence GAOGPSGFQGLOGPOGPO (O is hydroxyproline) forms a stable complex with chondroadherin in solution. In fibrillar collagen I and II, this sequence is aligned with the collagen cross-linking site KGHR, suggesting a role for chondroadherin in cross-linking. The crystal structures of fibromodulin and chondroadherin have been determined. Fibromodulin and chondroadherin are monomeric in solution. Chondroadherin binds to a unique site in type II collagen that contains the sequence GAOGPSGFQGLOGPOGPO (O, hydroxyproline). In collagen fibres, the chondroadherin binding site is adjacent to the cross-linking site, KGHR.
Collapse
Affiliation(s)
| | | | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
21
|
Rämisch S, Pramhed A, Tillgren V, Aspberg A, Logan DT. Crystal structure of human chondroadherin: solving a difficult molecular-replacement problem usingde novomodels. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:53-63. [DOI: 10.1107/s205979831601980x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023]
Abstract
Chondroadherin (CHAD) is a cartilage matrix protein that mediates the adhesion of isolated chondrocytes. Its protein core is composed of 11 leucine-rich repeats (LRR) flanked by cysteine-rich domains. CHAD makes important interactions with collagen as well as with cell-surface heparin sulfate proteoglycans and α2β1integrins. The integrin-binding site is located in a region of hitherto unknown structure at the C-terminal end of CHAD. Peptides based on the C-terminal human CHAD (hCHAD) sequence have shown therapeutic potential for treating osteoporosis. This article describes a still-unconventional structure solution by phasing withde novomodels, the first of a β-rich protein. Structure determination of hCHAD using traditional, though nonsystematic, molecular replacement was unsuccessful in the hands of the authors, possibly owing to a combination of low sequence identity to other LRR proteins, four copies in the asymmetric unit and weak translational pseudosymmetry. However, it was possible to solve the structure by generating a large number ofde novomodels for the central LRR domain usingRosettaand multiple parallel molecular-replacement attempts usingAMPLE. The hCHAD structure reveals an ordered C-terminal domain belonging to the LRRCT fold, with the integrin-binding motif (WLEAK) being part of a regular α-helix, and suggests ways in which experimental therapeutic peptides can be improved. The crystal structure itself and docking simulations further support that hCHAD dimers form in a similar manner to other matrix LRR proteins.
Collapse
|
22
|
Murab S, Ghosh S. Impact of osmoregulatory agents on the recovery of collagen conformation in decellularized corneas. ACTA ACUST UNITED AC 2016; 11:065005. [PMID: 27786166 DOI: 10.1088/1748-6041/11/6/065005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The process of decellularization of the cornea leads to the removal of cells and antigens. However, during decellularization the ultrastructure of the corneal matrix is usually damaged and a secondary conformation of the collagen fibrils is modulated resulting in altered transparency and physical properties. The strategy for recovering modulation in collagen conformation may help to attain the native physical properties and transparency of the cornea. Decellularized corneas were treated with varied concentrations of glycerol and dextran, and the collagen conformation was monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray diffraction (XRD) and Raman spectroscopic analysis. The peak at ~4 Å in XRD established the presence of transitional conformations that decreased with the application of osmoregulatory agents, but could not be completely eliminated. This was validated by the results of ATR-FTIR and Raman analysis. Importantly, the mechanism of this loss and the regaining of transparency has been proposed on the basis of the detachment of decorin molecules from the collagen triple helices, due to the change in collagen conformation during decellularization, and the subsequent partial reversal due to the desiccation effect of the osmoregulatory agents on collagen molecules. Taken together, collagen conformational transition can be considered as an indexing tool for the development of improved decellularization techniques.
Collapse
Affiliation(s)
- Sumit Murab
- Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India
| | | |
Collapse
|
23
|
Gubbiotti MA, Vallet SD, Ricard-Blum S, Iozzo RV. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol 2016; 55:7-21. [PMID: 27693454 DOI: 10.1016/j.matbio.2016.09.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decorin, a prototype small leucine-rich proteoglycan, regulates a vast array of cellular processes including collagen fibrillogenesis, wound repair, angiostasis, tumor growth, and autophagy. This functional versatility arises from a wide array of decorin/protein interactions also including interactions with its single glycosaminoglycan side chain. The decorin-binding partners encompass numerous categories ranging from extracellular matrix molecules to cell surface receptors to growth factors and enzymes. Despite the diversity of the decorin interacting network, two main roles emerge as prominent themes in decorin function: maintenance of cellular structure and outside-in signaling, culminating in anti-tumorigenic effects. Here we present contemporary knowledge regarding the decorin interacting network and discuss in detail the biological relevance of these pleiotropic interactions, some of which could be targeted by therapeutic interventions.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sylvain D Vallet
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Sylvie Ricard-Blum
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
24
|
|
25
|
Kamma-Lorger CS, Pinali C, Martínez JC, Harris J, Young RD, Bredrup C, Crosas E, Malfois M, Rødahl E, Meek KM, Knupp C. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD). PLoS One 2016; 11:e0147948. [PMID: 26828927 PMCID: PMC4734740 DOI: 10.1371/journal.pone.0147948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.
Collapse
Affiliation(s)
- Christina S. Kamma-Lorger
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Christian Pinali
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Juan Carlos Martínez
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
| | - Jon Harris
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Robert D. Young
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Cecilie Bredrup
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Eva Crosas
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
| | - Marc Malfois
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
| | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Keith M. Meek
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Carlo Knupp
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
26
|
Neill T, Schaefer L, Iozzo RV. Decorin as a multivalent therapeutic agent against cancer. Adv Drug Deliv Rev 2016; 97:174-85. [PMID: 26522384 DOI: 10.1016/j.addr.2015.10.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell mitophagy, and angiostasis. Decorin is also pro-inflammatory by modulating macrophage function and cytokine secretion. Decorin suppresses tumorigenic growth, angiogenesis, and prevents metastatic lesions in a variety of in vitro and in vivo tumor models. Therefore, decorin would be an ideal therapeutic candidate for combating solid malignancies.
Collapse
|
27
|
Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:654765. [PMID: 26697491 PMCID: PMC4677162 DOI: 10.1155/2015/654765] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 01/12/2023]
Abstract
Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer.
Collapse
|
28
|
Federico S, Pierce BF, Piluso S, Wischke C, Lendlein A, Neffe AT. Design von Decorin-basierten Peptiden, die an Kollagen I binden, und ihr Potenzial als Adhäsionssequenzen in Biomaterialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Federico S, Pierce BF, Piluso S, Wischke C, Lendlein A, Neffe AT. Design of Decorin-Based Peptides That Bind to Collagen I and their Potential as Adhesion Moieties in Biomaterials. Angew Chem Int Ed Engl 2015. [PMID: 26216251 DOI: 10.1002/anie.201505227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagen I, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine.
Collapse
Affiliation(s)
- Stefania Federico
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany).,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany)
| | - Benjamin F Pierce
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany)
| | - Susanna Piluso
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany).,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany)
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany)
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany).,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany)
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany). .,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany).
| |
Collapse
|
30
|
Snyman C, Niesler CU. MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil 2015; 36:215-25. [DOI: 10.1007/s10974-015-9414-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/22/2015] [Indexed: 12/15/2022]
|
31
|
Tashima T, Nagatoishi S, Sagara H, Ohnuma SI, Tsumoto K. Osteomodulin regulates diameter and alters shape of collagen fibrils. Biochem Biophys Res Commun 2015; 463:292-6. [PMID: 26003732 DOI: 10.1016/j.bbrc.2015.05.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022]
Abstract
Osteomodulin (OMD) is a member of the small leucine-rich repeat proteoglycan family, which is involved in the organization of the extracellular matrix. OMD is located in bone tissue and is reportedly important for bone mineralization. However, the details of OMD function in bone formation are poorly understood. Using the baculovirus expression system, we produced recombinant human OMD and analyzed its interaction with type I collagen, which is abundant in bone. In this result, OMD directly interacted with purified immobilized collagen and OMD suppressed collagen fibril formation in a turbidity assay. Morphological analysis of collagen in the presence or absence of OMD demonstrated that OMD reduces the diameter and changes the shape of collagen fibrils. We conclude that OMD regulates the extracellular matrix during bone formation.
Collapse
Affiliation(s)
- Takumi Tashima
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Satoru Nagatoishi
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Hiroshi Sagara
- Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Shin-Ichi Ohnuma
- Institute of Ophthalmology, University College London (UCL), 11-43 Bath Street, London EC1V 9EL, UK.
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
32
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 850] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|