1
|
Sah JP, Dominguez De Leon JE, Berg IC, Cornelius BL, Dekle DB, Ismail E, Cheng X, Giridharan GA, Sethu P. Understanding the role of vascular stretch on modulation of VWF and ANGPT-2 in continuous flow left ventricular assist device (CF-VAD) patients. LAB ON A CHIP 2025. [PMID: 40314578 PMCID: PMC12047207 DOI: 10.1039/d4lc01065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Non-surgical bleeding is a common complication in patients on continuous flow left ventricular assist device (CF-VAD) support. This study investigates how the transition from cyclic to constant stretch following CF-VAD implantation affects endothelial biosynthesis and release of Von Willebrand factor (VWF) and angiopoietin-2 (ANGPT-2), two molecules that play an essential role in the development of non-surgical bleeding. Human aortic endothelial and umbilical vein endothelial cells (HAECs and HUVECs) were cultured within a uniaxial stretch device that mimics stretch associated with both normal pulsatile and CF-VAD conditions. Following 72 hours of stretch, transcriptional regulation, intracellular accumulation, and secretion of VWF and ANGPT-2 were evaluated using molecular expression profiling and immunofluorescence microscopy. Constant stretch associated with CF-VADs upregulates transcriptional levels of VWF and ANGPT-2 in HAECs and HUVECs compared to physiological cyclic stretch (p < 0.05). Transcriptional increases in both VWF and ANGPT-2 in HAECs also resulted in increased intracellular protein levels of VWF and ANGPT-2 measured using ELISA, western blots and immunofluorescence microscopy, whereas in HUVECs, the intracellular increase was evident only with western blots and immunofluorescence microscopy. Finally, constant stretch appears to promote ANGPT-2 release and inhibit release of VWF from both HAECs and HUVECs compared to cyclic stretch. Our study found that constant stretch upregulates the production of both VWF and ANGPT-2. However, while the release of ANGPT-2 is elevated under constant stretch, the release of VWF declines, resulting in elevated extracellular levels of ANGPT-2, but not VWF.
Collapse
Affiliation(s)
- Jay Prakash Sah
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Javier E Dominguez De Leon
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ian C Berg
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Braden L Cornelius
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniel B Dekle
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Esraa Ismail
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Xuanhong Cheng
- Department of Bioengineering and Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Guruprasad A Giridharan
- Department of Bioengineering, J. B. Speed School of Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
- Department of Biomedical Engineering, School of Engineering and School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Cai Z, Meng K, Yu T, Xi Y, Yuan Z, Wang X, Wang C, Li L, Fu X. IFN-γ-mediated suppression of ANGPT2-Tie2 in endothelial cells facilitates tumor vascular normalization during immunotherapy. Front Immunol 2025; 16:1551322. [PMID: 40370455 PMCID: PMC12075545 DOI: 10.3389/fimmu.2025.1551322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Tumor angiogenesis is a critical biological hallmark of cancer, which involves multiple molecularly regulated signaling pathways, including the angiopoietin (ANGPT)-Tie2 and the vascular endothelial growth factor (VEGF) signaling pathways. Despite initial optimism, targeting tumor angiogenesis in the treatment of lung adenocarcinoma (LUAD) has been unsatisfactory. Currently, monotherapy with PD-1/PD-L1 inhibitors, or their combination with bevacizumab, is considered the standard therapeutic approach for LUAD. Recent studies have shown that immunotherapy suppresses tumor angiogenesis and facilitates vascular normalization. However, whether and how anti-PD-L1 therapy influences tumor vasculature remains unclear. Methods To investigate the impact of immunotherapy on the vasculature of LUAD, a mouse model of lung adenocarcinoma was established by subcutaneous implantation of Lewis lung carcinoma cells in vivo. The effects of different treatments on microvessel density and pericyte coverage were explored, and the expression of angiogenesis-related factors was analyzed. Furthermore, to explore the molecular mechanisms through which IFN-γ regulates tumor blood vessels during immunotherapy, we elucidated the specific mechanisms in vitro by means of techniques such as siRNA, ChIP, RT-qPCR, Western blot, and immunofluorescence. Finally, the effects of IFN-γ on the proliferation, migration, and angiogenic function of endothelial cells (ECs) were evaluated through CCK-8, Transwell, and HUVEC tube formation assays. Results Employing a mouse model of LUAD, we demonstrated that PD-L1 blockade therapy inhibits tumor angiogenesis and normalizes vasculature in an IFN-γ-signaling-dependent manner. Notably, anti-PD-L1 therapy reduced Tie2 and ANGPT2 expression, and these effects were reversed by the JAK1/2 inhibitor. Mechanistically, we demonstrated that IFN-γ inhibited Tie2 and ANGPT2 expression in ECs, and suppressed ANGPT2 gene transcription through the AKT-FOXO1 signaling pathway. Interestingly, IFN-γ-mediated activation of STAT1 exerts negative regulation by directly binding to the promoter regions of the ANGPT2 and TEK genes. Functionally, IFN-γ limits the migration, proliferation, and tube formation of ECs. Discussion In conclusion, our results revealed a novel mechanism wherein IFN-γ-mediated inhibition of ANGPT2-Tie2 facilitates vascular normalization during immunotherapy in LUAD, which performs an essential function in the antitumor efficacy of immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| |
Collapse
|
3
|
Tamas F, Tamas CI, Suciu BA, Balasa AF. Extracellular Vesicle-Associated Angiopoietin-2 and Cell Migration-Inducing Protein in Lung Cancer Progression and Brain Metastases. Cureus 2025; 17:e80200. [PMID: 40190907 PMCID: PMC11972550 DOI: 10.7759/cureus.80200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Angiopoietin-2 (ANGPT2) and cell migration-inducing protein (CEMIP) are key regulators of angiogenesis, extracellular matrix remodeling, and metastatic progression in various cancers, including lung cancer (LC). The presence of these biomarkers in extracellular vesicles (EVs) may offer valuable insights into the molecular mechanisms underlying LC progression and metastasis. Extracellular vesicles play a critical role in LC by enhancing intercellular communication and supporting processes such as angiogenesis, immune evasion, and metastasis, transferring key molecules like vascular endothelial growth factor (VEGF) and pro-angiogenic microRNAs (miRNAs). METHODS This study aimed to investigate the presence and quantification of ANGPT2 and CEMIP in the cargo of EVs isolated from plasma samples obtained from the peripheral venous blood of patients with localized lung cancer (LLC group), lung cancer with brain metastases (LCM group), and healthy controls (HC group). EVs were isolated using the density gradient ultracentrifugation method, and their characterization was performed through scanning and transmission electron microscopy as well as flow cytometry. Western blot analysis was used to identify ANGPT2 and CEMIP in EV cargo, and band intensity from western blot images was quantified using specialized software. RESULTS The expression of ANGPT2 and CEMIP in EV cargo was significantly higher in the oncologic groups (LLC and LCM combined) compared to the HC group. Notably, EV CEMIP levels were, on average, 59% higher in patients with brain metastases than in those with localized lung cancer. Following surgical resection, postoperative EV ANGPT2 and EV CEMIP levels decreased by 36% and 8.5%, respectively, in the LLC group, and by 40% and 4.6%, respectively, in the LCM group. CONCLUSION These findings emphasize the potential of ANGPT2 and CEMIP as biomarkers for LC progression and prognosis. To our knowledge, no previous study has evaluated the presence and quantification of ANGPT2 and CEMIP in EV cargo from lung cancer patients. To further validate their role in cancer progression, functional studies should explore the mechanistic effects of EV-associated ANGPT2 and CEMIP on angiogenesis, immune modulation, cell migration, extracellular matrix remodeling, and tumor progression in lung cancer models.
Collapse
Affiliation(s)
- Flaviu Tamas
- Neurosurgery, Doctoral School of Medicine and Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
- Neurosurgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| | - Corina I Tamas
- Neurosurgery, Doctoral School of Medicine and Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
- Neurosurgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| | - Bogdan A Suciu
- Thoracic Surgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| | - Adrian F Balasa
- Neurosurgery, Emergency Clinical County Hospital, Târgu Mureș, ROU
| |
Collapse
|
4
|
Das SK, Fisher PB. MDA-9/Syntenin as a therapeutic cancer metastasis target: current molecular and preclinical understanding. Expert Opin Ther Targets 2025; 29:75-92. [PMID: 40056146 PMCID: PMC12047740 DOI: 10.1080/14728222.2025.2472042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION Metastasis is a principal cause of patient morbidity and death from solid cancers with current therapies being inadequate. AREAS COVERED Detailed genomic analyses document mutational differences between the initial tumor and metastatic clones, posing a challenge to current targeted therapies, which focus predominantly on the phenotype of primary tumors. Considering the diverse signaling cascades and numerous compensatory pathways in metastasis, designing broad-spectrum anti-metastatic therapies remains challenging. Although significant anti-cancer activity is evident in specific patients with advanced cancers and metastases treated with single or combination immunotherapies, there are limitations, i.e. toxicity, immune inhibitory 'cold' tumors and the tumor microenvironment (TME), and intra- and intertumoral heterogeneity. Accordingly, multidisciplinary strategies are required to attack metastases and the TME to obtain optimal therapeutic responses. EXPERT OPINION To create potent anti-metastatic agents, defining critical genes/proteins and drugs controlling discrete steps in the metastatic cascade are mandatory. Melanoma differentiation-associated gene-9 (MDA-9), Syndecan Binding Protein (SDCBP) or Syntenin (MDA-9/Syntenin) is robustly expressed and serves essential roles in cancer disease progression through protein-protein interactions with additional metastasis-associated molecules and pathways. The importance of MDA-9/Syntenin in the metastatic process is now established and first-in-class inhibitory molecules look promising with some moving toward clinical evaluation.
Collapse
Affiliation(s)
- Swadesh K. Das
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
5
|
Oliveira I, Rodrigues-Santos P, Ferreira L, Pires das Neves R. Synthetic and biological nanoparticles for cancer immunotherapy. Biomater Sci 2024; 12:5933-5960. [PMID: 39441658 DOI: 10.1039/d4bm00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer is becoming the main public health problem globally. Conventional chemotherapy approaches are slowly being replaced or complemented by new therapies that avoid the loss of healthy tissue, limit off-targets, and eradicate cancer cells. Immunotherapy is nowadays an important strategy for cancer treatment, that uses the host's anti-tumor response by activating the immune system and increasing the effector cell number, while, minimizing cancer's immune-suppressor mechanisms. Its efficacy is still limited by poor therapeutic targeting, low immunogenicity, antigen presentation deficiency, impaired T-cell trafficking and infiltration, heterogeneous microenvironment, multiple immune checkpoints and unwanted side effects, which could benefit from improved delivery systems, able to release immunotherapeutic agents to tumor microenvironment and immune cells. Nanoparticles (NPs) for immunotherapy (Nano-IT), have a huge potential to solve these limitations. Natural and/or synthetic, targeted and/or stimuli-responsive nanoparticles can be used to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity. They can also be used as co-adjuvants that enhance the activity of IT effector cells. These nanoparticles can be engineered in the natural context of cell-derived extracellular vesicles (EVs) or exosomes or can be fully synthetic. In this review, a detailed SWOT analysis is done through the comparison of engineered-synthetic and naturaly-derived nanoparticles in terms of their current and future use in cancer immunotherapy.
Collapse
Affiliation(s)
- Inês Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
6
|
Harris HJ, Łaniewski P, Cui H, Roe DJ, Chase DM, Herbst-Kralovetz MM. Cervicovaginal lavages uncover growth factors as key biomarkers for early diagnosis and prognosis of endometrial cancer. MOLECULAR BIOMEDICINE 2024; 5:55. [PMID: 39511039 PMCID: PMC11543965 DOI: 10.1186/s43556-024-00219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Endometrial cancer (EC) rates are continuing to rise and it remains the most common gynecologic cancer in the US. Existing diagnostic methods are invasive and can cause pain and anxiety. Hence, there is a need for less invasive diagnostics for early EC detection. The study objective was to evaluate the utility of growth factors collected through minimally invasive cervicovaginal lavage (CVL) sampling as diagnostic and prognostic biomarkers for EC. CVL samples from 192 individuals undergoing hysterectomy for benign or malignant conditions were collected and used to quantify the concentrations of 19 growth and angiogenic factors using multiplex immunoassays. Patients were categorized based on disease groups: benign conditions (n = 108), endometrial hyperplasia (n = 18), and EC (n = 66). EC group was stratified into grade 1/2 endometrial endometrioid cancer (n = 53) and other EC subtypes (n = 13). Statistical associations were assessed using receiver operating characteristics, Spearman correlations and hierarchical clustering. Growth and angiogenic factors: angiopoietin-2, endoglin, fibroblast activation protein (FAP), melanoma inhibitory activity, and vascular endothelial growth factor-A (VEGF-A) were significantly (p < 0.0001) elevated in EC patients. A multivariate model combining 11 proteins with patient age and body mass index exhibited excellent discriminatory potential (area under curve = 0.918) for EC, with a specificity of 90.7% and a sensitivity of 87.8%. Moreover, angiopoietin-2, FAP and VEGF-A significantly (p < 0.05-0.001) associated with tumor grade, size, myometrial invasion, and mismatch repair status. Our results highlight the innovative use of growth and angiogenic factors collected through CVL sampling for the detecting endometrial cancer, showcasing not only their diagnostic potential but also their prognostic value.
Collapse
Affiliation(s)
- Hannah J Harris
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Life Sciences, University of Bath, Bath, UK
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Haiyan Cui
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Denise J Roe
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Dana M Chase
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
7
|
Law M, Wang PC, Zhou ZY, Wang Y. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals (Basel) 2024; 17:1495. [PMID: 39598406 PMCID: PMC11597311 DOI: 10.3390/ph17111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy. It suppresses hypoxia-inducible factor-1α (HIF-1α)-mediated pathological angiogenesis while promoting healthy, physiological capillarization. As a result, SIRT1 protects against microvascular dysfunction, such as diabetic microangiopathy, while enhancing exercise-induced skeletal muscle capillarization and energy metabolism. In the brain, SIRT1 upregulates tight junction proteins and strengthens their interactions, thus maintaining the integrity of the blood-brain barrier. The present review summarizes recent findings on the regulation of microvascular function by SIRT1, the underlying mechanisms, and various approaches to modulate SIRT1 activity in microcirculation. The importance of SIRT1 as a molecular target in aging-related diseases, such as diabetic retinopathy and stroke, is underscored, along with the need for more clinical evidence to support SIRT1 modulation in the microcirculation.
Collapse
Affiliation(s)
- Martin Law
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
| | - Pei-Chun Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Sun DS, Chang HH. Extracellular vesicles: Function, resilience, biomarker, bioengineering, and clinical implications. Tzu Chi Med J 2024; 36:251-259. [PMID: 38993825 PMCID: PMC11236075 DOI: 10.4103/tcmj.tcmj_28_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, disease pathology, and therapeutic innovation. Initially overlooked as cellular debris, EVs are now recognized as vital mediators of cell-to-cell communication, ferrying a cargo of proteins, nucleic acids, and lipids, providing cellular resilience in response to stresses. This review provides a comprehensive overview of EVs, focusing on their role as biomarkers in disease diagnosis, their functional significance in physiological and pathological processes, and the potential of bioengineering for therapeutic applications. EVs offer a promising avenue for noninvasive disease diagnosis and monitoring, reflecting the physiological state of originating cells. Their diagnostic potential spans a spectrum of diseases, including cancer, cardiovascular disorders, neurodegenerative diseases, and infectious diseases. Moreover, their presence in bodily fluids such as blood, urine, and cerebrospinal fluid enhances their diagnostic utility, presenting advantages over traditional methods. Beyond diagnostics, EVs mediate crucial roles in intercellular communication, facilitating the transfer of bioactive molecules between cells. This communication modulates various physiological processes such as tissue regeneration, immune modulation, and neuronal communication. Dysregulation of EV-mediated communication is implicated in diseases such as cancer, immune disorders, and neurodegenerative diseases, highlighting their therapeutic potential. Bioengineering techniques offer avenues for manipulating EVs for therapeutic applications, from isolation and purification to engineering cargo and targeted delivery systems. These approaches hold promise for developing novel therapeutics tailored to specific diseases, revolutionizing personalized medicine. However, challenges such as standardization, scalability, and regulatory approval need addressing for successful clinical translation. Overall, EVs represent a dynamic frontier in biomedical research with vast potential for diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Srkalovic G, Nijim S, Srkalovic MB, Fajgenbaum D. Increase in Vascular Endothelial Growth Factor (VEGF) Expression and the Pathogenesis of iMCD-TAFRO. Biomedicines 2024; 12:1328. [PMID: 38927535 PMCID: PMC11201201 DOI: 10.3390/biomedicines12061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
TAFRO (thrombocytopenia (T), anasarca (A), fever (F), reticulin fibrosis (F/R), renal failure (R), and organomegaly (O)) is a heterogeneous clinical subtype of idiopathic multicentric Castleman disease (iMCD) associated with a significantly poorer prognosis than other subtypes of iMCD. TAFRO symptomatology can also be seen in pathological contexts outside of iMCD, but it is unclear if those cases should be considered representative of a different disease entity or simply a severe presentation of other infectious, malignant, and rheumatological diseases. While interleukin-6 (IL-6) is an established driver of iMCD-TAFRO pathogenesis in a subset of patients, the etiology is unknown. Recent case reports and literature reviews on TAFRO patients suggest that vascular endothelial growth factor (VEGF), and the interplay of VEGF and IL-6 in concert, rather than IL-6 as a single cytokine, may be drivers for iMCD-TAFRO pathophysiology, especially renal injury. In this review, we discuss the possible role of VEGF in the pathophysiology and clinical manifestations of iMCD-TAFRO. In particular, VEGF may be involved in iMCD-TAFRO pathology through its ability to activate RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathways. Further elucidating a role for the VEGF-IL-6 axis and additional disease drivers may shed light on therapeutic options for the treatment of TAFRO patients who do not respond to, or otherwise relapse following, treatment with IL-6 targeting drugs. This review investigates the potential role of VEGF in the pathophysiology of iMCD-TAFRO and the potential for targeting related signaling pathways in the future.
Collapse
Affiliation(s)
- Gordan Srkalovic
- Herbert-Herman Cancer Center, University of Michigan Health-Sparrow, Lansing, MI 48912, USA
| | - Sally Nijim
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.N.); (D.F.)
| | | | - David Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.N.); (D.F.)
| |
Collapse
|
11
|
Chen J, Ding Y, Jiang C, Qu R, Wren JD, Georgescu C, Wang X, Reuter DN, Liu B, Giles CB, Mayr CH, Schiller HB, Dai J, Stipp CS, Subramaniyan B, Wang J, Zuo H, Huang C, Fung KM, Rice HC, Sonnenberg A, Wu D, Walters MS, Zhao YY, Kanie T, Hays FA, Papin JF, Wang DW, Zhang XA. CD151 Maintains Endolysosomal Protein Quality to Inhibit Vascular Inflammation. Circ Res 2024; 134:1330-1347. [PMID: 38557119 PMCID: PMC11081830 DOI: 10.1161/circresaha.123.323190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.
Collapse
Affiliation(s)
- Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Jiang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Rongmei Qu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | - Xuejun Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Beibei Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Cory B. Giles
- Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | | | - Jingxing Dai
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Houjuan Zuo
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Huang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kar-Ming Fung
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Heather C. Rice
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - David Wu
- University of Chicago, Chicago, IL, USA
| | | | - You-Yang Zhao
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tomoharu Kanie
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Franklin A. Hays
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - James F. Papin
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Dao Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin A. Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Lead contact
| |
Collapse
|
12
|
Minakawa T, Yamashita JK. Versatile extracellular vesicle-mediated information transfer: intercellular synchronization of differentiation and of cellular phenotypes, and future perspectives. Inflamm Regen 2024; 44:4. [PMID: 38225584 PMCID: PMC10789073 DOI: 10.1186/s41232-024-00318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant attention as carriers in intercellular communication. The vast array of information contained within EVs is critical for various cellular activities, such as proliferation and differentiation of multiple cell types. Moreover, EVs are being employed in disease diagnostics, implicated in disease etiology, and have shown promise in tissue repair. Recently, a phenomenon has been discovered in which cellular phenotypes, including the progression of differentiation, are synchronized among cells via EVs. This synchronization could be prevalent in widespread different situations in embryogenesis and tissue organization and maintenance. Given the increasing research on multi-cellular tissues and organoids, the role of EV-mediated intercellular communication has become increasingly crucial. This review begins with fundamental knowledge of EVs and then discusses recent findings, various modes of information transfer via EVs, and synchronization of cellular phenotypes.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun K Yamashita
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
13
|
Gupta MK, Vadde R. Delivery strategies of immunotherapies in the treatment of pancreatic cancer. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:173-202. [DOI: 10.1016/b978-0-443-23523-8.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Zhang M, Yue X, Zhao X, Lu Y, Liu H, Zhang Z, Ma H, Wang X, Xing H. Macrophage-specific deletion of Notch-1 induced M2 anti-inflammatory effect in atherosclerosis via activation of the PI3K-oxidative stress axis. Aging (Albany NY) 2023; 15:15196-15212. [PMID: 38149979 PMCID: PMC10781475 DOI: 10.18632/aging.205342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE Notch-1 signaling is significantly associated with the occurrence and development of atherosclerosis (AS). However, the molecular mechanisms underlying the specific deletion of Notch-1 in AS-associated macrophages are not fully understood. This study aimed to investigate the effects of Notch-1 in AS. METHODS AND RESULTS Tissue samples were obtained from atherosclerotic segments of human carotid arteries. Immunofluorescence staining showed that Notch-1 was significantly colocalized with macrophages (CD68+), and Notch-1 staining was increased in human vulnerable plaques. Notch-1MAC-KO/ApoE-/- mice were generated in which Notch-1 was selectively inactivated in macrophages, and WT for littermate control mice (ApoE-/-/Notch-1WT). A control group was then established. All mice fed with a high-fat and Oil Red O, Movat, a-SMA, CD68, and Sirius red staining were used to evaluate the morphology. Specific deletion of Notch-1 in macrophages repressed the pathophysiology of AS. Immunofluorescent staining and Western blotting revealed that Notch-1MAC-KO repressed M1 and M2 responses in AS. Here, GSEA revealed that Notch-1 activation and PI3K signaling were statistically significantly correlated with each other, and Notch-1 was involved in the regulation of the PI3K signaling pathway. In the in vitro experiments, the secretion of Arg-1 and exosomes was classified by peritoneal macrophages of Notch-1MAC-KO/ApoE-/- and Notch-1WT/ApoE-/- mice. Immunohistochemistry staining and Western blotting were used to measure the expression levels of Notch1, PI3K, p-PI3K, AKT, p-AKT, Arg-1, IL-6, CD36, SREBP-1, CD206, iNOS, cleaved-caspase-3/-9, Bax, CD9, Alix and TSG101 in the peritoneal macrophages and exosomes, respectively. CONCLUSIONS The specific deletion of Notch-1 in macrophage represses the formation and development of AS via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xiangyong Yue
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xueping Zhao
- Department of Nursing, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Yonggang Lu
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Hongtao Liu
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Zhe Zhang
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Huan Ma
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xing Wang
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Hanying Xing
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
15
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
16
|
Fayyazpour P, Fayyazpour A, Abbasi K, Vaez-Gharamaleki Y, Zangbar MSS, Raeisi M, Mehdizadeh A. The role of exosomes in cancer biology by shedding light on their lipid contents. Pathol Res Pract 2023; 250:154813. [PMID: 37769395 DOI: 10.1016/j.prp.2023.154813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Exosomes are extracellular bilayer membrane nanovesicles released by cells after the fusion of multivesicular bodies (MVBs) with the plasma membrane. One of the interesting features of exosomes is their ability to carry and transfer various molecules, including lipids, proteins, nucleic acids, and therapeutic cargoes among cells. As intercellular signaling organelles, exosomes participate in various signaling processes such as tumor growth, metastasis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and cell physiology such as cell-to-cell communication. Moreover, these particles are considered good vehicles to shuttle vaccines and drugs for therapeutic applications regarding cancers and tumor cells. These bioactive vesicles are also rich in various lipid molecules such as cholesterol, sphingomyelin (SM), glycosphingolipids, and phosphatidylserine (PS). These lipids play an important role in the formation, release, and function of the exosomes and interestingly, some lipids are used as biomarkers in cancer diagnosis. This review aimed to focus on exosomes lipid content and their role in cancer biology.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fayyazpour
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Borelli B, Crucitta S, Boccaccino A, Antista M, Antoniotti C, Marmorino F, Rossini D, Conca V, Germani MM, Provenzano L, Spagnoletti A, Leone AG, Cucchiara F, Pietrantonio F, Del Re M, Danesi R, Masi G, Cremolini C, Moretto R. TK-1, TP, Ang-2, and Tie-2 mRNA expression in plasma-derived microvesicles of chemo-refractory metastatic colorectal cancer patients. TUMORI JOURNAL 2023; 109:481-489. [PMID: 36609197 DOI: 10.1177/03008916221147944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Trifluridine/tipiracil and regorafenib are indicated for metastatic colorectal cancer (mCRC) patients' refractory to standard chemotherapy. No prognostic or predictive biomarkers are available for these agents. METHODS We assessed messenger ribonucleic acid (mRNA) expression of four biomarkers implicated in the mechanism of action of trifluridine/tipiracil (TK-1 and TP) and regorafenib (Ang-2 and Tie-2) in baseline plasma-derived microvesicles of chemo-refractory mCRC patients treated with these agents (trifluridine/tipiracil cohort and regorafenib cohort), to explore their prognostic and predictive role. RESULTS Baseline characteristics of the two cohorts were not different. Ang-2 mRNA was not detectable. Only TK-1 expression measured as a continuous variable was associated with progression-free survival (HR=1.09, 95%CI: 0.99-1.21; p=0.07) and overall survival (HR=1.11, 95%CI: 1.00-1.22; p=0.04), confirmed at multivariate analysis for progression-free survival (p=0.02) with a positive trend for overall survival (p=0.08). Baseline mRNA levels of TK-1, TP and Tie-2 were not predictive of trifluridine/tipiracil and regorafenib benefit. CONCLUSION Baseline mRNA levels of TK-1, TP and Tie-2 on plasma-derived microvesicles were not predictive of trifluridine/tipiracil and regorafenib benefit. Future studies should analyze the early modulation of these biomarkers to assess their potential predictive role.
Collapse
Affiliation(s)
- Beatrice Borelli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Carlotta Antoniotti
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federica Marmorino
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Daniele Rossini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veronica Conca
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Marco Maria Germani
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andrea Spagnoletti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alberto Giovanni Leone
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
18
|
Palsa K, Baringer SL, Shenoy G, Spiegelman VS, Simpson IA, Connor JR. Exosomes are involved in iron transport from human blood-brain barrier endothelial cells and are modified by endothelial cell iron status. J Biol Chem 2023; 299:102868. [PMID: 36603765 PMCID: PMC9929479 DOI: 10.1016/j.jbc.2022.102868] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Iron is essential for normal brain development and function. Hence, understanding the mechanisms of iron efflux at the blood-brain barrier and their regulation are critical for the establishment of brain iron homeostasis. Here, we have investigated the role of exosomes in mediating the transfer of H-ferritin (FTH1)- or transferrin (Tf)-bound iron across the blood-brain barrier endothelial cells (BBBECs). Our study used ECs derived from human-induced pluripotent stem cells that are grown in bicameral chambers. When cells were exposed to 55Fe-Tf or 55Fe-FTH1, the 55Fe activity in the exosome fraction in the basal chamber was significantly higher compared to the supernatant fraction. Furthermore, we determined that the release of endogenous Tf, FTH1, and exosome number is regulated by the iron concentration of the endothelial cells. Moreover, the release of exogenously added Tf or FTH1 to the basal side via exosomes was significantly higher when ECs were iron loaded compared to when they were iron deficient. The release of exosomes containing iron bound to Tf or FTH1 was independent of hepcidin regulation, indicating this mechanism by-passes a major iron regulatory pathway. A potent inhibitor of exosome formation, GW4869, reduced exosomes released from the ECs and also decreased the Tf- and FTH1-bound iron within the exosomes. Collectively, these results indicate that iron transport across the blood-brain barrier is mediated via the exosome pathway and is modified by the iron status of the ECs, providing evidence for a novel alternate mechanism of iron transport into the brain.
Collapse
Affiliation(s)
- Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Stephanie L Baringer
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Vladimir S Spiegelman
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ian A Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
19
|
Zhang H, Wang S, Sun M, Cui Y, Xing J, Teng L, Xi Z, Yang Z. Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front Immunol 2023; 13:1093607. [PMID: 36733388 PMCID: PMC9888251 DOI: 10.3389/fimmu.2022.1093607] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Exosomes (Exos) as drug delivery vehicles have been widely used for cancer immunotherapy owing to their good biocompatibility, low toxicity, and low immunogenicity. Some Exos-based cancer immunotherapy strategies such as tuning of immunosuppressive tumor microenvironment, immune checkpoint blockades, and cancer vaccines have also been investigated in recent years, which all showed excellent therapeutic effects for malignant tumor. Furthermore, some Exos-based drug delivery systems (DDSs) for cancer immunotherapy have also undergone clinic trails, indicating that Exos are a promising drug delivery carrier. In this review, in order to promote the development of Exos-based DDSs in cancer immunotherapy, the biogenesis and composition of Exos, and Exos as drug delivery vehicles for cancer immunotherapy are summarized. Meanwhile, their clinical translation and challenges are also discussed. We hope this review will provide a good guidance for Exos as drug delivery vehicles for cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianming Xing
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhifang Xi
- School of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China,*Correspondence: Zhifang Xi, ; Zhaogang Yang,
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China,*Correspondence: Zhifang Xi, ; Zhaogang Yang,
| |
Collapse
|
20
|
Bunch CM, Chang E, Moore EE, Moore HB, Kwaan HC, Miller JB, Al-Fadhl MD, Thomas AV, Zackariya N, Patel SS, Zackariya S, Haidar S, Patel B, McCurdy MT, Thomas SG, Zimmer D, Fulkerson D, Kim PY, Walsh MR, Hake D, Kedar A, Aboukhaled M, Walsh MM. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock. Front Physiol 2023; 14:1094845. [PMID: 36923287 PMCID: PMC10009294 DOI: 10.3389/fphys.2023.1094845] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function-including fibrinolysis-to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.
Collapse
Affiliation(s)
- Connor M Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Eric Chang
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States
| | - Hunter B Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States.,Department of Transplant Surgery, Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph B Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Mahmoud D Al-Fadhl
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Anthony V Thomas
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Nuha Zackariya
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Shivani S Patel
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sufyan Zackariya
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Saadeddine Haidar
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Bhavesh Patel
- Division of Critical Care, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott G Thomas
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Donald Zimmer
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - Daniel Hake
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Archana Kedar
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Michael Aboukhaled
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Mark M Walsh
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States.,Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| |
Collapse
|
21
|
Li G, Huang D, Li P, Yuan X, Yarotskyy V, Li PL. Regulation of exosome release by lysosomal acid ceramidase in coronary arterial endothelial cells: Role of TRPML1 channel. CURRENT TOPICS IN MEMBRANES 2022; 90:37-63. [PMID: 36368874 PMCID: PMC9842397 DOI: 10.1016/bs.ctm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lysosomal acid ceramidase (AC) has been reported to determine multivesicular body (MVB) fate and exosome secretion in different mammalian cells including coronary arterial endothelial cells (CAECs). However, this AC-mediated regulation of exosome release from CAECs and associated underlying mechanism remain poorly understood. In the present study, we hypothesized that AC controls lysosomal Ca2+ release through TRPML1 channel to regulate exosome release in murine CAECs. To test this hypothesis, we isolated and cultured CAECs from WT/WT and endothelial cell-specific Asah1 gene (gene encoding AC) knockout mice. Using these CAECs, we first demonstrated a remarkable increase in exosome secretion and significant reduction of lysosome-MVB interaction in CAECs lacking Asah1 gene compared to those cells from WT/WT mice. ML-SA1, a TRPML1 channel agonist, was found to enhance lysosome trafficking and increase lysosome-MVB interaction in WT/WT CAECs, but not in CAECs lacking Asah1 gene. However, sphingosine, an AC-derived sphingolipid, was able to increase lysosome movement and lysosome-MVB interaction in CAECs lacking Asah1 gene, leading to reduced exosome release from these cells. Moreover, Asah1 gene deletion was shown to substantially inhibit lysosomal Ca2+ release through suppression of TRPML1 channel activity in CAECs. Sphingosine as an AC product rescued the function of TRPML1 channel in CAECs lacking Asah1 gene. These results suggest that Asah1 gene defect and associated deficiency of AC activity may inhibit TRPML1 channel activity, thereby reducing MVB degradation by lysosome and increasing exosome release from CAECs. This enhanced exosome release from CAECs may contribute to the development of coronary arterial disease under pathological conditions.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pengyang Li
- Division of Cardiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
22
|
Ramasubramanian L, Du S, Gidda S, Bahatyrevich N, Hao D, Kumar P, Wang A. Bioengineering Extracellular Vesicles for the Treatment of Cardiovascular Diseases. Adv Biol (Weinh) 2022; 6:e2200087. [PMID: 35778828 PMCID: PMC9588622 DOI: 10.1002/adbi.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Indexed: 01/28/2023]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.
Collapse
Affiliation(s)
- Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Shixian Du
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Siraj Gidda
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Priyadarsini Kumar
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| |
Collapse
|
23
|
Wuttimongkolchai N, Kanlaya R, Nanthawuttiphan S, Subkod C, Thongboonkerd V. Chlorogenic acid enhances endothelial barrier function and promotes endothelial tube formation: A proteomics approach and functional validation. Biomed Pharmacother 2022; 153:113471. [DOI: 10.1016/j.biopha.2022.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022] Open
|
24
|
Richter RP, Ashtekar AR, Zheng L, Pretorius D, Kaushlendra T, Sanderson RD, Gaggar A, Richter JR. Glycocalyx heparan sulfate cleavage promotes endothelial cell angiopoietin-2 expression by impairing shear stress-related AMPK/FoxO1 signaling. JCI Insight 2022; 7:155010. [PMID: 35763350 PMCID: PMC9462499 DOI: 10.1172/jci.insight.155010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-2 (Ang-2) is a key mediator of vascular disease during sepsis, and elevated plasma levels of Ang-2 are associated with organ injury scores and poor clinical outcomes. We have previously observed that biomarkers of endothelial glycocalyx (EG) damage correlate with plasma Ang-2 levels, suggesting a potential mechanistic linkage between EG injury and Ang-2 expression during states of systemic inflammation. However, the cell signaling mechanisms regulating Ang-2 expression following EG damage are unknown. In the current study, we determined the temporal associations between plasma heparan sulfate (HS) levels as a marker of EG erosion and plasma Ang-2 levels in children with sepsis and in mouse models of sepsis. Secondly, we evaluated the role of shear stress-mediated 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling in Ang-2 expression following enzymatic HS cleavage from the surface of human primary lung microvascular endothelial cells (HLMVEC). We found that plasma HS levels peak prior to plasma Ang-2 levels in children and mice with sepsis. Further, we discovered that impaired AMPK signaling contributes to increased Ang-2 expression following HS cleavage from flow conditioned HLMVECs, establishing a novel paradigm by which Ang-2 may be upregulated during sepsis.
Collapse
Affiliation(s)
- Robert P Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit R Ashtekar
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Lei Zheng
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Danielle Pretorius
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| | - Tripathi Kaushlendra
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, United States of America
| | - Jillian R Richter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| |
Collapse
|
25
|
Gao J, Zhang X, Jiang L, Li Y, Zheng Q. Tumor endothelial cell-derived extracellular vesicles contribute to tumor microenvironment remodeling. Cell Commun Signal 2022; 20:97. [PMID: 35752798 PMCID: PMC9233793 DOI: 10.1186/s12964-022-00904-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer progression involves several biological steps where angiogenesis is a key tumorigenic phenomenon. Extracellular vesicles (EVs) derived from tumor cells and other cells in the tumor microenvironment (TME) help modulate and maintain favorable microenvironments for tumors. Endothelial cells (ECs) activated by cancer-derived EVs have important roles in tumor angiogenesis. Interestingly, EVs from ECs activate tumor cells, i.e. extracellular matrix (ECM) remodeling and provide more supplements for tumor cells. Thus, EV communications between cancer cells and ECs may be effective therapeutic targets for controlling cancer progression. In this review, we describe the current knowledge on EVs derived from ECs and we examine how these EVs affect TME remodeling. Video abstract
Collapse
Affiliation(s)
- Jian Gao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.,Science Experiment Center of China Medical University, Shenyang, 110122, China
| | - Xiaodong Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, China.,National Clinical Research Center for Digestive Diseases, Beijing, 100000, China
| | - Lei Jiang
- Department of General Surgery, Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yan Li
- Department of Radiotherapy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
26
|
The Mystery of Exosomes in Gestational Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2169259. [PMID: 35720179 PMCID: PMC9200544 DOI: 10.1155/2022/2169259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Gestational diabetes mellitus (GDM) is one of the common pregnancy complications, which increases the risk of short-term and long-term adverse consequences in both the mother and offspring. However, the pathophysiological mechanism of GDM is still poorly understood. Inflammation, insulin resistance and oxidative stress are considered critical factors in the occurrence and development of GDM. Although the lifestyle intervention and insulin are the primary treatment, adverse pregnancy outcomes still cannot be ignored. Exosomes have a specific function of carrying biological information, which can transmit information to target cells and play an essential role in intercellular communication. Their possible roles in normal pregnancy and GDM have been widely concerned. The possibility of exosomal cargos as biomarkers of GDM is proposed. This paper reviews the literature in recent years and discusses the role of exosomes in GDM and their possible mechanisms to provide some reference for the prediction, prevention, and treatment of GDM and improve the outcome of pregnancy.
Collapse
|
27
|
Saraswat M, Garapati K, Kim J, Budhraja R, Pandey A. Proteomic alterations in extracellular vesicles induced by oncogenic PIK3CA mutations. Proteomics 2022; 22:e2200077. [PMID: 35689797 DOI: 10.1002/pmic.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
PIK3CA is one of the most frequently mutated genes in human cancers, with the two most prevalent activating mutations being E545K and H1047R. Although the altered intracellular signaling pathways in these cells have been described, the effect of these mutations on their extracellular vesicles (EVs) has not yet been reported. To study altered cellular physiology and intercellular communication through proteomic analysis of EVs, MCF10A cells and their isogenic mutant versions (PIK3CA E545K and H1047R) were cultured and their EVs enriched by differential ultracentrifugation. Proteins were extracted, digested with trypsin and the peptides labeled with tandem mass tag (TMT) reagents and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Four thousand six hundred and fifty-five peptides were identified from 579 proteins of which 522 proteins have been previously described in EVs. Relative quantitation revealed altered levels of EV proteins including several cell adhesion molecules. Mesothelin, E-cadherin, and epithelial cell adhesion molecule were elevated in both mutant cell-derived EVs. Markers of tumor invasion and progression like galectin-3 and transforming growth factor beta induced protein were increased in both mutants. Overall, activating mutations in PIK3CA result in altered EV composition with characteristic changes associated with these hotspot mutations.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Six I, Guillaume N, Jacob V, Mentaverri R, Kamel S, Boullier A, Slama M. The Endothelium and COVID-19: An Increasingly Clear Link Brief Title: Endotheliopathy in COVID-19. Int J Mol Sci 2022; 23:6196. [PMID: 35682871 PMCID: PMC9181280 DOI: 10.3390/ijms23116196] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
The endothelium has a fundamental role in the cardiovascular complications of coronavirus disease 2019 (COVID-19). Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particularly affects endothelial cells. The virus binds to the angiotensin-converting enzyme 2 (ACE-2) receptor (present on type 2 alveolar cells, bronchial epithelial cells, and endothelial cells), and induces a cytokine storm. The cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 have particular effects on endothelial cells-leading to endothelial dysfunction, endothelial cell death, changes in tight junctions, and vascular hyperpermeability. Under normal conditions, apoptotic endothelial cells are removed into the bloodstream. During COVID-19, however, endothelial cells are detached more rapidly, and do not regenerate as effectively as usual. The loss of the endothelium on the luminal surface abolishes all of the vascular responses mediated by the endothelium and nitric oxide production in particular, which results in greater contractility. Moreover, circulating endothelial cells infected with SARS-CoV-2 act as vectors for viral dissemination by forming clusters that migrate into the circulation and reach distant organs. The cell clusters and the endothelial dysfunction might contribute to the various thromboembolic pathologies observed in COVID-19 by inducing the formation of intravascular microthrombi, as well as by triggering disseminated intravascular coagulation. Here, we review the contributions of endotheliopathy and endothelial-cell-derived extracellular vesicles to the pathogenesis of COVID-19, and discuss therapeutic strategies that target the endothelium in patients with COVID-19.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
| | - Nicolas Guillaume
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Valentine Jacob
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
| | - Romuald Mentaverri
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Agnès Boullier
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Michel Slama
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Medical Intensive Care Unit, 80054 Amiens, France
| |
Collapse
|
29
|
Masola V, Greco N, Gambaro G, Franchi M, Onisto M. Heparanase as active player in endothelial glycocalyx remodeling. Matrix Biol Plus 2022; 13:100097. [PMID: 35036899 PMCID: PMC8749438 DOI: 10.1016/j.mbplus.2021.100097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
The surface of all animal cells is coated with a layer of carbohydrates linked in various ways to the outer side of the plasma membrane. These carbohydrates are mainly bound to proteins in the form of glycoproteins and proteoglycans and together with the glycolipids constitute the so-called glycocalyx. In particular, the endothelial glycocalyx that covers the luminal layer of the endothelium is composed of glycosaminoglycans (heparan sulphate -HS and hyaluronic acid -HA), proteoglycans (syndecans and glypicans) and adsorbed plasma proteins. Thanks to its ability to absorb water, this structure contributes to making the surface of the vessels slippery but at the same time acts by modulating the mechano-transduction of the vessels, the vascular permeability and the adhesion of leukocytes in thus regulating several physiological and pathological events. Among the various enzymes involved in the degradation of the glycocalyx, heparanase (HPSE) has been shown to be particularly involved. This enzyme is responsible for the cutting of heparan sulfate (HS) chains at the level of the proteoglycans of the endothelial glycocalyx whose dysfunction appears to have a role in organ fibrosis, sepsis and viral infection. In this mini-review, we describe the mechanisms by which HPSE contributes to glycocalyx remodeling and then examine the role of glycocalyx degradation in the development of pathological conditions and pharmacological strategies to preserve glycocalyx during disease pathogenesis.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Dept. of Medicine, University Hospital of Verona, Verona, Italy.,Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| | - Nicola Greco
- Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| | - Giovanni Gambaro
- Renal Unit, Dept. of Medicine, University Hospital of Verona, Verona, Italy
| | - Marco Franchi
- Dept. of Life Quality Sciences, University of Bologna, Rimini, Italy
| | - Maurizio Onisto
- Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
30
|
Weber SR, Zhao Y, Ma J, Gates C, da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Gardner TW, Sundstrom JM. A validated analysis pipeline for mass spectrometry-based vitreous proteomics: new insights into proliferative diabetic retinopathy. Clin Proteomics 2021; 18:28. [PMID: 34861815 PMCID: PMC8903510 DOI: 10.1186/s12014-021-09328-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Vitreous is an accessible, information-rich biofluid that has recently been studied as a source of retinal disease-related proteins and pathways. However, the number of samples required to confidently identify perturbed pathways remains unknown. In order to confidently identify these pathways, power analysis must be performed to determine the number of samples required, and sample preparation and analysis must be rigorously defined. Methods Control (n = 27) and proliferative diabetic retinopathy (n = 23) vitreous samples were treated as biologically distinct individuals or pooled together and aliquoted into technical replicates. Quantitative mass spectrometry with tandem mass tag labeling was used to identify proteins in individual or pooled control samples to determine technical and biological variability. To determine effect size and perform power analysis, control and proliferative diabetic retinopathy samples were analyzed across four 10-plexes. Pooled samples were used to normalize the data across plexes and generate a single data matrix for downstream analysis. Results The total number of unique proteins identified was 1152 in experiment 1, 989 of which were measured in all samples. In experiment 2, 1191 proteins were identified, 727 of which were measured across all samples in all plexes. Data are available via ProteomeXchange with identifier PXD025986. Spearman correlations of protein abundance estimations revealed minimal technical (0.99–1.00) and biological (0.94–0.98) variability. Each plex contained two unique pooled samples: one for normalizing across each 10-plex, and one to internally validate the normalization algorithm. Spearman correlation of the validation pool following normalization was 0.86–0.90. Principal component analysis revealed stratification of samples by disease and not by plex. Subsequent differential expression and pathway analyses demonstrated significant activation of metabolic pathways and inhibition of neuroprotective pathways in proliferative diabetic retinopathy samples relative to controls. Conclusions This study demonstrates a feasible, rigorous, and scalable method that can be applied to future proteomic studies of vitreous and identifies previously unrecognized metabolic pathways that advance understanding of diabetic retinopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09328-8.
Collapse
Affiliation(s)
- Sarah R Weber
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christopher Gates
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Felipe da Veiga Leprevost
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Thomas W Gardner
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
31
|
Abdullah M, Nakamura T, Ferdous T, Gao Y, Chen Y, Zou K, Michikawa M. Cholesterol Regulates Exosome Release in Cultured Astrocytes. Front Immunol 2021; 12:722581. [PMID: 34721384 PMCID: PMC8551362 DOI: 10.3389/fimmu.2021.722581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are vesicles secreted by various kinds of cells, and they are rich in cholesterol, sphingomyelin (SM), phosphatidylcholine, and phosphatidylserine. Although cellular sphingolipid-mediated exosome release has been reported, the involvement of other lipid components of cell membranes in the regulation of exosome release is poorly understood. Here, we show that the level of exosome release into conditioned media is significantly reduced in cultured astrocytes prepared from apolipoprotein E (ApoE) knock-out mice when compared to those prepared from wild-type (WT) mice. The reduced level of exosome release was accompanied by elevated levels of cellular cholesterol. The addition of cholesterol to WT astrocytes significantly increased the cellular cholesterol levels and reduced exosome release. PI3K/Akt phosphorylation was enhanced in ApoE-deficient and cholesterol-treated WT astrocytes. In contrast, the depletion of cholesterol in ApoE-deficient astrocytes due to treatment with β-cyclodextrin recovered the exosome release level to a level similar to that in WT astrocytes. In addition, the reduced levels of exosome release due to the addition of cholesterol recovered to the control levels after treatment with a PI3K inhibitor (LY294002). The cholesterol-dependent regulation of exosome release was also confirmed by in vivo experiments; that is, exosome levels were significantly reduced in the CSF and blood serum of WT mice that were fed a high-fat diet and had increased cholesterol levels when compared to those in WT mice that were fed a normal diet. These results suggest that exosome release is regulated by cellular cholesterol via stimulation of the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Mohammad Abdullah
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taslima Ferdous
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuan Gao
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuxin Chen
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kun Zou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
32
|
Ribera J, Portolés I, Córdoba-Jover B, Rodríguez-Vita J, Casals G, González-de la Presa B, Graupera M, Solsona-Vilarrasa E, Garcia-Ruiz C, Fernández-Checa JC, Soria G, Tudela R, Esteve-Codina A, Espadas G, Sabidó E, Jiménez W, Sessa WC, Morales-Ruiz M. The loss of DHX15 impairs endothelial energy metabolism, lymphatic drainage and tumor metastasis in mice. Commun Biol 2021; 4:1192. [PMID: 34654883 PMCID: PMC8519955 DOI: 10.1038/s42003-021-02722-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
DHX15 is a downstream substrate for Akt1, which is involved in key cellular processes affecting vascular biology. Here, we explored the vascular regulatory function of DHX15. Homozygous DHX15 gene deficiency was lethal in mouse and zebrafish embryos. DHX15-/- zebrafish also showed downregulation of VEGF-C and reduced formation of lymphatic structures during development. DHX15+/- mice depicted lower vascular density and impaired lymphatic function postnatally. RNAseq and proteome analysis of DHX15 silenced endothelial cells revealed differential expression of genes involved in the metabolism of ATP biosynthesis. The validation of these results demonstrated a lower activity of the Complex I in the mitochondrial membrane of endothelial cells, resulting in lower intracellular ATP production and lower oxygen consumption. After injection of syngeneic LLC1 tumor cells, DHX15+/- mice showed partially inhibited primary tumor growth and reduced lung metastasis. Our results revealed an important role of DHX15 in vascular physiology and pave a new way to explore its potential use as a therapeutical target for metastasis treatment.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Juan Rodríguez-Vita
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- German Cancer Research Center, Heidelberg, Germany
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Bernardino González-de la Presa
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Mariona Graupera
- Vascular Signalling Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL). CIBERonc, Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, 08036, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, 08036, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, 28029, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - José C Fernández-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, 08036, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, 28029, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Guadalupe Soria
- Experimental 7T-MRI Unit, IDIBAPS, Barcelona, Spain
- CIBERbbn, University of Barcelona, Barcelona, Spain
| | - Raúl Tudela
- Experimental 7T-MRI Unit, IDIBAPS, Barcelona, Spain
- CIBERbbn, University of Barcelona, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guadalupe Espadas
- Proteomics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - William C Sessa
- Department of Pharmacology, Department of Cardiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Lin B, Yang J, Song Y, Dang G, Feng J. Exosomes and Atherogenesis. Front Cardiovasc Med 2021; 8:738031. [PMID: 34513963 PMCID: PMC8427277 DOI: 10.3389/fcvm.2021.738031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction and ischemic stroke are the leading causes of mortality worldwide. Atherosclerosis is their common pathological foundation. It is known that atherosclerosis is characterized by endothelial activation/injury, accumulation of inflammatory immune cells and lipid-rich foam cells, followed by the development of atherosclerotic plaque. Either from arterial vessel wall or blood circulation, endothelial cells, smooth muscle cells, macrophages, T-lymphocytes, B-lymphocytes, foam cells, and platelets have been considered to contribute to the pathogenesis of atherosclerosis. Exosomes, as natural nano-carriers and intercellular messengers, play a significant role in modulation of cell-to-cell communication. Under physiological or pathological conditions, exosomes can deliver their cargos including donor cell-specific proteins, lipids, and nucleic acids to target cells, which in turn affect the function of the target cells. In this review, we will describe the pathophysiological significance of various exosomes derived from different cell types associated with atherosclerosis, and the potential applications of exosome in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingbing Lin
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Yang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuwei Song
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guohui Dang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Feng
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Otaka F, Ito Y, Goto T, Kojo K, Tanabe M, Hosono K, Majima M, Koizumi W, Amano H. Recovery of Liver Sinusoidal Endothelial Cells Following Monocrotaline-induced Liver Injury. In Vivo 2021; 35:2577-2587. [PMID: 34410945 DOI: 10.21873/invivo.12540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIM Although the pathology of sinusoidal obstruction syndrome (SOS) is characterized by damage to liver sinusoidal endothelial cells (LSECs), the processes underlying LSEC repair are incompletely understood. The angiopoietin (Ang)/Tie system contributes to angiogenesis. The present study aimed to examine the processes of LSEC repair and the involvement of the Ang/Tie pathway in LSEC recovery. MATERIALS AND METHODS Experimentally, SOS was induced by intraperitoneal injection of monocrotaline (MCT) to C57/BL6 mice. RESULTS Levels of LSEC markers were up-regulated during the repair phase of MCT-induced hepatotoxicity. The damaged LSECs recovered from the injury by expanding LSECs expressing lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) in the peri-central area of MCT-injured livers, while LSECs in the same area of uninjured livers lacked LYVE-1 expression. Bone marrow (BM)-derived cells did not incorporate into the restored LSECs. Tie2 expression was related to LSEC recovery in MCT-injured liver tissue. CONCLUSION The resident LSECs neighboring uninjured tissue replace damaged LSECs in MCT-injured livers. Tie2 is involved in LSEC recovery from MCT-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fumisato Otaka
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan; .,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mina Tanabe
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
35
|
Han J, Shi Y, Willis G, Imani J, Kwon MY, Li G, Ayaub E, Ghanta S, Ng J, Hwang N, Tsoyi K, El-Chemaly S, Kourembanas S, Mitsialis SA, Rosas IO, Liu X, Perrella MA. Mesenchymal stromal cell-derived syndecan-2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS J 2021; 289:417-435. [PMID: 34355516 PMCID: PMC8766882 DOI: 10.1111/febs.16154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Gareth Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gu Li
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ehab Ayaub
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Liang X, Wang R, Guo Y, Cheng Z, Lv D, Luo M, He A, Luo S, Xia Y. Phosphorylation of Akt at Thr308 regulates p-eNOS Ser1177 during physiological conditions. FEBS Open Bio 2021; 11:1953-1964. [PMID: 33993653 PMCID: PMC8255840 DOI: 10.1002/2211-5463.13194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) plays a crucial role in maintaining vascular homeostasis. As a hallmark of eNOS activation, phosphorylation of eNOS at Ser1177 induced by activated protein kinase B (PKB/Akt) is pivotal for NO production. The complete activation of Akt requires its phosphorylation of both Thr308 and Ser473. However, which site plays the main role in regulating phosphorylation of eNOS Ser1177 is still controversial. The purpose of the present study is to explore the specific regulatory mechanism of phosphorylated Akt in eNOS activation. Inhibition of Akt Thr308 phosphorylation by a specific inhibitor or by siRNA in vitro led to a decrease in eNOS phosphorylation at Ser1177 and to lower NO concentration in the cell culture medium of HUVECs. However, inhibiting p-Akt Ser473 had no effect on eNOS phosphorylation at Ser1177. Next, we administered mice with inhibitors to downregulate p-Akt Ser473 or Thr308 activity. Along with the inhibition of p-Akt Thr308, vascular p-eNOS Ser1177 protein was simultaneously downregulated in parallel with a decrease in plasma NO concentration. Additionally, we cultured HUVECs at various temperature conditions (37, 22, and 4 °C). The results showed that p-Akt Ser473 was gradually decreased in line with the reduction in temperature, accompanied by increased levels of p-Akt Thr308 and p-eNOS Ser1177. Taken together, our study indicates that the phosphorylation of Akt at Thr308, but not at Ser473, plays a more significant role in regulating p-eNOS Ser1177 levels under physiological conditions.
Collapse
Affiliation(s)
- Xiao‐xue Liang
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| | - Rui‐yu Wang
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| | - Yong‐zheng Guo
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| | - Zhe Cheng
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| | - Ding‐yi Lv
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| | - Ming‐hao Luo
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| | - An He
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| | - Su‐xin Luo
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Yong Xia
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChina
- Institute of Life ScienceChongqing Medical UniversityChina
| |
Collapse
|
37
|
Abstract
Exosomes are nanoscale extracellular vesicles that can transport cargos of proteins, lipids, DNA, various RNA species and microRNAs (miRNAs). Exosomes can enter cells and deliver their contents to recipient cell. Owing to their cargo exosomes can transfer different molecules to the target cells and change the phenotype of these cells. The fate of the contents of an exosome depends on its target destination. Various mechanisms for exosome uptake by target cells have been proposed, but the mechanisms responsible for exosomes internalization into cells are still debated. Exosomes exposed cells produce labeled protein kinases, which are expressed by other cells. This means that these kinases are internalized by exosomes, and transported into the cytoplasm of recipient cells. Many studies have confirmed that exosomes are not only secreted by living cells, but also internalized or accumulated by the other cells. The "next cell hypothesis" supports the notion that exosomes constitute communication vehicles between neighboring cells. By this mechanism, exosomes participate in the development of diabetes and its associated complications, critically contribute to the spreading of neuronal damage in Alzheimer's disease, and non-proteolysed form of Fas ligand (mFasL)-bearing exosomes trigger the apoptosis of T lymphocytes. Furthermore, exosomes derived from human B lymphocytes induce antigen-specific major histocompatibility complex (MHC) class II-restricted T cell responses. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules. This process is defined as "exosome-immune suppression" concept. The interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma promote the transfer of oncogenes and onco-miRNAs from one cell to other. Circulating exosomes that are released from hypertrophic adipocytes are effective in obesity-related complications. On the other hand, the "inflammasome-induced" exosomes can activate inflammatory responses in recipient cells. In this chapter protein kinases-related checkpoints are emphasized considering the regulation of exosome biogenesis, secretory traffic, and their impacts on cell death, tumor growth, immune system, and obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
38
|
Pradhan AK, Maji S, Das SK, Emdad L, Sarkar D, Fisher PB. MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer Metastasis Rev 2021; 39:769-781. [PMID: 32410111 DOI: 10.1007/s10555-020-09886-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor metastasis comprises a series of coordinated events that culminate in dissemination of cancer cells to distant sites within the body representing the greatest challenge impeding effective therapy of cancer and the leading cause of cancer-associated morbidity. Cancer cells exploit multiple genes and pathways to colonize to distant organs. These pathways are integrated and regulated at different levels by cellular- and extracellular-associated factors. Defining the genes and pathways that govern metastasis can provide new targets for therapeutic intervention. Melanoma differentiation associated gene-9 (mda-9) (also known as Syntenin-1 and SDCBP (Syndecan binding protein)) was identified by subtraction hybridization as a novel gene displaying differential temporal expression during differentiation of melanoma. MDA-9/Syntenin is an established Syndecan binding protein that functions as an adaptor protein. Expression of MDA-9/Syntenin is elevated at an RNA and protein level in a wide-range of cancers including melanoma, glioblastoma, neuroblastoma, and prostate, breast and liver cancer. Expression is increased significantly in metastatic cancer cells as compared with non-metastatic cancer cells or normal cells, which make it an attractive target in treating cancer metastasis. In this review, we focus on the role and regulation of mda-9 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA. .,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
39
|
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne) 2021; 12:756581. [PMID: 34764939 PMCID: PMC8576340 DOI: 10.3389/fendo.2021.756581] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus and the associated complications are metabolic diseases with high morbidity that result in poor quality of health and life. The lack of diagnostic methods for early detection results in patients losing the best treatment opportunity. Oral hypoglycemics and exogenous insulin replenishment are currently the most common therapeutic strategies, which only yield temporary glycemic control rather than curing the disease and its complications. Exosomes are nanoparticles containing bioactive molecules reflecting individual physiological status, regulating metabolism, and repairing damaged tissues. They function as biomarkers of diabetes mellitus and diabetic complications. Considering that exosomes are bioactive molecules, can be obtained from body fluid, and have cell-type specificity, in this review, we highlight the multifold effects of exosomes in the pathology and therapy of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueqin Wu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qi Liu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
41
|
Kapiainen E, Kihlström MK, Pietilä R, Kaakinen M, Ronkainen VP, Tu H, Heikkinen A, Devarajan R, Miinalainen I, Laitakari A, Ansarizadeh M, Zhang Q, Wei GH, Ruddock L, Pihlajaniemi T, Elamaa H, Eklund L. The Amino-Terminal Oligomerization Domain of Angiopoietin-2 Affects Vascular Remodeling, Mammary Gland Tumor Growth, and Lung Metastasis in Mice. Cancer Res 2020; 81:129-143. [PMID: 33037065 DOI: 10.1158/0008-5472.can-19-1904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/03/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2443 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer. Here, we use a knock-in mouse line (mice expressing Angpt2443), a genetic model for breast cancer and metastasis (MMTV-PyMT), a syngeneic melanoma lung colonization model (B16F10), and orthotopic injection of E0771 breast cancer cells to show that alternative forms increase the diversity of Angpt2 function. In a mouse retina model of angiogenesis, expression of Angpt2443 caused impaired venous development, suggesting enhanced function as a competitive antagonist for Tie2. In mammary gland tumor models, Angpt2443 differentially affected primary tumor growth and vascularization; these varying effects were associated with Angpt2 protein localization in the endothelium or in the stromal extracellular matrix as well as the frequency of Tie2-positive tumor blood vessels. In the presence of metastatic cells, Angpt2443 promoted destabilization of pulmonary vasculature and lung metastasis. In vitro, ANGPT2443 was susceptible to proteolytical cleavage, resulting in a monomeric ligand (ANGPT2DAP) that inhibited ANGPT1- or ANGPT4-induced TIE2 activation but did not bind to alternative ANGPT2 receptor α5β1 integrin. Collectively, these data reveal novel roles for the ANGPT2 N-terminal domain in blood vessel remodeling, tumor growth, metastasis, integrin binding, and proteolytic regulation. SIGNIFICANCE: This study identifies the role of the N-terminal oligomerization domain of angiopoietin-2 in vascular remodeling and lung metastasis and provides new insights into mechanisms underlying the versatile functions of angiopoietin-2 in cancer.See related commentary by Kamiyama and Augustin, p. 35.
Collapse
Affiliation(s)
- Emmi Kapiainen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Minna K Kihlström
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Riikka Pietilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | - Hongmin Tu
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Raman Devarajan
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Anna Laitakari
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Harri Elamaa
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
42
|
Lipphardt M, Dihazi H, Maas JH, Schäfer AK, Amlaz SI, Ratliff BB, Koziolek MJ, Wallbach M. Syndecan-4 as a Marker of Endothelial Dysfunction in Patients with Resistant Hypertension. J Clin Med 2020; 9:jcm9093051. [PMID: 32971813 PMCID: PMC7564403 DOI: 10.3390/jcm9093051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Arterial hypertension (HTN) is one of the most relevant cardiovascular risk factors. Nowadays multiple pharmaceutical treatment options exist with novel interventional methods (e.g., baroreflex activation therapy (BAT)) as a last resort to treat patients with resistant HTN. Although pathophysiology behind resistant HTN is still not fully understood. There is evidence that selected biomarkers may be involved in the pathophysiology of HTN. (2) Methods: We investigated serum SDC4-levels in patients suffering from resistant HTN before and 6 months after BAT implantation. We collected 19 blood samples from patients with resistant HTN and blood pressure above target and measured serum SDC4-levels. (3) Results: Our results showed high serum SDC4-levels in patients with resistant HTN as compared to a healthy population. Patients with both, resistant HTN and diabetes mellitus type II, demonstrated higher serum SDC4-levels. β-blockers had lowering effects on serum SDC4-levels, whereas calcium channel blockers were associated with higher levels of serum SDC4. BAT implantation did not lead to a significant difference in serum SDC4-levels after 6 months of therapy. (4) Conclusion: Based on our results we propose SDC4 is elevated in patients suffering from resistant HTN. Thus, SDC4 might be a potential marker for endothelial dysfunction in patients with resistant hypertension.
Collapse
Affiliation(s)
- Mark Lipphardt
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
- Correspondence: ; Tel.: +49-(0)-551-39-65309; Fax: +49-(0)-551-39-8906
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| | - Jens-Holger Maas
- Department of Transfusion Medicine, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany;
| | - Ann-Kathrin Schäfer
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| | - Saskia I. Amlaz
- Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany;
| | - Brian B. Ratliff
- Renal Research Institute and Departments of Medicine, Pharmacology, and Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Michael J. Koziolek
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| | - Manuel Wallbach
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.D.); (A.-K.S.); (M.J.K.); (M.W.)
| |
Collapse
|
43
|
Hyperinsulinemia promotes endothelial inflammation via increased expression and release of Angiopoietin-2. Atherosclerosis 2020; 307:1-10. [DOI: 10.1016/j.atherosclerosis.2020.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
|
44
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
45
|
Lipphardt M, Song JW, Goligorsky MS. Sirtuin 1 and endothelial glycocalyx. Pflugers Arch 2020; 472:991-1002. [PMID: 32494847 PMCID: PMC7376508 DOI: 10.1007/s00424-020-02407-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
Sirtuin1 deficiency or reduced activity comprises one of the hallmarks of diseases as diverse as chronic cardiovascular, renal, and metabolic, some malignancies, and infections, as well as aging-associated diseases. In a mouse model of endothelium-limited defect in sirtuin 1 deacetylase activity, we found a dramatic reduction in the volume of endothelial glycocalyx. This was associated with the surge in the levels of one of key scaffolding heparan sulfate proteoglycans of endothelial glycocalyx, syndecan-4, and specifically, its extracellular domain (ectodomain). We found that the defect in endothelial sirtuin 1 deacetylase activity is associated with (a) elevated basal and stimulated levels of superoxide generation (via the FoxO1 over-acetylation mechanism) and (b) increased nuclear translocation of NF-kB (via p65 over-acetylation mechanism). These findings laid the foundation for the proposed novel function of sirtuin 1, namely, the maintenance of endothelial glycocalyx, particularly manifest in conditions associated with sirtuin 1 depletion. In the forthcoming review, we summarize the emerging conceptual framework of the enhanced glycocalyx degradation in the states of defective endothelial sirtuin 1 function, thus explaining a broad footprint of the syndrome of endothelial dysfunction, from impaired flow-induced nitric oxide production, deterrent leukocytes infiltration, increased endothelial permeability, coagulation, and pro-inflammatory changes to development of microvascular rarefaction and progression of an underlying disease.
Collapse
Affiliation(s)
- Mark Lipphardt
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, NY, USA. .,Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Jong Wook Song
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, NY, USA.,Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Michael S Goligorsky
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, NY, USA
| |
Collapse
|
46
|
Sáez T, Toledo F, Sobrevia L. Extracellular Vesicles and Insulin Resistance: A Potential Interaction in Vascular Dysfunction. Curr Vasc Pharmacol 2020; 17:491-497. [PMID: 30277159 DOI: 10.2174/1570161116666181002095745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
Insulin resistance plays a key role in cardiovascular complications associated with diabetes mellitus and hypertensive disorders. In states of insulin resistance several circulating factors may contribute to a defective insulin sensitivity in different tissues, including the vasculature. One of these factors influencing the vascular insulin resistance are the extracellular vesicles. The extracellular vesicles include exosomes, microvesicles, and apoptotic bodies which are released to the circulation by different vascular cells. Since the cargo of extracellular vesicles seems to be altered in metabolic complications associated with insulin resistance, these vesicles may be candidates contributing to vascular insulin resistance. Despite the studies linking insulin resistance signalling pathways with the vascular effect of extracellular vesicles, the involvement of these structures in vascular insulin resistance is a phenomenon that remains unclear.
Collapse
Affiliation(s)
- Tamara Sáez
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton T6G 2S2, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton T6G 2S2, AB, Canada
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Bio-Bio University, Chillan 3780000, Chile.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile.,Department of Physiology, Faculty of Pharmacy, University of Sevilla, Seville E-41012, Spain.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
| |
Collapse
|
47
|
Jia G, Sowers JR. Targeting endothelial exosomes for the prevention of cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165833. [PMID: 32380265 DOI: 10.1016/j.bbadis.2020.165833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Exosomes are small lipid bilayer-enclosed 30-140 nm diameter vesicles formed from endosomes. Exosomes are secreted by various cell types including endothelial cells, immune cells and other cardiovascular tissues, and they can be detected in plasma, urine, cerebrospinal fluid, as well as tissues. Exosomes were initially regarded as a disposal mechanism to discard unwanted materials from cells. Recent studies suggest that exosomes play an important role in mediating of intercellular communication through the delivery and transport of cellular components such as nucleic acids, lipids, and proteins and thus regulate cardiovascular disease. Further, the underlying mechanisms by which abnormally released exosomes promote cardiovascular disease are not well understood. This review highlights recent studies involving endothelial exosomes, gives a brief overview of exosome biogenesis and release, isolation and identification of exosomes, and provides a contemporary understanding of the endothelial exosome pathophysiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA.
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, 800 Hospital Dr, Columbia, MO 65201, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
48
|
Abstract
Genodermatoses are inherited disorders presenting with cutaneous manifestations with or without the involvement of other systems. The majority of these disorders, particularly in cases that present with a cutaneous patterning, may be explained in the context of genetic mosaicism. Despite the barriers to the genetic analysis of mosaic disorders, next-generation sequencing has led to a substantial progress in understanding their pathogenesis, which has significant implications for the clinical management and genetic counseling. Advances in paired and deep sequencing technologies in particular have made the study of mosaic disorders more feasible. In this review, we provide an overview of genetic mosaicism as well as mosaic cutaneous disorders and the techniques required to study them.
Collapse
Affiliation(s)
- Shayan Cheraghlou
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Young Lim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keith A Choate
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
49
|
Xie JY, Wei JX, Lv LH, Han QF, Yang WB, Li GL, Wang PX, Wu SB, Duan JX, Zhuo WF, Liu PQ, Min J. Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma. Cell Commun Signal 2020; 18:46. [PMID: 32183816 PMCID: PMC7077328 DOI: 10.1186/s12964-020-00535-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is a highly vascularized solid tumor. Angiopoietin-2 (ANGPT2) has been described as an attractive target for antiangiogenic therapy. Exosomes are small extracellular vesicles secreted by most cell types and contribute to cell-to-cell communication by delivering functional cargo to recipient cells. The expression of ANGPT2 in tumor-derived exosomes remains unknown. Methods We detected the ANGPT2 expression in HCC-derived exosomes by immunoblotting, enzyme-linked immunosorbent assay and immunogold labeling, then observed exosomal ANGPT2 internalization and recycling by confocal laser scanning microscopy, co-immunoprecipitation and immunoblotting. We used two HCC cell lines (Hep3B and MHCC97H) to overexpress ANGPT2 by lentivirus infection or knockdown ANGPT2 by the CRISPR/Cas system, then isolated exosomes to coculture with human umbilical vein endothelial cells (HUVECs) and observed the angiogenesis by Matrigel microtubule formation assay, transwell migration assay, wound healing assay, cell counting kit-8 assay, immunoblotting and in vivo tumorigenesis assay. Results We found that HCC-derived exosomes carried ANGPT2 and delivered it into HUVECs by exosome endocytosis, this delivery led to a notable increase in angiogenesis by a Tie2-independent pathway. Concomitantly, we observed that HCC cell-secreted exosomal ANGPT2 was recycled by recipient HUVECs and might be reused. In addition, the CRISPR-Cas systems to knock down ANGPT2 significantly inhibited the angiogenesis induced by HCC cell-secreted exosomal ANGPT2, and obviously suppressed the epithelial-mesenchymal transition activation in HCC. Conclusions Taken together, these results reveal a novel pathway of tumor angiogenesis induced by HCC cell-secreted exosomal ANGPT2 that is different from the classic ANGPT2/Tie2 pathway. This way may be a potential therapeutic target for antiangiogenic therapy. Video Abstract
Collapse
Affiliation(s)
- Ji-Yan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jin-Xing Wei
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Li-Hong Lv
- Clinical Trial Institution of Pharmaceuticals, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qing-Fang Han
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshedong Road, Zhengzhou, 450052, Henan Province, China
| | - Wei-Bang Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guo-Lin Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Pan-Xia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shao-Bin Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jin-Xin Duan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wen-Feng Zhuo
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Pei-Qing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jun Min
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
50
|
Wang Y, Lu J, Chen L, Bian H, Hu J, Li D, Xia C, Xu H. Tumor-Derived EV-Encapsulated miR-181b-5p Induces Angiogenesis to Foster Tumorigenesis and Metastasis of ESCC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:421-437. [PMID: 32244169 PMCID: PMC7118284 DOI: 10.1016/j.omtn.2020.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis is necessary for tumor development and metastasis. Tumor-derived extracellular vesicles (EVs) play an important role in mediating the crosstalk between cancer cells and vascular endothelial cells. To date, whether and how microRNAs (miRNAs) encapsulated in tumor-derived EVs affect angiogenesis in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we showed that miR-181b-5p, an angiogenesis-promoting miRNA of ESCC, can be transferred from ESCC cells to vascular endothelial cells via EVs. In addition, ESCC-derived EVs-miR-181b-5p dramatically induced angiogenesis by targeting PTEN and PHLPP2, and thereby facilitated tumor growth and metastasis. Moreover, miR-181b-5p was highly expressed in ESCC tissues and serum EVs. High miR-181b-5p expression level in ESCC patients was well predicted for poor overall survival. Our work suggests that intercellular crosstalk between tumor cells and vascular endothelial cells is mediated by tumor-derived EVs. miR-181b-5p-enriched EVs secreted from ESCC cells are involved in angiogenesis that control metastasis of ESCC, providing a potential diagnostic biomarker or drug target for ESCC patients.
Collapse
Affiliation(s)
- Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Jiqiang Lu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Chen
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Huan Bian
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Dongping Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Chunlei Xia
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|