1
|
Theuretzbacher U. Evaluating the innovative potential of the global antibacterial pipeline. Clin Microbiol Infect 2025; 31:903-909. [PMID: 37805036 DOI: 10.1016/j.cmi.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Resistance burden varies widely among WHO regions, and the potential impact of new antibiotics differs in addressing the WHO's critical priority pathogens' resistance challenge. OBJECTIVES To analyse the current global clinical pipeline in line with public and global health concerns and define innovation in antibacterial drug discovery. SOURCES Monitoring clinical pipelines since 2006, integrating peer-reviewed MEDLINE publications on clinical development of new antibacterial agents, supplemented with disclosed data from developers. CONTENT The current clinical pipeline is dominated by derivatives of established antibiotic classes, primarily β-lactamase inhibitor combinations in Phase 3 (six of ten which also include two beta-lactams without β-lactamase inhibitor). This pattern extends to Phase 1. Although incremental improvements in susceptibility rates among derivatives benefit patients in advanced health care systems within specific geographical regions, these concepts are not adequate for carbapenem-resistant strains of Enterobacterales (especially Klebsiella and Escherichia coli), Acinetobacter, and Pseudomonas. This limitation arises from the diverse distribution of resistance mechanisms across global regions. Innovation in this context refers to absence of cross-resistance because of class-specific resistance mechanisms. This can most likely be achieved by exploring new chemical classes and new targets/binding sites, and new mode of action. An initial glimpse of progress is evident as innovative agents progressed to Phase 1 clinical trials. However, an influx of more agents advancing to clinical development is essential given the inherent risks associated with novel chemistry and targets. IMPLICATIONS The limited innovation in the global clinical pipeline inadequately serves public and global health interests. The complexities of antibacterial drug discovery, from scientific challenges to financial constraints, underscore the need for collective researcher efforts and public support to drive innovation for patients globally.
Collapse
|
2
|
Theuretzbacher U. The global resistance problem and the clinical antibacterial pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01169-8. [PMID: 40210708 DOI: 10.1038/s41579-025-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
A comprehensive analysis of the clinical antibacterial pipeline demonstrates that there is a limited range of strategies that are primarily focused on modified versions of widely used chemical classes. These modifications aim to circumvent class-specific resistance mechanisms and reduce resistance rates in certain multidrug-resistant pathogens. Owing to the great variation in resistance rates and mechanisms, the clinical success of current approaches varies substantially across different countries, regions, and economic and environmental conditions, which affects the global societal value of these antibiotics that remain vulnerable to cross-resistance. Although there has been some progress in developing urgently needed antibiotics with novel targets and chemical structures, some of which have advanced to phase I/II trials, further breakthroughs are required. Additionally, adjunctive agents designed to enhance the outcome of conventional antibiotic therapies, along with bacteriophages that offer targeted and personalized treatments, are also under investigation. However, the potential of adjunctive therapeutics, such as antivirulence agents, and bacteriophages has yet to be realized in terms of feasibility and global societal impact.
Collapse
|
3
|
Süssmuth RD, Kulike‐Koczula M, Gao P, Kosol S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew Chem Int Ed Engl 2025; 64:e202414325. [PMID: 39611429 PMCID: PMC11878372 DOI: 10.1002/anie.202414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
In the fight against bacterial infections, particularly those caused by multi-resistant pathogens known as "superbugs", the need for new antibacterials is undoubted in scientific communities and is by now also widely perceived by the general population. However, the antibacterial research landscape has changed considerably over the past years. With few exceptions, the majority of big pharma companies has left the field and thus, the decline in R&D on antibacterials severely impacts the drug pipeline. In recent years, antibacterial research has increasingly relied on smaller companies or academic research institutions, which mostly have only limited financial resources, to carry a drug discovery and development process from the beginning and through to the beginning of clinical phases. This review formulates the requirements for an antibacterial in regard of targeted pathogens, resistance mechanisms and drug discovery. Strategies are shown for the discovery of new antibacterial structures originating from natural sources, by chemical synthesis and more recently from artificial intelligence approaches. This is complemented by principles for the computer-aided design of antibacterials and the refinement of a lead structure. The second part of the article comprises a compilation of antibacterial molecules classified according to bacterial target structures, e.g. cell wall synthesis, protein synthesis, as well as more recently emerging target classes, e.g. fatty acid synthesis, proteases and membrane proteins. Aspects of the origin, the antibacterial spectrum, resistance and the current development status of the presented drug molecules are highlighted.
Collapse
Affiliation(s)
- Roderich D. Süssmuth
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Marcel Kulike‐Koczula
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Peng Gao
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Simone Kosol
- Medical School BerlinDepartment Human MedicineRüdesheimer Strasse 5014195BerlinGermany
| |
Collapse
|
4
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
5
|
Ghafoori SM, Abdollahpour S, Shirmast P, Forwood JK. Crystallographic structure determination and analysis of a potential short-chain dehydrogenase/reductase (SDR) from multi-drug resistant Acinetobacter baumannii. PLoS One 2023; 18:e0289992. [PMID: 37616198 PMCID: PMC10449147 DOI: 10.1371/journal.pone.0289992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Bacterial antibiotic resistance remains an ever-increasing worldwide problem, requiring new approaches and enzyme targets. Acinetobacter baumannii is recognised as one of the most significant antibiotic-resistant bacteria, capable of carrying up to 45 different resistance genes, and new drug discovery targets for this organism is an urgent priority. Short-chain dehydrogenase/reductase enzymes are a large protein family with >60,000 members involved in numerous biosynthesis pathways. Here, we determined the structure of an SDR protein from A. baumannii and assessed the putative co-factor comparisons with previously co-crystalised enzymes and cofactors. This study provides a basis for future studies to examine these potential co-factors in vitro.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | - Soha Abdollahpour
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | - Paniz Shirmast
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| |
Collapse
|
6
|
Abstract
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| |
Collapse
|
7
|
Whaley SG, Radka CD, Subramanian C, Frank MW, Rock CO. Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. J Biol Chem 2021; 297:101434. [PMID: 34801557 PMCID: PMC8666670 DOI: 10.1016/j.jbc.2021.101434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.
Collapse
Affiliation(s)
- Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher D Radka
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
8
|
Frank MW, Whaley SG, Rock CO. Branched-chain amino acid metabolism controls membrane phospholipid structure in Staphylococcus aureus. J Biol Chem 2021; 297:101255. [PMID: 34592315 PMCID: PMC8524195 DOI: 10.1016/j.jbc.2021.101255] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
Branched-chain amino acids (primarily isoleucine) are important regulators of virulence and are converted to precursor molecules used to initiate fatty acid synthesis in Staphylococcus aureus. Defining how bacteria control their membrane phospholipid composition is key to understanding their adaptation to different environments. Here, we used mass tracing experiments to show that extracellular isoleucine is preferentially metabolized by the branched-chain ketoacid dehydrogenase complex, in contrast to valine, which is not efficiently converted to isobutyryl-CoA. This selectivity creates a ratio of anteiso:iso C5-CoAs that matches the anteiso:iso ratio in membrane phospholipids, indicating indiscriminate utilization of these precursors by the initiation condensing enzyme FabH. Lipidomics analysis showed that removal of isoleucine and leucine from the medium led to the replacement of phospholipid molecular species containing anteiso/iso 17- and 19-carbon fatty acids with 18- and 20-carbon straight-chain fatty acids. This compositional change is driven by an increase in the acetyl-CoA:C5-CoA ratio, enhancing the utilization of acetyl-CoA by FabH. The acyl carrier protein (ACP) pool normally consists of odd carbon acyl-ACP intermediates, but when branched-chain amino acids are absent from the environment, there was a large increase in even carbon acyl-ACP pathway intermediates. The high substrate selectivity of PlsC ensures that, in the presence or the absence of extracellular Ile/Leu, the 2-position is occupied by a branched-chain 15-carbon fatty acid. These metabolomic measurements show how the metabolism of isoleucine and leucine, rather than the selectivity of FabH, control the structure of membrane phospholipids.
Collapse
Affiliation(s)
- Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
9
|
Kénanian G, Morvan C, Weckel A, Pathania A, Anba-Mondoloni J, Halpern D, Gaillard M, Solgadi A, Dupont L, Henry C, Poyart C, Fouet A, Lamberet G, Gloux K, Gruss A. Permissive Fatty Acid Incorporation Promotes Staphylococcal Adaptation to FASII Antibiotics in Host Environments. Cell Rep 2020; 29:3974-3982.e4. [PMID: 31851927 DOI: 10.1016/j.celrep.2019.11.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
The essentiality of fatty acid synthesis (FASII) products in the human pathogen Staphylococcus aureus is the underlying rationale for FASII-targeted antimicrobial drug design. Reports of anti-FASII efficacy in animals support this choice. However, restricted test conditions used previously led us to investigate this postulate in a broader, host-relevant context. We report that S. aureus rapidly adapts to FASII antibiotics without FASII mutations when exposed to host environments. FASII antibiotic administration upon signs of infection, rather than just after inoculation as commonly practiced, fails to eliminate S. aureus in a septicemia model. In vitro, serum lowers S. aureus membrane stress, leading to a greater retention of the substrates required for environmental fatty acid (eFA) utilization: eFAs and the acyl carrier protein. In this condition, eFA occupies both phospholipid positions, regardless of anti-FASII selection. Our results identify S. aureus membrane plasticity in host environments as a main limitation for using FASII antibiotics in monotherapeutic treatments.
Collapse
Affiliation(s)
- Gérald Kénanian
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Claire Morvan
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014 Paris, France
| | - Amit Pathania
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Jamila Anba-Mondoloni
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - David Halpern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Marine Gaillard
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014 Paris, France
| | - Audrey Solgadi
- SAMM, UMS IPSIT, Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabry, France
| | - Laetitia Dupont
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Céline Henry
- PAPPSO Platform, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014 Paris, France; Centre National de Référence des Streptocoques, Hôpitaux Universitaires Paris Centre Site Cochin, APHP, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014 Paris, France
| | - Gilles Lamberet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Karine Gloux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Alexandra Gruss
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France.
| |
Collapse
|
10
|
Fage CD, Lathouwers T, Vanmeert M, Gao L, Vrancken K, Lammens E, Weir ANM, Degroote R, Cuppens H, Kosol S, Simpson TJ, Crump MP, Willis CL, Herdewijn P, Lescrinier E, Lavigne R, Anné J, Masschelein J. The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in
Staphylococcus aureus
by Targeting the Enoyl‐Acyl Carrier Protein Binding Site of FabI. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Thomas Lathouwers
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Michiel Vanmeert
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Ling‐Jie Gao
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Kristof Vrancken
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Eveline‐Marie Lammens
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Angus N. M. Weir
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Ruben Degroote
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Harry Cuppens
- Department of Human Genetics KU Leuven Herestraat 49 3000 Leuven Belgium
| | - Simone Kosol
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Thomas J. Simpson
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Matthew P. Crump
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Christine L. Willis
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Jozef Anné
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Joleen Masschelein
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
- Laboratory for Biomolecular Discovery and Engineering KU Leuven Kasteelpark Arenberg 31, box 2438 3001 Heverlee Belgium
| |
Collapse
|
11
|
Radka CD, Frank MW, Yao J, Seetharaman J, Miller DJ, Rock CO. The genome of a Bacteroidetes inhabitant of the human gut encodes a structurally distinct enoyl-acyl carrier protein reductase (FabI). J Biol Chem 2020; 295:7635-7652. [PMID: 32317282 PMCID: PMC7261799 DOI: 10.1074/jbc.ra120.013336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Enoyl-acyl carrier protein reductase (FabI) catalyzes a rate-controlling step in bacterial fatty-acid synthesis and is a target for antibacterial drug development. A phylogenetic analysis shows that FabIs fall into four divergent clades. Members of clades 1-3 have been structurally and biochemically characterized, but the fourth clade, found in members of phylum Bacteroidetes, is uncharacterized. Here, we identified the unique structure and conformational changes that distinguish clade 4 FabIs. Alistipes finegoldii is a prototypical Bacteroidetes inhabitant of the gut microbiome. We found that A. finegoldii FabI (AfFabI) displays cooperative kinetics and uses NADH as a cofactor, and its crystal structure at 1.72 Å resolution showed that it adopts a Rossmann fold as do other characterized FabIs. It also disclosed a carboxyl-terminal extension that forms a helix-helix interaction that links the protomers as a unique feature of AfFabI. An AfFabI·NADH crystal structure at 1.86 Å resolution revealed that this feature undergoes a large conformational change to participate in covering the NADH-binding pocket and establishing the water channels that connect the active site to the central water well. Progressive deletion of these interactions led to catalytically compromised proteins that fail to bind NADH. This unique conformational change imparted a distinct shape to the AfFabI active site that renders it refractory to a FabI drug that targets clade 1 and 3 pathogens. We conclude that the clade 4 FabI, found in the Bacteroidetes inhabitants of the gut, have several structural features and conformational transitions that distinguish them from other bacterial FabIs.
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthew W. Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Darcie J. Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O. Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, To whom correspondence should be addressed:
262 Danny Thomas Place, Memphis, TN 38105. Tel.:
901-595-3491; E-mail:
| |
Collapse
|
12
|
Frank MW, Yao J, Batte JL, Gullett JM, Subramanian C, Rosch JW, Rock CO. Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. mBio 2020; 11:e00920-20. [PMID: 32430471 PMCID: PMC7240157 DOI: 10.1128/mbio.00920-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus utilizes the fatty acid (FA) kinase system to activate exogenous FAs for membrane synthesis. We developed a lipidomics workflow to determine the membrane phosphatidylglycerol (PG) molecular species synthesized by S. aureus at the thigh infection site. Wild-type S. aureus utilizes both host palmitate and oleate to acylate the 1 position of PG, and the 2 position is occupied by pentadecanoic acid arising from de novo biosynthesis. Inactivation of FakB2 eliminates the ability to assimilate oleate and inactivation of FakB1 reduces the content of saturated FAs and enhances oleate utilization. Elimination of FA activation in either ΔfakA or ΔfakB1 ΔfakB2 mutants does not impact growth. All S. aureus strains recovered from the thigh have significantly reduced branched-chain FAs and increased even-chain FAs compared to that with growth in rich laboratory medium. The molecular species pattern observed in the thigh was reproduced in the laboratory by growth in isoleucine-deficient medium containing exogenous FAs. S. aureus utilizes specific host FAs for membrane biosynthesis but also requires de novo FA biosynthesis initiated by isoleucine (or leucine) to produce pentadecanoic acid.IMPORTANCE The shortage of antibiotics against drug-resistant Staphylococcus aureus has led to the development of new drugs targeting the elongation cycle of fatty acid (FA) synthesis that are progressing toward the clinic. An objection to the use of FA synthesis inhibitors is that S. aureus can utilize exogenous FAs to construct its membrane, suggesting that the bacterium would bypass these therapeutics by utilizing host FAs instead. We developed a mass spectrometry workflow to determine the composition of the S. aureus membrane at the infection site to directly address how S. aureus uses host FAs. S. aureus strains that cannot acquire host FAs are as effective in establishing an infection as the wild type, but strains that require the utilization of host FAs for growth were attenuated in the mouse thigh infection model. We find that S. aureus does utilize host FAs to construct its membrane, but host FAs do not replace the requirement for pentadecanoic acid, a branched-chain FA derived from isoleucine (or leucine) that predominantly occupies the 2 position of S. aureus phospholipids. The membrane phospholipid structure of S. aureus mutants that cannot utilize host FAs indicates the isoleucine is a scarce resource at the infection site. This reliance on the de novo synthesis of predominantly pentadecanoic acid that cannot be obtained from the host is one reason why drugs that target fatty acid synthesis are effective in treating S. aureus infections.
Collapse
Affiliation(s)
- Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Justin L Batte
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica M Gullett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Rao NK, Nataraj V, Ravi M, Panchariya L, Palai K, Talapati SR, Lakshminarasimhan A, Ramachandra M, Antony T. Ternary complex formation of AFN-1252 with Acinetobacter baumannii FabI and NADH: Crystallographic and biochemical studies. Chem Biol Drug Des 2020; 96:704-713. [PMID: 32227402 DOI: 10.1111/cbdd.13686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 01/22/2023]
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative bacterial pathogen, associated mostly with hospital-acquired infections. The emergence of drug resistance strains made it necessary to explore new pathways for the development of more effective antibiotics. Enoyl CoA reductase (FabI), a key enzyme in the fatty acid biosynthesis (FAS) pathway, has emerged as a potential target for antibacterial drug development. Earlier reports show that the lead SaFabI inhibitor AFN-1252 can inhibit FabI from other organisms including Escherichia coli and Burkholderia pseudomallei, but with differential potency. In the present work, we show that AFN-1252 is a moderate inhibitor of AbFabI with an IC50 of 216 nM. AFN-1252 stabilized AbFabI with a 4.2°C increase in the melting temperature (Tm ) and, interestingly, the stabilization effect was significantly increased in presence of the cofactor NADH (∆Tm = 17°C), suggesting the formation of a ternary complex AbFabI: AFN-1252: NADH. X-ray crystallography studies of AbFabI co-crystalized with AFN-1252 and NADH confirmed the ternary complex formation. The critical interactions of AFN-1252 with AbFabI and NADH identified from the co-crystal structure may facilitate the design and development of new drugs against A. baumannii infections by targeting the FAS pathway.
Collapse
Affiliation(s)
| | | | - Mohan Ravi
- Aurigene Discovery Technologies Ltd, Bangalore, India
| | - Love Panchariya
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | | - Thomas Antony
- Aurigene Discovery Technologies Ltd, Bangalore, India
| |
Collapse
|
14
|
Fage CD, Lathouwers T, Vanmeert M, Gao L, Vrancken K, Lammens E, Weir ANM, Degroote R, Cuppens H, Kosol S, Simpson TJ, Crump MP, Willis CL, Herdewijn P, Lescrinier E, Lavigne R, Anné J, Masschelein J. The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in
Staphylococcus aureus
by Targeting the Enoyl‐Acyl Carrier Protein Binding Site of FabI. Angew Chem Int Ed Engl 2020; 59:10549-10556. [DOI: 10.1002/anie.201915407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Indexed: 01/07/2023]
Affiliation(s)
| | - Thomas Lathouwers
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Michiel Vanmeert
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Ling‐Jie Gao
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Kristof Vrancken
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Eveline‐Marie Lammens
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Angus N. M. Weir
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Ruben Degroote
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Harry Cuppens
- Department of Human Genetics KU Leuven Herestraat 49 3000 Leuven Belgium
| | - Simone Kosol
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Thomas J. Simpson
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Matthew P. Crump
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Christine L. Willis
- School of Chemistry, Cantock's Close University of Bristol Bristol BS8 1TS UK
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology KU Leuven Kasteelpark Arenberg 21, PO Box 2462 3001 Heverlee Belgium
| | - Jozef Anné
- Laboratory of Molecular Bacteriology Rega Institute for Medical Research Herestraat 49, PO Box 1037 3000 Leuven Belgium
| | - Joleen Masschelein
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Laboratory for Medicinal Chemistry Rega Institute for Medical Research Herestraat 49, PO Box 1041 3000 Leuven Belgium
- Laboratory for Biomolecular Discovery and Engineering KU Leuven Kasteelpark Arenberg 31, box 2438 3001 Heverlee Belgium
| |
Collapse
|
15
|
Critical analysis of antibacterial agents in clinical development. Nat Rev Microbiol 2020; 18:286-298. [PMID: 32152509 DOI: 10.1038/s41579-020-0340-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
The antibacterial agents currently in clinical development are predominantly derivatives of well-established antibiotic classes and were selected to address the class-specific resistance mechanisms and determinants that were known at the time of their discovery. Many of these agents aim to target the antibiotic-resistant priority pathogens listed by the WHO, including Gram-negative bacteria in the critical priority category, such as carbapenem-resistant Acinetobacter, Pseudomonas and Enterobacterales. Although some current compounds in the pipeline have exhibited increased susceptibility rates in surveillance studies that depend on geography, pre-existing cross-resistance both within and across antibacterial classes limits the activity of many of the new agents against the most extensively drug-resistant (XDR) and pan-drug-resistant (PDR) Gram-negative pathogens. In particular, cross-resistance to unrelated classes may occur by co-selection of resistant strains, thus leading to the rapid emergence and subsequent spread of resistance. There is a continued need for innovation and new-class antibacterial agents in order to provide effective therapeutic options against infections specifically caused by XDR and PDR Gram-negative bacteria.
Collapse
|
16
|
Radka CD, Frank MW, Rock CO, Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol 2020; 113:807-825. [PMID: 31876062 DOI: 10.1111/mmi.14445] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
17
|
Parker EN, Drown BS, Geddes EJ, Lee HY, Ismail N, Lau GW, Hergenrother PJ. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat Microbiol 2019; 5:67-75. [PMID: 31740764 PMCID: PMC6953607 DOI: 10.1038/s41564-019-0604-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/04/2019] [Indexed: 01/17/2023]
Abstract
Gram-negative bacterial infections are a significant public health concern, and the lack of new drug classes for these pathogens is linked to the inability of most drug leads to accumulate inside Gram-negative bacteria1-7. Here, we report the development of a web application-eNTRyway-that predicts compound accumulation (in Escherichia coli) from its structure. In conjunction with structure-activity relationships and X-ray data, eNTRyway was utilized to re-design Debio-1452-a Gram-positive-only antibiotic8-into versions that accumulate in E. coli and possess antibacterial activity against high-priority Gram-negative pathogens. The lead compound Debio-1452-NH3 operates as an antibiotic via the same mechanism as Debio-1452, namely potent inhibition of the enoyl-acyl carrier protein reductase FabI, as validated by in vitro enzyme assays and the generation of bacterial isolates with spontaneous target mutations. Debio-1452-NH3 is well tolerated in vivo, reduces bacterial burden in mice and rescues mice from lethal infections with clinical isolates of Acinetobacter baumannii, Klebsiella pneumoniae and E. coli. This work provides tools for the facile discovery and development of high-accumulating compounds in E. coli, and a general blueprint for the conversion of Gram-positive-only compounds into broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Erica N Parker
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryon S Drown
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emily J Geddes
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Gee W Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
18
|
Maltarollo VG. Classification of Staphylococcus Aureus FabI Inhibitors by Machine Learning Techniques. ACTA ACUST UNITED AC 2019. [DOI: 10.4018/ijqspr.2019100101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enoyl-acyl carrier protein reductase (FabI) is a key enzyme in the fatty acid metabolism of gram-positive bacteria and is considered a potential target for new antibacterial drugs development. Indeed, triclosan is a widely employed antibacterial and AFN-1252 is currently under phase-II clinical trials, both are known as FabI inhibitors. Nowadays, there is an urgent need for new drug discovery due to increasing antibacterial resistance. In the present study, classification models using machine learning techniques were generated to distinguish SaFabI inhibitors from non-inhibitors successfully (e.g., Mathews correlation coefficient values equal to 0.837 and 0.789 calculated with internal and external validations). The interpretation of a selected model indicates that larger compounds, number of N atoms and the distance between central amide and naphthyridinone ring are important to biological activity, corroborating previous studies. Therefore, these obtained information and generated models can be useful for design/discovery of novel bioactive ligands as potential antibacterial agents.
Collapse
|
19
|
Overview Perspective of Bacterial Strategies of Resistance to Biocides and Antibiotics. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.65744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Yao J, Rock CO. Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis. Front Microbiol 2018; 9:2291. [PMID: 30319589 PMCID: PMC6167442 DOI: 10.3389/fmicb.2018.02291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen with a reduced genome reflecting its host cell dependent life style. However, C. trachomatis has retained all of the genes required for fatty acid and phospholipid synthesis that are present in free-living bacteria. C. trachomatis assembles its cellular membrane using its own biosynthetic machinery utilizing glucose, isoleucine, and serine. This pathway produces disaturated phospholipid molecular species containing a branched-chain 15-carbon fatty acid in the 2-position, which are distinct from the structures of host phospholipids. The enoyl reductase step (FabI) is a target for antimicrobial drug discovery, and the developmental candidate, AFN-1252, blocks the activity of CtFabI. The x-ray crystal structure of the CtFabI•NADH•AFN-1252 ternary complex reveals the interactions between the drug, protein, and cofactor. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infection cycle reduces infectious titers, and treatment at the time of infection prevents the first cell division. Fatty acid synthesis is essential for C. trachomatis proliferation within its eukaryotic host, and CtFabI is a validated therapeutic target against C. trachomatis.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
21
|
|
22
|
Morvan C, Halpern D, Kénanian G, Pathania A, Anba-Mondoloni J, Lamberet G, Gruss A, Gloux K. The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Biochimie 2017; 141:40-46. [PMID: 28728970 DOI: 10.1016/j.biochi.2017.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus.
Collapse
Affiliation(s)
- Claire Morvan
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - David Halpern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Gérald Kénanian
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Amit Pathania
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jamila Anba-Mondoloni
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Gilles Lamberet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alexandra Gruss
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Karine Gloux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
23
|
Yao J, Rock CO. Exogenous fatty acid metabolism in bacteria. Biochimie 2017; 141:30-39. [PMID: 28668270 DOI: 10.1016/j.biochi.2017.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
Studies of Staphylococcus aureus FabI inhibitors: fragment-based approach based on holographic structure-activity relationship analyses. Future Med Chem 2017; 9:135-151. [PMID: 28128979 DOI: 10.4155/fmc-2016-0179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM FabI is a key enzyme in the fatty acid metabolism of Gram-positive bacteria such as Staphylococcus aureus and is an established drug target for known antibiotics such as triclosan. However, due to increasing antibacterial resistance, there is an urgent demand for new drug discovery. Recently, aminopyridine derivatives have been proposed as promising competitive inhibitors of FabI. METHODS In the present study, holographic structure-activity relationship (HQSAR) analyses were employed for determining structural contributions of a series containing 105 FabI inhibitors. RESULTS & CONCLUSION The final HQSAR model was robust and predictive according to statistical validation (q2 and r2pred equal to 0.696 and 0.854, respectively) and could be further employed to generate fragment contribution maps. Then, final HQSAR model together with FabI active site information can be useful for designing novel bioactive ligands.
Collapse
|
25
|
Mistry TL, Truong L, Ghosh AK, Johnson ME, Mehboob S. Benzimidazole-Based FabI Inhibitors: A Promising Novel Scaffold for Anti-staphylococcal Drug Development. ACS Infect Dis 2017; 3:54-61. [PMID: 27756129 DOI: 10.1021/acsinfecdis.6b00123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enoyl-ACP reductase (FabI) enzyme is a well validated target for anti-staphylococcal drug discovery and development. With the goal of finding alternate therapeutics for drug-resistant strains of Staphylococcus aureus, such as methicillin-resistant S. aureus (MRSA), our previously published series of benzimidazole-based inhibitors of the FabI enzyme from Francisella tularensis (FtFabI) have been evaluated against FabI from S. aureus (SaFabI). We report here the preliminary structure-activity relationship of this series and the prioritization of compounds toward lead optimization. Mutational studies have identified key residues that contribute toward stabilizing the inhibitors in the active site of FabI. Mutations that do not significantly impact enzyme function but destabilize inhibitor binding are more likely to occur in nature as organisms evolve to evade the action of antibiotics leading to resistance. Identifying these residues provides guidance for minimizing susceptibility to resistance. Additionally, we have identified compounds that elicit antibacterial activity through off-target effects and observe that close analogs can display differing modes of action (on-target vs off-target) and need to be individually evaluated early on to prioritize compounds for lead optimization. Overall, our data suggest that the benzimidazole scaffold is a promising scaffold for anti-staphylococcal drug development.
Collapse
Affiliation(s)
- Tina L. Mistry
- Center
for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lena Truong
- Center
for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Arun K. Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael E. Johnson
- Center
for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Novalex Therapeutics, 2242 W. Harrison, Chicago, Illinois 60612, United States
| | - Shahila Mehboob
- Novalex Therapeutics, 2242 W. Harrison, Chicago, Illinois 60612, United States
| |
Collapse
|
26
|
Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes. Infect Immun 2016; 84:3597-3607. [PMID: 27736774 DOI: 10.1128/iai.00647-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/02/2016] [Indexed: 12/28/2022] Open
Abstract
Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes.
Collapse
|
27
|
Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1300-1309. [PMID: 27668701 DOI: 10.1016/j.bbalip.2016.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
Abstract
Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
28
|
Triclosan Resistome from Metagenome Reveals Diverse Enoyl Acyl Carrier Protein Reductases and Selective Enrichment of Triclosan Resistance Genes. Sci Rep 2016; 6:32322. [PMID: 27577999 PMCID: PMC5006077 DOI: 10.1038/srep32322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
Triclosan (TCS) is a widely used antimicrobial agent and TCS resistance is considered to have evolved in diverse organisms with extensive use of TCS, but distribution of TCS resistance has not been well characterized. Functional screening of the soil metagenome in this study has revealed that a variety of target enoyl acyl carrier protein reductases (ENR) homologues are responsible for the majority of TCS resistance. Diverse ENRs similar to 7-α-hydroxysteroid dehydrogenase (7-α-HSDH), FabG, or the unusual YX7K-type ENR conferred extreme tolerance to TCS. The TCS-refractory 7-α HSDH-like ENR and the TCS-resistant YX7K-type ENR seem to be prevalent in human pathogenic bacteria, suggesting that a selective enrichment occurred in pathogenic bacteria in soil. Additionally, resistance to multiple antibiotics was found to be mediated by antibiotic resistance genes that co-localize with TCS resistance determinants. Further comparative analysis of ENRs from 13 different environments has revealed a huge diversity of both prototypic and metagenomic TCS-resistant ENRs, in addition to a selective enrichment of TCS-resistant specific ENRs in presumably TCS-contaminated environments with reduced ENR diversity. Our results suggest that long-term extensive use of TCS can lead to the selective emergence of TCS-resistant bacterial pathogens, possibly with additional resistance to multiple antibiotics, in natural environments.
Collapse
|
29
|
McKinney DC, Eyermann CJ, Gu RF, Hu J, Kazmirski SL, Lahiri SD, McKenzie AR, Shapiro AB, Breault G. Antibacterial FabH Inhibitors with Mode of Action Validated in Haemophilus influenzae by in Vitro Resistance Mutation Mapping. ACS Infect Dis 2016; 2:456-64. [PMID: 27626097 DOI: 10.1021/acsinfecdis.6b00053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fatty acid biosynthesis is essential to bacterial growth in Gram-negative pathogens. Several small molecules identified through a combination of high-throughput and fragment screening were cocrystallized with FabH (β-ketoacyl-acyl carrier protein synthase III) from Escherichia coli and Streptococcus pneumoniae. Structure-based drug design was used to merge several scaffolds to provide a new class of inhibitors. After optimization for Gram-negative enzyme inhibitory potency, several compounds demonstrated antimicrobial activity against an efflux-negative strain of Haemophilus influenzae. Mutants resistant to these compounds had mutations in the FabH gene near the catalytic triad, validating FabH as a target for antimicrobial drug discovery.
Collapse
Affiliation(s)
- David C. McKinney
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Charles J. Eyermann
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Rong-Fang Gu
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jun Hu
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Steven L. Kazmirski
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sushmita D. Lahiri
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Andrew R. McKenzie
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Adam B. Shapiro
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Gloria Breault
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
- Structure and Biophysics and #Chemistry Innovation Center, Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
30
|
A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome. Antimicrob Agents Chemother 2016; 60:4264-73. [PMID: 27161626 DOI: 10.1128/aac.00535-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
Abstract
Broad-spectrum antibiotic therapy decimates the gut microbiome, resulting in a variety of negative health consequences. Debio 1452 is a staphylococcus-selective enoyl-acyl carrier protein reductase (FabI) inhibitor under clinical development and was used to determine whether treatment with pathogen-selective antibiotics would minimize disturbance to the microbiome. The effect of oral Debio 1452 on the microbiota of mice was compared to the effects of four commonly used broad-spectrum oral antibiotics. During the 10 days of oral Debio 1452 treatment, there was minimal disturbance to the gut bacterial abundance and composition, with only the unclassified S24-7 taxon reduced at days 6 and 10. In comparison, broad-spectrum oral antibiotics caused ∼100- to 4,000-fold decreases in gut bacterial abundance and severely altered the microbial composition. The gut bacterial abundance and composition of Debio 1452-treated mice were indistinguishable from those of untreated mice 2 days after the antibiotic treatment was stopped. In contrast, the bacterial abundance in broad-spectrum-antibiotic-treated mice took up to 7 days to recover, and the gut composition of the broad-spectrum-antibiotic-treated mice remained different from that of the control group 20 days after the cessation of antibiotic treatment. These results illustrate that a pathogen-selective approach to antibiotic development will minimize disturbance to the gut microbiome.
Collapse
|
31
|
Yao J, Rock CO. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics. Cold Spring Harb Perspect Med 2016; 6:a027045. [PMID: 26931811 DOI: 10.1101/cshperspect.a027045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
32
|
Yao J, Bruhn DF, Frank MW, Lee RE, Rock CO. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria. J Biol Chem 2015; 291:171-81. [PMID: 26567338 DOI: 10.1074/jbc.m115.699462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.
Collapse
Affiliation(s)
| | - David F Bruhn
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | - Richard E Lee
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | |
Collapse
|
33
|
Demissie RD, Kabre P, Tuntland ML, Fung LWM. An Efficient and Economical Assay to Screen for Triclosan Binding to FabI. ACTA ACUST UNITED AC 2015; 21:391-8. [PMID: 26538431 DOI: 10.1177/1087057115615085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/11/2015] [Indexed: 11/15/2022]
Abstract
Triclosan is an effective inhibitor for enoyl acyl carrier protein reductase (ENR) in fatty acid biosynthesis. Triclosan-resistant mutants of ENR have emerged. Thus, it is important to detect these triclosan-resistant mutations in ENR. Generally, enzyme activity assays on the mutants are used to determine the effect of triclosan on ENR activity. Since the substrates are linked to acyl carrier protein (ACP), the assays are challenging due to the need to prepare the ACP and link it to the substrates. Non-ACP-linked (coenzyme A [CoA]-linked) substrates can be used in some ENR, but not in all. Consequently, screening for triclosan-resistant mutants is also challenging. We have developed a simple thermal shift assay, which does not use ACP-linked substrates, to determine the binding ability of triclosan to the ENR active site, and thus it can be used for screening for triclosan-resistant mutants. Staphylococcus aureus FabI enzyme and its mutants were used to demonstrate the binding ability of triclosan with NADP(+) to FabI. The direct correlation between the binding ability and enzyme activity was demonstrated with Francisella tularensis FabI. This method may also be applied to select effective triclosan analogues that inhibit ENR activity.
Collapse
|
34
|
Narasimha Rao K, Lakshminarasimhan A, Joseph S, Lekshmi SU, Lau MS, Takhi M, Sreenivas K, Nathan S, Yusof R, Abd Rahman N, Ramachandra M, Antony T, Subramanya H. AFN-1252 is a potent inhibitor of enoyl-ACP reductase from Burkholderia pseudomallei--Crystal structure, mode of action, and biological activity. Protein Sci 2015; 24:832-40. [PMID: 25644789 PMCID: PMC4420531 DOI: 10.1002/pro.2655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Melioidosis is a tropical bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei; Bpm), a Gram-negative bacterium. Current therapeutic options are largely limited to trimethoprim-sulfamethoxazole and β-lactam drugs, and the treatment duration is about 4 months. Moreover, resistance has been reported to these drugs. Hence, there is a pressing need to develop new antibiotics for Melioidosis. Inhibition of enoyl-ACP reducatase (FabI), a key enzyme in the fatty acid biosynthesis pathway has shown significant promise for antibacterial drug development. FabI has been identified as the major enoyl-ACP reductase present in B. pseudomallei. In this study, we evaluated AFN-1252, a Staphylococcus aureus FabI inhibitor currently in clinical development, for its potential to bind to BpmFabI enzyme and inhibit B. pseudomallei bacterial growth. AFN-1252 stabilized BpmFabI and inhibited the enzyme activity with an IC50 of 9.6 nM. It showed good antibacterial activity against B. pseudomallei R15 strain, isolated from a melioidosis patient (MIC of 2.35 mg/L). X-ray structure of BpmFabI with AFN-1252 was determined at a resolution of 2.3 Å. Complex of BpmFabI with AFN-1252 formed a symmetrical tetrameric structure with one molecule of AFN-1252 bound to each monomeric subunit. The kinetic and thermal melting studies supported the finding that AFN-1252 can bind to BpmFabI independent of cofactor. The structural and mechanistic insights from these studies might help the rational design and development of new FabI inhibitors.
Collapse
Affiliation(s)
- Krishnamurthy Narasimha Rao
- Aurigene Discovery Technologies Ltd, 39-40, KIADB Industrial area, Electronic city Phase IIHosur Road, Bangalore, 560 100, India
| | - Anirudha Lakshminarasimhan
- Aurigene Discovery Technologies Ltd, 39-40, KIADB Industrial area, Electronic city Phase IIHosur Road, Bangalore, 560 100, India
| | - Sarah Joseph
- Aurigene Discovery Technologies Ltd, 39-40, KIADB Industrial area, Electronic city Phase IIHosur Road, Bangalore, 560 100, India
| | - Swathi U Lekshmi
- Aurigene Discovery Technologies Ltd, 39-40, KIADB Industrial area, Electronic city Phase IIHosur Road, Bangalore, 560 100, India
| | - Ming-Seong Lau
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600, Bangi, Selangor, Malaysia
| | - Mohammed Takhi
- Aurigene Discovery Technologies LtdBollaram Road, Miyapur, Hyderabad, 500 049, India
| | - Kandepu Sreenivas
- Aurigene Discovery Technologies LtdBollaram Road, Miyapur, Hyderabad, 500 049, India
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600, Bangi, Selangor, Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya50603, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya50603, Kuala Lumpur, Malaysia
| | - Murali Ramachandra
- Aurigene Discovery Technologies Ltd, 39-40, KIADB Industrial area, Electronic city Phase IIHosur Road, Bangalore, 560 100, India
| | - Thomas Antony
- Aurigene Discovery Technologies Ltd, 39-40, KIADB Industrial area, Electronic city Phase IIHosur Road, Bangalore, 560 100, India
| | - Hosahalli Subramanya
- Aurigene Discovery Technologies Ltd, 39-40, KIADB Industrial area, Electronic city Phase IIHosur Road, Bangalore, 560 100, India
| |
Collapse
|
35
|
Mutations upstream of fabI in triclosan resistant Staphylococcus aureus strains are associated with elevated fabI gene expression. BMC Genomics 2015; 16:345. [PMID: 25924916 PMCID: PMC4415318 DOI: 10.1186/s12864-015-1544-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 04/17/2015] [Indexed: 01/30/2023] Open
Abstract
Background The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. Results Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. Conclusions In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1544-y) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Yao J, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem 2015; 290:5940-6. [PMID: 25648887 DOI: 10.1074/jbc.r114.636241] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors.
Collapse
Affiliation(s)
- Jiangwei Yao
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
37
|
FabH mutations confer resistance to FabF-directed antibiotics in Staphylococcus aureus. Antimicrob Agents Chemother 2014; 59:849-58. [PMID: 25403676 DOI: 10.1128/aac.04179-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis. Twenty independently isolated clones resistant to platensimycin, platencin, or thiolactomycin were isolated. All mutants selected against one antibiotic were cross-resistant to the other two antibiotics. Mutations were not detected in fabF, but the resistant strains harbored missense mutations in fabH. The altered amino acids clustered in and around the FabH active-site tunnel. The mutant FabH proteins were catalytically compromised based on the low activities of the purified enzymes, a fatty acid-dependent growth phenotype, and elevated expression of the fabHF operon in the mutant strains. Independent manipulation of fabF and fabH expression levels showed that the FabH/FabF activity ratio was a major determinant of antibiotic sensitivity. Missense mutations that reduce FabH activity are sufficient to confer resistance to multiple antibiotics that bind to the FabF acyl-enzyme intermediate in S. aureus.
Collapse
|
38
|
Yao J, Abdelrahman YM, Robertson RM, Cox JV, Belland RJ, White SW, Rock CO. Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis. J Biol Chem 2014; 289:22365-76. [PMID: 24958721 DOI: 10.1074/jbc.m114.584185] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The major phospholipid classes of the obligate intracellular bacterial parasite Chlamydia trachomatis are the same as its eukaryotic host except that they also contain chlamydia-made branched-chain fatty acids in the 2-position. Genomic analysis predicts that C. trachomatis is capable of type II fatty acid synthesis (FASII). AFN-1252 was deployed as a chemical tool to specifically inhibit the enoyl-acyl carrier protein reductase (FabI) of C. trachomatis to determine whether chlamydial FASII is essential for replication within the host. The C. trachomatis FabI (CtFabI) is a homotetramer and exhibited typical FabI kinetics, and its expression complemented an Escherichia coli fabI(Ts) strain. AFN-1252 inhibited CtFabI by binding to the FabI·NADH complex with an IC50 of 0.9 μM at saturating substrate concentration. The x-ray crystal structure of the CtFabI·NADH·AFN-1252 ternary complex revealed the specific interactions between the drug, protein, and cofactor within the substrate binding site. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infectious cycle caused a decrease in infectious titers that correlated with a decrease in branched-chain fatty acid biosynthesis. AFN-1252 treatment at the time of infection prevented the first cell division of C. trachomatis, although the cell morphology suggested differentiation into a metabolically active reticulate body. These results demonstrate that FASII activity is essential for C. trachomatis proliferation within its eukaryotic host and validate CtFabI as a therapeutic target against C. trachomatis.
Collapse
Affiliation(s)
| | - Yasser M Abdelrahman
- the Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and the Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rosanna M Robertson
- Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 48105
| | - John V Cox
- the Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Robert J Belland
- the Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Stephen W White
- Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 48105
| | | |
Collapse
|
39
|
Schiebel J, Chang A, Shah S, Lu Y, Liu L, Pan P, Hirschbeck MW, Tareilus M, Eltschkner S, Yu W, Cummings JE, Knudson SE, Bommineni GR, Walker SG, Slayden RA, Sotriffer CA, Tonge PJ, Kisker C. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J Biol Chem 2014; 289:15987-6005. [PMID: 24739388 DOI: 10.1074/jbc.m113.532804] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.
Collapse
Affiliation(s)
- Johannes Schiebel
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany, the Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Andrew Chang
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Sonam Shah
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Yang Lu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Li Liu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Pan Pan
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Maria W Hirschbeck
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mona Tareilus
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Sandra Eltschkner
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Weixuan Yu
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Jason E Cummings
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Susan E Knudson
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Gopal R Bommineni
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Stephen G Walker
- School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794-3400, and
| | - Richard A Slayden
- the Rocky Mountain Regional Center of Excellence and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Christoph A Sotriffer
- the Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | - Peter J Tonge
- the Institute for Chemical Biology and Drug Discovery, Department of Chemistry, and
| | - Caroline Kisker
- From the Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Wuerzburg, D-97080 Wuerzburg, Germany,
| |
Collapse
|